1417 lines
29 KiB
C
1417 lines
29 KiB
C
/*
|
|
* File stabs.c - read stabs information from the wine executable itself.
|
|
*
|
|
* Copyright (C) 1996, Eric Youngdale.
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <fcntl.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/mman.h>
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#ifndef PATH_MAX
|
|
#define PATH_MAX _MAX_PATH
|
|
#endif
|
|
|
|
#include "win.h"
|
|
#include "debugger.h"
|
|
#include "xmalloc.h"
|
|
|
|
#ifdef __svr4__
|
|
#define __ELF__
|
|
#endif
|
|
|
|
#ifdef __ELF__
|
|
#include <elf.h>
|
|
#include <link.h>
|
|
#include <sys/mman.h>
|
|
#elif defined(__EMX__)
|
|
#include <a_out.h>
|
|
#else
|
|
#include <a.out.h>
|
|
#endif
|
|
|
|
#ifndef N_UNDF
|
|
#define N_UNDF 0x00
|
|
#endif
|
|
|
|
#define N_GSYM 0x20
|
|
#define N_FUN 0x24
|
|
#define N_STSYM 0x26
|
|
#define N_LCSYM 0x28
|
|
#define N_MAIN 0x2a
|
|
#define N_ROSYM 0x2c
|
|
#define N_OPT 0x3c
|
|
#define N_RSYM 0x40
|
|
#define N_SLINE 0x44
|
|
#define N_SO 0x64
|
|
#define N_LSYM 0x80
|
|
#define N_BINCL 0x82
|
|
#define N_SOL 0x84
|
|
#define N_PSYM 0xa0
|
|
#define N_EINCL 0xa2
|
|
#define N_LBRAC 0xc0
|
|
#define N_RBRAC 0xe0
|
|
|
|
|
|
/*
|
|
* This is how we translate stab types into our internal representations
|
|
* of datatypes.
|
|
*/
|
|
static struct datatype ** stab_types = NULL;
|
|
static int num_stab_types = 0;
|
|
|
|
/*
|
|
* Set so that we know the main executable name and path.
|
|
*/
|
|
char * DEBUG_argv0;
|
|
|
|
struct stab_nlist {
|
|
union {
|
|
char *n_name;
|
|
struct stab_nlist *n_next;
|
|
long n_strx;
|
|
} n_un;
|
|
unsigned char n_type;
|
|
char n_other;
|
|
short n_desc;
|
|
unsigned long n_value;
|
|
};
|
|
|
|
/*
|
|
* This is used to keep track of known datatypes so that we don't redefine
|
|
* them over and over again. It sucks up lots of memory otherwise.
|
|
*/
|
|
struct known_typedef
|
|
{
|
|
struct known_typedef * next;
|
|
char * name;
|
|
int ndefs;
|
|
struct datatype * types[0];
|
|
};
|
|
|
|
#define NR_STAB_HASH 521
|
|
|
|
struct known_typedef * ktd_head[NR_STAB_HASH] = {NULL,};
|
|
|
|
static unsigned int stab_hash( const char * name )
|
|
{
|
|
unsigned int hash = 0;
|
|
unsigned int tmp;
|
|
const char * p;
|
|
|
|
p = name;
|
|
|
|
while (*p)
|
|
{
|
|
hash = (hash << 4) + *p++;
|
|
|
|
if( (tmp = (hash & 0xf0000000)) )
|
|
{
|
|
hash ^= tmp >> 24;
|
|
}
|
|
hash &= ~tmp;
|
|
}
|
|
return hash % NR_STAB_HASH;
|
|
}
|
|
|
|
|
|
static void stab_strcpy(char * dest, const char * source)
|
|
{
|
|
/*
|
|
* A strcpy routine that stops when we hit the ':' character.
|
|
* Faster than copying the whole thing, and then nuking the
|
|
* ':'.
