If we're heading out of the pixelshader handler early, and a pixel
shader is in use, the pixel shader may not be compiled. The vertex
shader handler then checks if the pixel shader is dirty, and calls the
shader backend to apply the shader if it isn't. Thus, in the case of
GLSL, the shader code could attempt to link an uncompiled shader into
the program. This isn't much of a problem because when the fog is
applied, the pixel shader is compiled and the program re-linked.
If a format is not supported natively by opengl, a shader may be able
to convert it. Up to now, CheckDeviceFormat had magic knowldge which
GL extensions lead to which supported format. This patch adds
functions that allow CheckDeviceFormat to ask the actual
implementation for its capabilities.
Fixed function processing can only deal with values between 0 and 1
generally. Clamp the results of instructions that could produce bigger
or smaller values.
This is an ATI specific format designed for compressed normal maps,
and quite a few games check for its existence. While it is an
ATI-specific "extension" in d3d9, it is a core part of
D3D10(DXGI_FORMAT_BC5), and supported on Geforce 8 cards.
It isn't related to the shader backend any longer. The nvts_enable in
the ffp code isn't quite right as well, it should be moved away once
there is a dedicated nvts fragment pipeline replacement
Calling shader_select() from inside depth_blt() isn't necessarily
safe. shader_select() assumes CompileShader() has been called for the
current shaders, but that depends on STATE_VSHADER / STATE_PIXELSHADER
being applied. That isn't always true when depth_blt() gets called,
with the result that sometimes GLSL programs could be created with no
shader objects attached.
Constant numbers start at 0, and the loading loop has a for(i; i <
dirtyconsts; i++). This means that the highest dirty constant isn't
loaded correctly. Rather than replacing the < with <=, which would
make it impossible to have no dirty constant, add 1 to the dirty
constant counter.
The previous logic assumed that if NVTS or ATIFS are available they
will be used. This happens to be true for NVTS, but ATIFS is only used
if neither ARBFP nor GLSL are supported. This breaks fixed function
fragment processing on ATI r300 and newer cards
The whole control structures in directx.c get terribly confusing with
the various codepaths for texturing and different shader
implementations. It is also hard to reflect the shader model
decisions this way too. This patch moves the shader specific parts of
the caps code into the shader backend where we can set our caps
dependent of the shader model decisions and without complex caps flag
checks.
Generating the shader ID and parts of the shader prolog and epilog was
done by the common vertexshader.c / pixelshader.c, which is ugly.
This patch doesn't get rid of all the uglyness, somewhen we'll still
have to sort out the relationship of [arb|glsl]_generate_shader and
[arb|glsl]_generate_declarations.
Add a new property of the shader backend which indicates whether the
shader backend is able to dirtify single constants rather than
dirtifying vshader and pshader constants as a whole. Depending on this
a different Set*ConstantF implementation is used which marks constants
dirty. The ARB shader backend uses this and marks constants clean
after uploading.