in order to ensure that the bytecode interpretation is exactly

equivalent to the one in FT 1.4, moved some code from the
old version of FreeType in order to compute vector normalization
a bit differently
This commit is contained in:
David Turner 2000-05-02 11:01:12 +00:00
parent 48641d60ae
commit b7ef2b0968
1 changed files with 143 additions and 2 deletions

View File

@ -825,6 +825,22 @@
}
#ifdef FT_CONFIG_OPTION_OLD_CALCS
static TT_F26Dot6 Norm( TT_F26Dot6 X, TT_F26Dot6 Y )
{
FT_Int64 T1, T2;
MUL_64( X, X, T1 );
MUL_64( Y, Y, T2 );
ADD_64( T1, T2, T1 );
return (TT_F26Dot6)SQRT_64( T1 );
}
#endif
/*************************************************************************/
/* */
/* Before an opcode is executed, the interpreter verifies that there are */
@ -1194,7 +1210,7 @@
else
{
TT_Long x, y;
#if 0
#ifdef FT_CONFIG_OPTION_OLD_CALCS
x = TT_MULDIV( CUR.GS.projVector.x, CUR.tt_metrics.x_ratio, 0x4000 );
y = TT_MULDIV( CUR.GS.projVector.y, CUR.tt_metrics.y_ratio, 0x4000 );
CUR.tt_metrics.ratio = Norm( x, y );
@ -2126,6 +2142,98 @@
/* In case Vx and Vy are both zero, Normalize() returns SUCCESS, and */
/* R is undefined. */
/* */
#ifdef FT_CONFIG_OPTION_OLD_CALCS
static TT_Bool Normalize( EXEC_OP_ TT_F26Dot6 Vx,
TT_F26Dot6 Vy,
TT_UnitVector* R )
{
TT_F26Dot6 W;
TT_Bool S1, S2;
if ( ABS( Vx ) < 0x10000L && ABS( Vy ) < 0x10000L )
{
Vx *= 0x100;
Vy *= 0x100;
W = Norm( Vx, Vy );
if ( W == 0 )
{
/* XXX : UNDOCUMENTED! It seems that it's possible to try */
/* to normalize the vector (0,0). Return immediately */
return SUCCESS;
}
R->x = (TT_F2Dot14)FT_MulDiv( Vx, 0x4000L, W );
R->y = (TT_F2Dot14)FT_MulDiv( Vy, 0x4000L, W );
return SUCCESS;
}
W = Norm( Vx, Vy );
Vx = FT_MulDiv( Vx, 0x4000L, W );
Vy = FT_MulDiv( Vy, 0x4000L, W );
W = Vx * Vx + Vy * Vy;
/* Now, we want that Sqrt( W ) = 0x4000 */
/* Or 0x1000000 <= W < 0x1004000 */
if ( Vx < 0 )
{
Vx = -Vx;
S1 = TRUE;
}
else
S1 = FALSE;
if ( Vy < 0 )
{
Vy = -Vy;
S2 = TRUE;
}
else
S2 = FALSE;
while ( W < 0x1000000L )
{
/* We need to increase W, by a minimal amount */
if ( Vx < Vy )
Vx++;
else
Vy++;
W = Vx * Vx + Vy * Vy;
}
while ( W >= 0x1004000L )
{
/* We need to decrease W, by a minimal amount */
if ( Vx < Vy )
Vx--;
else
Vy--;
W = Vx * Vx + Vy * Vy;
}
/* Note that in various cases, we can only */
/* compute a Sqrt(W) of 0x3FFF, eg. Vx = Vy */
if ( S1 )
Vx = -Vx;
if ( S2 )
Vy = -Vy;
R->x = (TT_F2Dot14)Vx; /* Type conversion */
R->y = (TT_F2Dot14)Vy; /* Type conversion */
return SUCCESS;
}
#else
static
TT_Bool Normalize( EXEC_OP_ TT_F26Dot6 Vx,
TT_F26Dot6 Vy,
@ -2203,9 +2311,42 @@
R->y = (TT_F2Dot14)TT_MULDIV( Vy >> shift, 0x4000, d );
}
{
TT_ULong x, y, w;
TT_Int sx, sy;
sx = ( R->x >= 0 ? 1 : -1 );
sy = ( R->y >= 0 ? 1 : -1 );
x = (TT_ULong)sx*R->x;
y = (TT_ULong)sy*R->y;
w = x*x+y*y;
/* we now want to adjust (x,y) in order to have sqrt(w) == 0x4000 */
/* which means 0x1000000 <= w < 0x1004000 */
while ( w <= 0x10000000L )
{
/* increment the smallest coordinate */
if ( x < y ) x++;
else y++;
w = x*x+y*y;
}
while ( w >= 0x10040000L )
{
/* decrement the smallest coordinate */
if ( x < y ) x--;
else y--;
w = x*x+y*y;
}
R->x = sx*x;
R->y = sy*y;
}
return SUCCESS;
}
#endif
/*************************************************************************/
/* */