|
|
*/
|
|
while(*source != '\0' && *source != ':')
|
|
{
|
|
*dest++ = *source++;
|
|
}
|
|
*dest++ = '\0';
|
|
}
|
|
|
|
#define MAX_TD_NESTING 128
|
|
|
|
static
|
|
int
|
|
DEBUG_RegisterTypedef(const char * name, struct datatype ** types, int ndef)
|
|
{
|
|
int hash;
|
|
struct known_typedef * ktd;
|
|
|
|
if( ndef == 1 )
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
ktd = (struct known_typedef *) malloc(sizeof(struct known_typedef)
|
|
+ ndef * sizeof(struct datatype *));
|
|
|
|
hash = stab_hash(name);
|
|
|
|
ktd->name = xstrdup(name);
|
|
ktd->ndefs = ndef;
|
|
memcpy(&ktd->types[0], types, ndef * sizeof(struct datatype *));
|
|
ktd->next = ktd_head[hash];
|
|
ktd_head[hash] = ktd;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static
|
|
int
|
|
DEBUG_HandlePreviousTypedef(const char * name, const char * stab)
|
|
{
|
|
int count;
|
|
enum debug_type expect;
|
|
int hash;
|
|
struct known_typedef * ktd;
|
|
char * ptr;
|
|
char * tc;
|
|
int typenum;
|
|
|
|
hash = stab_hash(name);
|
|
|
|
for(ktd = ktd_head[hash]; ktd; ktd = ktd->next)
|
|
{
|
|
if( (ktd->name[0] == name[0])
|
|
&& (strcmp(name, ktd->name) == 0) )
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Didn't find it. This must be a new one.
|
|
*/
|
|
if( ktd == NULL )
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* Examine the stab to make sure it has the same number of definitions.
|
|
*/
|
|
count = 0;
|
|
for(ptr = strchr(stab, '='); ptr; ptr = strchr(ptr+1, '='))
|
|
{
|
|
if( count >= ktd->ndefs )
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* Make sure the types of all of the objects is consistent with
|
|
* what we have already parsed.
|
|
*/
|
|
switch(ptr[1])
|
|
{
|
|
case '*':
|
|
expect = POINTER;
|
|
break;
|
|
case 's':
|
|
case 'u':
|
|
expect = STRUCT;
|
|
break;
|
|
case 'a':
|
|
expect = ARRAY;
|
|
break;
|
|
case '1':
|
|
case 'r':
|
|
expect = BASIC;
|
|
break;
|
|
case 'x':
|
|
expect = STRUCT;
|
|
break;
|
|
case 'e':
|
|
expect = ENUM;
|
|
break;
|
|
case 'f':
|
|
expect = FUNC;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unknown type.\n");
|
|
return FALSE;
|
|
}
|
|
if( expect != DEBUG_GetType(ktd->types[count]) )
|
|
{
|
|
return FALSE;
|
|
}
|
|
count++;
|
|
}
|
|
|
|
if( ktd->ndefs != count )
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* OK, this one is safe. Go through, dig out all of the type numbers,
|
|
* and substitute the appropriate things.
|
|
*/
|
|
count = 0;
|
|
for(ptr = strchr(stab, '='); ptr; ptr = strchr(ptr+1, '='))
|
|
{
|
|
/*
|
|
* Back up until we get to a non-numeric character. This is the type
|
|
* number.
|
|
*/
|
|
tc = ptr - 1;
|
|
while( *tc >= '0' && *tc <= '9' )
|
|
{
|
|
tc--;
|
|
}
|
|
|
|
typenum = atol(tc + 1);
|
|
if( num_stab_types <= typenum )
|
|
{
|
|
num_stab_types = typenum + 32;
|
|
stab_types = (struct datatype **) xrealloc(stab_types,
|
|
num_stab_types * sizeof(struct datatype *));
|
|
if( stab_types == NULL )
|
|
{
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
stab_types[typenum] = ktd->types[count++];
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static int DEBUG_FreeRegisteredTypedefs()
|
|
{
|
|
int count;
|
|
int j;
|
|
struct known_typedef * ktd;
|
|
struct known_typedef * next;
|
|
|
|
count = 0;
|
|
for(j=0; j < NR_STAB_HASH; j++ )
|
|
{
|
|
for(ktd = ktd_head[j]; ktd; ktd = next)
|
|
{
|
|
count++;
|
|
next = ktd->next;
|
|
free(ktd->name);
|
|
free(ktd);
|
|
}
|
|
ktd_head[j] = NULL;
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
static
|
|
int
|
|
DEBUG_ParseTypedefStab(char * ptr, const char * typename)
|
|
{
|
|
int arrmax;
|
|
int arrmin;
|
|
char * c;
|
|
struct datatype * curr_type;
|
|
struct datatype * datatype;
|
|
struct datatype * curr_types[MAX_TD_NESTING];
|
|
char element_name[1024];
|
|
int ntypes = 0;
|
|
int offset;
|
|
const char * orig_typename;
|
|
int rtn = FALSE;
|
|
int size;
|
|
char * tc;
|
|
char * tc2;
|
|
int typenum;
|
|
|
|
orig_typename = typename;
|
|
|
|
if( DEBUG_HandlePreviousTypedef(typename, ptr) == TRUE )
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Go from back to front. First we go through and figure out what
|
|
* type numbers we need, and register those types. Then we go in
|
|
* and fill the details.
