Cocoa does this automatically for non-owned windows and informs the back end
via a different mechanism (WINDOW_BROUGHT_FORWARD). However, for owned windows
(child windows in Cocoa parlance), Cocoa does not change their z-order relative
to the owner (parent) or sibling owned windows when clicked. So, we have to
move the window in user32's z-order so that it gets moved appropriately on
screen in response.
Signed-off-by: Ken Thomases <ken@codeweavers.com>
Signed-off-by: Alexandre Julliard <julliard@winehq.org>
If another app grabbed the clipboard, that most likely happened while it was
active and the Wine process was inactive. Our process being made active again
is a good opportunity to check for that.
Signed-off-by: Ken Thomases <ken@codeweavers.com>
Signed-off-by: Alexandre Julliard <julliard@winehq.org>
Renamed it to macdrv_get_pasteboard_formats(), since the "copy" was meant to
convey Core Foundation ownership semantics which no longer apply.
Signed-off-by: Ken Thomases <ken@codeweavers.com>
Signed-off-by: Alexandre Julliard <julliard@winehq.org>
This only really affects OpenGL child windows. GDI rendering to the window
surface is still only blitted to the window's content view. The descendant
views don't draw and so are transparent, letting the content view show through.
Using Cocoa views for child windows fixes a problem where changes to the
position and visibility of child GL windows didn't properly affect the Cocoa GL
view. Hiding, showing, and moving the top-level window affected the Cocoa
window and thus, indirectly, the GL view. Moving the child GL window itself
was propagated to the GL view, so that worked. But hiding, showing, or moving
any of the intervening ancestors of the child GL window didn't properly affect
the GL view. Neither did hiding or showing the child GL window itself.
This also slightly improves the clipping of the GL view by its ancestors,
although it still doesn't work quite right due to Cocoa bugs. There are also
remaining bugs with z-order among multiple GL views and clipping by overlapping
siblings. I hope to eventually fix those using Core Animation layers, for
which this is a prerequisite.
Signed-off-by: Ken Thomases <ken@codeweavers.com>
Signed-off-by: Alexandre Julliard <julliard@winehq.org>
When this Retina mode is enabled and the primary display is in the user's
default configuration, Wine gets told that screen and window sizes and mouse
coordinates are twice what Cocoa reports them as in its virtual coordinate
system ("points"). The Windows apps then renders at that high resolution and
the Mac driver blits it to screen. If the screen is actually a Retina display
in a high-DPI mode, then this extra detail will be preserved. Otherwise, the
rendering will be downsampled and blurry.
This is intended to be combined with increasing the Windows DPI, as via winecfg.
If that is doubled to 192, then, in theory, graphical elements will remain the
same visual size on screen but be rendered with finer detail. Unfortunately,
many Windows programs don't correctly handle non-standard DPI so the results
are not always perfect.
The registry setting to enable Retina mode is:
[HKEY_CURRENT_USER\Software\Wine\Mac Driver]
"RetinaMode"="y"
Note that this setting is not looked for in the AppDefaults\<exe name> key
because it doesn't make sense for only some processes in a Wine session to see
the high-resolution sizes and coordinates.
Signed-off-by: Ken Thomases <ken@codeweavers.com>
Signed-off-by: Alexandre Julliard <julliard@winehq.org>
It had been using the synchronous OnMainThread() to submit its work to the
Cocoa thread, but only queries are processed while OnMainThread() waits for the
work to complete. This led to QUERY_IME_CHAR_RECT queries being processed out
of order relative to IM_SET_TEXT events, making the character range out of
bounds with respect to the composition string.
Signed-off-by: Ken Thomases <ken@codeweavers.com>
Signed-off-by: Alexandre Julliard <julliard@winehq.org>
When the display mode changes such that the screen height changes, we'd like
our windows to keep their position relative to the top-left of the primary
screen. That's how WinAPI's coordinate system works and we want the WinAPI
position of the window to not change just because the display mode changed.
Unfortunately that's not achievable in Cocoa. Cocoa keeps the window
stationary relative to the screen it's on, not necessarily the primary screen,
and it's sometimes relative to the bottom-left and sometimes the top-left of
that screen.
So, what we do instead is queue an event to get the back end to reassert the
WinAPI position of the window. This is queued before Cocoa can adjust the
Cocoa position of the window which would queue a WINDOW_FRAME_CHANGED to the
back end and mess up the WinAPI position. The back end's reassertion of the
WinAPI position won't be processed by the Cocoa thread until after Cocoa has
adjusted the position and will thus override it. It will also discard any
wrong WINDOW_FRAME_CHANGED that may have been queued.
Signed-off-by: Ken Thomases <ken@codeweavers.com>
OS X doesn't have the same concept of maximized windows as Windows does.
There's no mode that prevents a normally-resizable window from being resized.
If a window is "zoomed", it mostly fills the screen but the user can still
move or resize it, at which point it ceases to be in the zoomed state. So,
users are confused and frustrated when they can't resize a window that's
maximized.
To get similar behavior while still respecting Win32 semantics, we now let the
user try to resize maximized windows. (The resize cursors are shown at the
edges of the window frame.) When they start, a request is submitted to the app
to restore the window. Unless and until the window is restored, we don't
actually allow the window to change its size.
The user expects to resize the window from its current (maximized) position.
It should not jump to its normal position upon being restored. So, we set the
window's normal position to its current position before restoring it.
For some empty RECTs, such as { INT_MAX, INT_MAX, INT_MIN, INT_MIN }, right
minus left or bottom minus top underflow and wrap around to positive values.
The user is prevented from moving or resizing a maximized window. The zoom
button is still present and enabled for a maximized window but requests that
it be restored rather than simply resizing it, which is what it does for
normal windows.
If a window is not resizable (lacks WS_THICKFRAME) but has a maximize box
(WS_MAXIMIZEBOX), then the zoom button requests that it be maximized rather
than resizing it.
This simulates some of what would happen if user32 were managing the drag. The
click in the caption would cause WM_SYSCOMMAND/SC_MOVE. The processing of that
message is synchronous and doesn't return until the move is complete.
Some games require that "blocking" in the internal event loop to prevent them
from misbehaving during the drag.
Queries can be run out of order because the main thread is waiting on the
response. The main thread didn't really need a response from QUERY_RESIZE_END.
It was only a query for symmetry with QUERY_RESIZE_START.
This improves the animation of the window unminimizing from the Dock in some
cases. The window would often be blank or, for shaped windows, invisible
during that animation.