From b7ef2b096867d7351c873c44dd4053d90d7997ef Mon Sep 17 00:00:00 2001 From: David Turner Date: Tue, 2 May 2000 11:01:12 +0000 Subject: [PATCH] in order to ensure that the bytecode interpretation is exactly equivalent to the one in FT 1.4, moved some code from the old version of FreeType in order to compute vector normalization a bit differently --- src/truetype/ttinterp.c | 145 +++++++++++++++++++++++++++++++++++++++- 1 file changed, 143 insertions(+), 2 deletions(-) diff --git a/src/truetype/ttinterp.c b/src/truetype/ttinterp.c index 3800b666a..b09e09842 100644 --- a/src/truetype/ttinterp.c +++ b/src/truetype/ttinterp.c @@ -825,6 +825,22 @@ } +#ifdef FT_CONFIG_OPTION_OLD_CALCS + + static TT_F26Dot6 Norm( TT_F26Dot6 X, TT_F26Dot6 Y ) + { + FT_Int64 T1, T2; + + MUL_64( X, X, T1 ); + MUL_64( Y, Y, T2 ); + + ADD_64( T1, T2, T1 ); + + return (TT_F26Dot6)SQRT_64( T1 ); + } +#endif + + /*************************************************************************/ /* */ /* Before an opcode is executed, the interpreter verifies that there are */ @@ -1194,7 +1210,7 @@ else { TT_Long x, y; -#if 0 +#ifdef FT_CONFIG_OPTION_OLD_CALCS x = TT_MULDIV( CUR.GS.projVector.x, CUR.tt_metrics.x_ratio, 0x4000 ); y = TT_MULDIV( CUR.GS.projVector.y, CUR.tt_metrics.y_ratio, 0x4000 ); CUR.tt_metrics.ratio = Norm( x, y ); @@ -2126,6 +2142,98 @@ /* In case Vx and Vy are both zero, Normalize() returns SUCCESS, and */ /* R is undefined. */ /* */ + +#ifdef FT_CONFIG_OPTION_OLD_CALCS + static TT_Bool Normalize( EXEC_OP_ TT_F26Dot6 Vx, + TT_F26Dot6 Vy, + TT_UnitVector* R ) + { + TT_F26Dot6 W; + TT_Bool S1, S2; + + if ( ABS( Vx ) < 0x10000L && ABS( Vy ) < 0x10000L ) + { + Vx *= 0x100; + Vy *= 0x100; + + W = Norm( Vx, Vy ); + + if ( W == 0 ) + { + /* XXX : UNDOCUMENTED! It seems that it's possible to try */ + /* to normalize the vector (0,0). Return immediately */ + return SUCCESS; + } + + R->x = (TT_F2Dot14)FT_MulDiv( Vx, 0x4000L, W ); + R->y = (TT_F2Dot14)FT_MulDiv( Vy, 0x4000L, W ); + + return SUCCESS; + } + + W = Norm( Vx, Vy ); + + Vx = FT_MulDiv( Vx, 0x4000L, W ); + Vy = FT_MulDiv( Vy, 0x4000L, W ); + + W = Vx * Vx + Vy * Vy; + + /* Now, we want that Sqrt( W ) = 0x4000 */ + /* Or 0x1000000 <= W < 0x1004000 */ + + if ( Vx < 0 ) + { + Vx = -Vx; + S1 = TRUE; + } + else + S1 = FALSE; + + if ( Vy < 0 ) + { + Vy = -Vy; + S2 = TRUE; + } + else + S2 = FALSE; + + while ( W < 0x1000000L ) + { + /* We need to increase W, by a minimal amount */ + if ( Vx < Vy ) + Vx++; + else + Vy++; + + W = Vx * Vx + Vy * Vy; + } + + while ( W >= 0x1004000L ) + { + /* We need to decrease W, by a minimal amount */ + if ( Vx < Vy ) + Vx--; + else + Vy--; + + W = Vx * Vx + Vy * Vy; + } + + /* Note that in various cases, we can only */ + /* compute a Sqrt(W) of 0x3FFF, eg. Vx = Vy */ + + if ( S1 ) + Vx = -Vx; + + if ( S2 ) + Vy = -Vy; + + R->x = (TT_F2Dot14)Vx; /* Type conversion */ + R->y = (TT_F2Dot14)Vy; /* Type conversion */ + + return SUCCESS; + } +#else static TT_Bool Normalize( EXEC_OP_ TT_F26Dot6 Vx, TT_F26Dot6 Vy, @@ -2203,9 +2311,42 @@ R->y = (TT_F2Dot14)TT_MULDIV( Vy >> shift, 0x4000, d ); } + { + TT_ULong x, y, w; + TT_Int sx, sy; + + sx = ( R->x >= 0 ? 1 : -1 ); + sy = ( R->y >= 0 ? 1 : -1 ); + x = (TT_ULong)sx*R->x; + y = (TT_ULong)sy*R->y; + + w = x*x+y*y; + + /* we now want to adjust (x,y) in order to have sqrt(w) == 0x4000 */ + /* which means 0x1000000 <= w < 0x1004000 */ + while ( w <= 0x10000000L ) + { + /* increment the smallest coordinate */ + if ( x < y ) x++; + else y++; + + w = x*x+y*y; + } + + while ( w >= 0x10040000L ) + { + /* decrement the smallest coordinate */ + if ( x < y ) x--; + else y--; + w = x*x+y*y; + } + + R->x = sx*x; + R->y = sy*y; + } return SUCCESS; } - +#endif /*************************************************************************/ /* */