|
|
*/
|
|
|
|
for( c = strchr(ptr, '='); c != NULL; c = strchr(c + 1, '=') )
|
|
{
|
|
/*
|
|
* Back up until we get to a non-numeric character. This is the type
|
|
* number.
|
|
*/
|
|
tc = c - 1;
|
|
while( *tc >= '0' && *tc <= '9' )
|
|
{
|
|
tc--;
|
|
}
|
|
typenum = atol(tc + 1);
|
|
if( num_stab_types <= typenum )
|
|
{
|
|
num_stab_types = typenum + 32;
|
|
stab_types = (struct datatype **) xrealloc(stab_types,
|
|
num_stab_types * sizeof(struct datatype *));
|
|
if( stab_types == NULL )
|
|
{
|
|
goto leave;
|
|
}
|
|
}
|
|
|
|
if( ntypes >= MAX_TD_NESTING )
|
|
{
|
|
/*
|
|
* If this ever happens, just bump the counter.
|
|
*/
|
|
fprintf(stderr, "Typedef nesting overflow\n");
|
|
return FALSE;
|
|
}
|
|
|
|
switch(c[1])
|
|
{
|
|
case '*':
|
|
stab_types[typenum] = DEBUG_NewDataType(POINTER, NULL);
|
|
curr_types[ntypes++] = stab_types[typenum];
|
|
break;
|
|
case 's':
|
|
case 'u':
|
|
stab_types[typenum] = DEBUG_NewDataType(STRUCT, typename);
|
|
curr_types[ntypes++] = stab_types[typenum];
|
|
break;
|
|
case 'a':
|
|
stab_types[typenum] = DEBUG_NewDataType(ARRAY, NULL);
|
|
curr_types[ntypes++] = stab_types[typenum];
|
|
break;
|
|
case '1':
|
|
case 'r':
|
|
stab_types[typenum] = DEBUG_NewDataType(BASIC, typename);
|
|
curr_types[ntypes++] = stab_types[typenum];
|
|
break;
|
|
case 'x':
|
|
stab_strcpy(element_name, c + 3);
|
|
stab_types[typenum] = DEBUG_NewDataType(STRUCT, element_name);
|
|
curr_types[ntypes++] = stab_types[typenum];
|
|
break;
|
|
case 'e':
|
|
stab_types[typenum] = DEBUG_NewDataType(ENUM, NULL);
|
|
curr_types[ntypes++] = stab_types[typenum];
|
|
break;
|
|
case 'f':
|
|
stab_types[typenum] = DEBUG_NewDataType(FUNC, NULL);
|
|
curr_types[ntypes++] = stab_types[typenum];
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unknown type.\n");
|
|
}
|
|
typename = NULL;
|
|
}
|
|
|
|
/*
|
|
* Now register the type so that if we encounter it again, we will know
|
|
* what to do.
|
|
*/
|
|
DEBUG_RegisterTypedef(orig_typename, curr_types, ntypes);
|
|
|
|
/*
|
|
* OK, now take a second sweep through. Now we will be digging
|
|
* out the definitions of the various components, and storing
|
|
* them in the skeletons that we have already allocated. We take
|
|
* a right-to left search as this is much easier to parse.
|
|
*/
|
|
for( c = strrchr(ptr, '='); c != NULL; c = strrchr(ptr, '=') )
|
|
{
|
|
/*
|
|
* Back up until we get to a non-numeric character. This is the type
|
|
* number.
|
|
*/
|
|
tc = c - 1;
|
|
while( *tc >= '0' && *tc <= '9' )
|
|
{
|
|
tc--;
|
|
}
|
|
typenum = atol(tc + 1);
|
|
curr_type = stab_types[typenum];
|
|
|
|
switch(c[1])
|
|
{
|
|
case 'x':
|
|
tc = c + 3;
|
|
while( *tc != ':' )
|
|
{
|
|
tc ++;
|
|
}
|
|
tc++;
|
|
if( *tc == '\0' )
|
|
{
|
|
*c = '\0';
|
|
}
|
|
else
|
|
{
|
|
strcpy(c, tc);
|
|
}
|
|
|
|
break;
|
|
case '*':
|
|
case 'f':
|
|
tc = c + 2;
|
|
datatype = stab_types[strtol(tc, &tc, 10)];
|
|
DEBUG_SetPointerType(curr_type, datatype);
|
|
if( *tc == '\0' )
|
|
{
|
|
*c = '\0';
|
|
}
|
|
else
|
|
{
|
|
strcpy(c, tc);
|
|
}
|
|
break;
|
|
case '1':
|
|
case 'r':
|
|
/*
|
|
* We have already handled these above.
|
|
*/
|
|
*c = '\0';
|
|
break;
|
|
case 'a':
|
|
tc = c + 5;
|
|
arrmin = strtol(tc, &tc, 10);
|
|
tc++;
|
|
arrmax = strtol(tc, &tc, 10);
|
|
tc++;
|
|
datatype = stab_types[strtol(tc, &tc, 10)];
|
|
if( *tc == '\0' )
|
|
{
|
|
*c = '\0';
|
|
}
|
|
else
|
|
{
|
|
strcpy(c, tc);
|
|
}
|
|
|
|
DEBUG_SetArrayParams(curr_type, arrmin, arrmax, datatype);
|
|
break;
|
|
case 's':
|
|
case 'u':
|
|
tc = c + 2;
|
|
if( DEBUG_SetStructSize(curr_type, strtol(tc, &tc, 10)) == FALSE )
|
|
{
|
|
/*
|
|
* We have already filled out this structure. Nothing to do,
|
|
* so just skip forward to the end of the definition.
|
|
*/
|
|
while( tc[0] != ';' && tc[1] != ';' )
|
|
{
|
|
tc++;
|
|
}
|
|
|
|
tc += 2;
|
|
|
|
if( *tc == '\0' )
|
|
{
|
|
*c = '\0';
|
|
}
|
|
else
|
|
{
|
|
strcpy(c, tc + 1);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Now parse the individual elements of the structure/union.
|
|
*/
|
|
while(*tc != ';')
|
|
{
|
|
tc2 = element_name;
|
|
while(*tc != ':')
|
|
{
|
|
*tc2++ = *tc++;
|
|
}
|
|
tc++;
|
|
*tc2++ = '\0';
|
|
datatype = stab_types[strtol(tc, &tc, 10)];
|
|
tc++;
|
|
offset = strtol(tc, &tc, 10);
|
|
tc++;
|
|
size = strtol(tc, &tc, 10);
|
|
tc++;
|
|
DEBUG_AddStructElement(curr_type, element_name, datatype, offset, size);
|
|
}
|
|
if( *tc == '\0' )
|
|
{
|
|
*c = '\0';
|
|
}
|
|
else
|
|
{
|
|
strcpy(c, tc + 1);
|
|
}
|
|
break;
|
|
case 'e':
|
|
tc = c + 2;
|
|
/*
|
|
* Now parse the individual elements of the structure/union.
|
|
*/
|
|
while(*tc != ';')
|
|
{
|
|
tc2 = element_name;
|
|
while(*tc != ':')
|
|
{
|
|
*tc2++ = *tc++;
|
|
}
|
|
tc++;
|
|
*tc2++ = '\0';
|
|
offset = strtol(tc, &tc, 10);
|
|
tc++;
|
|
DEBUG_AddStructElement(curr_type, element_name, NULL, offset, 0);
|
|
}
|
|
if( *tc == '\0' )
|
|
{
|
|
*c = '\0';
|
|
}
|
|
else
|
|
{
|
|
strcpy(c, tc + 1);
|
|
}
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unknown type.\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
rtn = TRUE;
|
|
|
|
leave:
|
|
|
|
return rtn;
|
|
|
|
}
|
|
|
|
static struct datatype *
|
|
DEBUG_ParseStabType(const char * stab)
|
|
{
|
|
char * c;
|
|
int typenum;
|
|
|
|
/*
|
|
* Look through the stab definition, and figure out what datatype
|
|
* this represents. If we have something we know about, assign the
|
|
* type.
|
|
*/
|
|
c = strchr(stab, ':');
|
|
if( c == NULL )
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
c++;
|
|
/*
|
|
* The next character says more about the type (i.e. data, function, etc)
|
|
* of symbol. Skip it.
|
|
*/
|
|
c++;
|
|
|
|
typenum = atol(c);
|
|
|
|
if( typenum < num_stab_types && stab_types[typenum] != NULL )
|
|
{
|
|
return stab_types[typenum];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static
|
|
int
|
|
DEBUG_ParseStabs(char * addr, unsigned int load_offset,
|
|
unsigned int staboff, int stablen,
|
|
unsigned int strtaboff, int strtablen)
|
|
{
|
|
struct name_hash * curr_func = NULL;
|
|
struct wine_locals * curr_loc = NULL;
|
|
struct name_hash * curr_sym = NULL;
|
|
char currpath[PATH_MAX];
|
|
int i;
|
|
int ignore = FALSE;
|
|
int last_nso = -1;
|
|
int len;
|
|
DBG_ADDR new_addr;
|
|
int nstab;
|
|
char * ptr;
|
|
char * stabbuff;
|
|
int stabbufflen;
|
|
struct stab_nlist * stab_ptr;
|
|
char * strs;
|
|
int strtabinc;
|
|
char * subpath = NULL;
|
|
char symname[4096];
|
|
|
|
nstab = stablen / sizeof(struct stab_nlist);
|
|
stab_ptr = (struct stab_nlist *) (addr + staboff);
|
|
strs = (char *) (addr + strtaboff);
|
|
|
|
memset(currpath, 0, sizeof(currpath));
|
|
|
|
/*
|
|
* Allocate a buffer into which we can build stab strings for cases
|
|
* where the stab is continued over multiple lines.
|
|
*/
|
|
stabbufflen = 65536;
|
|
stabbuff = (char *) xmalloc(stabbufflen);
|
|
if( stabbuff == NULL )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
strtabinc = 0;
|
|
stabbuff[0] = '\0';
|
|
for(i=0; i < nstab; i++, stab_ptr++ )
|
|
{
|
|
ptr = strs + (unsigned int) stab_ptr->n_un.n_name;
|
|
if( ptr[strlen(ptr) - 1] == '\\' )
|
|
{
|
|
/*
|
|
* Indicates continuation. Append this to the buffer, and go onto the
|
|
* next record. Repeat the process until we find a stab without the
|
|
* '/' character, as this indicates we have the whole thing.
|
|
*/
|
|
len = strlen(ptr);
|
|
if( strlen(stabbuff) + len > stabbufflen )
|
|
{
|
|
stabbufflen += 65536;
|
|
stabbuff = (char *) xrealloc(stabbuff, stabbufflen);
|
|
if( stabbuff == NULL )
|
|
{
|
|
goto leave;
|
|
}
|
|
}
|
|
strncat(stabbuff, ptr, len - 1);
|
|
continue;
|
|
}
|
|
else if( stabbuff[0] != '\0' )
|
|
{
|
|
strcat( stabbuff, ptr);
|
|
ptr = stabbuff;
|
|
}
|
|
|
|
if( strchr(ptr, '=') != NULL )
|
|
{
|
|
/*
|
|
* The stabs aren't in writable memory, so copy it over so we are
|
|
* sure we can scribble on it.
|
|
*/
|
|
if( ptr != stabbuff )
|
|
{
|
|
strcpy(stabbuff, ptr);
|
|
ptr = stabbuff;
|
|
}
|
|
stab_strcpy(symname, ptr);
|
|
DEBUG_ParseTypedefStab(ptr, symname);
|
|
}
|
|
|
|
switch(stab_ptr->n_type)
|
|
{
|
|
case N_GSYM:
|
|
/*
|
|
* These are useless with ELF. They have no value, and you have to
|
|
* read the normal symbol table to get the address. Thus we
|
|
* ignore them, and when we process the normal symbol table
|
|
* we should do the right thing.
|
|
*
|
|
* With a.out, they actually do make some amount of sense.
|
|
*/
|
|
new_addr.seg = 0;
|
|
new_addr.type = DEBUG_ParseStabType(ptr);
|
|
new_addr.off = load_offset + stab_ptr->n_value;
|
|
|
|
stab_strcpy(symname, ptr);
|
|
#ifdef __ELF__
|
|
curr_sym = DEBUG_AddSymbol( symname, &new_addr, currpath,
|
|
SYM_WINE | SYM_DATA | SYM_INVALID);
|
|
#else
|
|
curr_sym = DEBUG_AddSymbol( symname, &new_addr, currpath,
|
|
SYM_WINE | SYM_DATA );
|
|
#endif
|
|
break;
|
|
case N_RBRAC:
|
|
case N_LBRAC:
|
|
/*
|
|
* We need to keep track of these so we get symbol scoping
|
|
* right for local variables. For now, we just ignore them.
|
|
* The hooks are already there for dealing with this however,
|
|
* so all we need to do is to keep count of the nesting level,
|
|
* and find the RBRAC for each matching LBRAC.
|
|
*/
|
|
break;
|
|
case N_LCSYM:
|
|
case N_STSYM:
|
|
/*
|
|
* These are static symbols and BSS symbols.
|
|
*/
|
|
new_addr.seg = 0;
|
|
new_addr.type = DEBUG_ParseStabType(ptr);
|
|
new_addr.off = load_offset + stab_ptr->n_value;
|
|
|
|
stab_strcpy(symname, ptr);
|
|
curr_sym = DEBUG_AddSymbol( symname, &new_addr, currpath,
|
|
SYM_WINE | SYM_DATA );
|
|
break;
|
|
case N_PSYM:
|
|
/*
|
|
* These are function parameters.
|
|
*/
|
|
if( (curr_func != NULL)
|
|
&& (stab_ptr->n_value != 0) )
|
|
{
|
|
stab_strcpy(symname, ptr);
|
|
curr_loc = DEBUG_AddLocal(curr_func, 0,
|
|
stab_ptr->n_value, 0, 0, symname);
|
|
DEBUG_SetLocalSymbolType( curr_loc, DEBUG_ParseStabType(ptr));
|
|
}
|
|
break;
|
|
case N_RSYM:
|
|
if( curr_func != NULL )
|
|
{
|
|
stab_strcpy(symname, ptr);
|
|
curr_loc = DEBUG_AddLocal(curr_func, stab_ptr->n_value, 0, 0, 0, symname);
|
|
DEBUG_SetLocalSymbolType( curr_loc, DEBUG_ParseStabType(ptr));
|
|
}
|
|
break;
|
|
case N_LSYM:
|
|
if( (curr_func != NULL)
|
|
&& (stab_ptr->n_value != 0) )
|
|
{
|
|
stab_strcpy(symname, ptr);
|
|
DEBUG_AddLocal(curr_func, 0,
|
|
stab_ptr->n_value, 0, 0, symname);
|
|
}
|
|
else if (curr_func == NULL)
|
|
{
|
|
stab_strcpy(symname, ptr);
|
|
}
|
|
break;
|
|
case N_SLINE:
|
|
/*
|
|
* This is a line number. These are always relative to the start
|
|
* of the function (N_FUN), and this makes the lookup easier.
|
|
*/
|
|
if( curr_func != NULL )
|
|
{
|
|
#ifdef __ELF__
|
|
DEBUG_AddLineNumber(curr_func, stab_ptr->n_desc,
|
|
stab_ptr->n_value);
|
|
#else
|
|
#if 0
|
|
/*
|
|
* This isn't right. The order of the stabs is different under
|
|
* a.out, and as a result we would end up attaching the line
|
|
* number to the wrong function.
|
|
*/
|
|
DEBUG_AddLineNumber(curr_func, stab_ptr->n_desc,
|
|
stab_ptr->n_value - curr_func->addr.off);
|
|
#endif
|
|
#endif
|
|
}
|
|
break;
|
|
case N_FUN:
|
|
/*
|
|
* First, clean up the previous function we were working on.
|
|
*/
|
|
DEBUG_Normalize(curr_func);
|
|
|
|
/*
|
|
* For now, just declare the various functions. Later
|
|
* on, we will add the line number information and the
|
|
* local symbols.
|
|
*/
|
|
if( !ignore )
|
|
{
|
|
new_addr.seg = 0;
|
|
new_addr.type = DEBUG_ParseStabType(ptr);
|
|
new_addr.off = load_offset + stab_ptr->n_value;
|
|
/*
|
|
* Copy the string to a temp buffer so we
|
|
* can kill everything after the ':'. We do
|
|
* it this way because otherwise we end up dirtying
|
|
* all of the pages related to the stabs, and that
|
|
* sucks up swap space like crazy.
|
|
*/
|
|
stab_strcpy(symname, ptr);
|
|
curr_func = DEBUG_AddSymbol( symname, &new_addr, currpath,
|
|
SYM_WINE | SYM_FUNC);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Don't add line number information for this function
|
|
* any more.
|
|
*/
|
|
curr_func = NULL;
|
|
}
|
|
break;
|
|
case N_SO:
|
|
/*
|
|
* This indicates a new source file. Append the records
|
|
* together, to build the correct path name.
|
|
*/
|
|
#ifndef __ELF__
|
|
/*
|
|
* With a.out, there is no NULL string N_SO entry at the end of
|
|
* the file. Thus when we find non-consecutive entries,
|
|
* we consider that a new file is started.
|
|
*/
|
|
if( last_nso < i-1 )
|
|
{
|
|
currpath[0] = '\0';
|
|
DEBUG_Normalize(curr_func);
|
|
curr_func = NULL;
|
|
}
|
|
#endif
|
|
|
|
if( *ptr == '\0' )
|
|
{
|
|
/*
|
|
* Nuke old path.
|
|
*/
|
|
currpath[0] = '\0';
|
|
DEBUG_Normalize(curr_func);
|
|
curr_func = NULL;
|
|
/*
|
|
* The datatypes that we would need to use are reset when
|
|
* we start a new file.
|
|
*/
|
|
memset(stab_types, 0, num_stab_types * sizeof(stab_types));
|
|
}
|
|
else
|
|
{
|
|
if (*ptr != '/')
|
|
strcat(currpath, ptr);
|
|
else
|
|
strcpy(currpath, ptr);
|
|
subpath = ptr;
|
|
}
|
|
last_nso = i;
|
|
break;
|
|
case N_SOL:
|
|
/*
|
|
* This indicates we are including stuff from an include file.
|
|
* If this is the main source, enable the debug stuff, otherwise
|
|
* ignore it.
|
|
*/
|
|
if( subpath == NULL || strcmp(ptr, subpath) == 0 )
|
|
{
|
|
ignore = FALSE;
|
|
}
|
|
else
|
|
{
|
|
ignore = TRUE;
|
|
DEBUG_Normalize(curr_func);
|
|
curr_func = NULL;
|
|
}
|
|
break;
|
|
case N_UNDF:
|
|
strs += strtabinc;
|
|
strtabinc = stab_ptr->n_value;
|
|
DEBUG_Normalize(curr_func);
|
|
curr_func = NULL;
|
|
break;
|
|
case N_OPT:
|
|
/*
|
|
* Ignore this. We don't care what it points to.
|
|
*/
|
|
break;
|
|
case N_BINCL:
|
|
case N_EINCL:
|
|
case N_MAIN:
|
|
/*
|
|
* Always ignore these. GCC doesn't even generate them.
|
|
*/
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
stabbuff[0] = '\0';
|
|
|
|
#if 0
|
|
fprintf(stderr, "%d %x %s\n", stab_ptr->n_type,
|
|
(unsigned int) stab_ptr->n_value,
|
|
strs + (unsigned int) stab_ptr->n_un.n_name);
|
|
#endif
|
|
}
|
|
|
|
leave:
|
|
|
|
if( stab_types != NULL )
|
|
{
|
|
free(stab_types);
|
|
stab_types = NULL;
|
|
num_stab_types = 0;
|
|
}
|
|
|
|
|
|
DEBUG_FreeRegisteredTypedefs();
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
#ifdef __ELF__
|
|
|
|
/*
|
|
* Walk through the entire symbol table and add any symbols we find there.
|
|
* This can be used in cases where we have stripped ELF shared libraries,
|
|
* or it can be used in cases where we have data symbols for which the address
|
|
* isn't encoded in the stabs.
|
|
*
|
|
* This is all really quite easy, since we don't have to worry about line
|
|
* numbers or local data variables.
|
|
*/
|
|
static
|
|
int
|
|
DEBUG_ProcessElfSymtab(char * addr, unsigned int load_offset,
|
|
Elf32_Shdr * symtab, Elf32_Shdr * strtab)
|
|
{
|
|
char * curfile = NULL;
|
|
struct name_hash * curr_sym = NULL;
|
|
int flags;
|
|
int i;
|
|
DBG_ADDR new_addr;
|
|
int nsym;
|
|
char * strp;
|
|
char * symname;
|
|
Elf32_Sym * symp;
|
|
|
|
|
|
symp = (Elf32_Sym *) (addr + symtab->sh_offset);
|
|
nsym = symtab->sh_size / sizeof(*symp);
|
|
strp = (char *) (addr + strtab->sh_offset);
|
|
|
|
for(i=0; i < nsym; i++, symp++)
|
|
{
|
|
/*
|
|
* Ignore certain types of entries which really aren't of that much
|
|
* interest.
|
|
*/
|
|
if( ELF32_ST_TYPE(symp->st_info) == STT_SECTION )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
symname = strp + symp->st_name;
|
|
|
|
/*
|
|
* Save the name of the current file, so we have a way of tracking
|
|
* static functions/data.
|
|
*/
|
|
if( ELF32_ST_TYPE(symp->st_info) == STT_FILE )
|
|
{
|
|
curfile = symname;
|
|
continue;
|
|
}
|
|
|
|
|
|
/*
|
|
* See if we already have something for this symbol.
|
|
* If so, ignore this entry, because it would have come from the
|
|
* stabs or from a previous symbol. If the value is different,
|
|
* we will have to keep the darned thing, because there can be
|
|
* multiple local symbols by the same name.
|
|
*/
|
|
if( (DEBUG_GetSymbolValue(symname, -1, &new_addr, FALSE ) == TRUE)
|
|
&& (new_addr.off == (load_offset + symp->st_value)) )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
new_addr.seg = 0;
|
|
new_addr.type = NULL;
|
|
new_addr.off = load_offset + symp->st_value;
|
|
flags = SYM_WINE | (ELF32_ST_BIND(symp->st_info) == STT_FUNC
|
|
? SYM_FUNC : SYM_DATA);
|
|
if( ELF32_ST_BIND(symp->st_info) == STB_GLOBAL )
|
|
{
|
|
curr_sym = DEBUG_AddSymbol( symname, &new_addr, NULL, flags );
|
|
}
|
|
else
|
|
{
|
|
curr_sym = DEBUG_AddSymbol( symname, &new_addr, curfile, flags );
|
|
}
|
|
|
|
/*
|
|
* Record the size of the symbol. This can come in handy in
|
|
* some cases. Not really used yet, however.
|
|
*/
|
|
if( symp->st_size != 0 )
|
|
{
|
|
DEBUG_SetSymbolSize(curr_sym, symp->st_size);
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static
|
|
int
|
|
DEBUG_ProcessElfObject(char * filename, unsigned int load_offset)
|
|
{
|
|
int rtn = FALSE;
|
|
struct stat statbuf;
|
|
int fd = -1;
|
|
int status;
|
|
char * addr = (char *) 0xffffffff;
|
|
Elf32_Ehdr * ehptr;
|
|
Elf32_Shdr * spnt;
|
|
char * shstrtab;
|
|
int nsect;
|
|
int i;
|
|
int stabsect;
|
|
int stabstrsect;
|
|
|
|
|
|
/*
|
|
* Make sure we can stat and open this file.
|
|
*/
|
|
if( filename == NULL )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
status = stat(filename, &statbuf);
|
|
if( status == -1 )
|
|
{
|
|
char *s,*t,*fn,*paths;
|
|
if (strchr(filename,'/'))
|
|
goto leave;
|
|
paths = xstrdup(getenv("PATH"));
|
|
s = paths;
|
|
while (s && *s) {
|
|
t = strchr(s,':');
|
|
if (t) *t='\0';
|
|
fn = (char*)xmalloc(strlen(filename)+1+strlen(s)+1);
|
|
strcpy(fn,s);
|
|
strcat(fn,"/");
|
|
strcat(fn,filename);
|
|
if ((rtn = DEBUG_ProcessElfObject(fn,load_offset))) {
|
|
free(fn);
|
|
free(paths);
|
|
goto leave;
|
|
}
|
|
free(fn);
|
|
if (t) s = t+1;
|
|
}
|
|
if (!s || !*s)
|
|
fprintf(stderr," %s not found",filename);
|
|
free(paths);
|
|
goto leave;
|
|
}
|
|
|
|
/*
|
|
* Now open the file, so that we can mmap() it.
|
|
*/
|
|
fd = open(filename, O_RDONLY);
|
|
if( fd == -1 )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
|
|
/*
|
|
* Now mmap() the file.
|
|
*/
|
|
addr = mmap(0, statbuf.st_size, PROT_READ,
|
|
MAP_PRIVATE, fd, 0);
|
|
if( addr == (char *) 0xffffffff )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
/*
|
|
* Give a nice status message here...
|
|
* Well not, just print the name.
|
|
*/
|
|
fprintf(stderr, " %s", filename);
|
|
|
|
/*
|
|
* Next, we need to find a few of the internal ELF headers within
|
|
* this thing. We need the main executable header, and the section
|
|
* table.
|
|
*/
|
|
ehptr = (Elf32_Ehdr *) addr;
|
|
|
|
if( load_offset == NULL )
|
|
{
|
|
DEBUG_RegisterELFDebugInfo(ehptr->e_entry, statbuf.st_size, filename);
|
|
}
|
|
else
|
|
{
|
|
DEBUG_RegisterELFDebugInfo(load_offset, statbuf.st_size, filename);
|
|
}
|
|
|
|
spnt = (Elf32_Shdr *) (addr + ehptr->e_shoff);
|
|
nsect = ehptr->e_shnum;
|
|
shstrtab = (addr + spnt[ehptr->e_shstrndx].sh_offset);
|
|
|
|
stabsect = stabstrsect = -1;
|
|
|
|
for(i=0; i < nsect; i++)
|
|
{
|
|
if( strcmp(shstrtab + spnt[i].sh_name, ".stab") == 0 )
|
|
{
|
|
stabsect = i;
|
|
}
|
|
|
|
if( strcmp(shstrtab + spnt[i].sh_name, ".stabstr") == 0 )
|
|
{
|
|
stabstrsect = i;
|
|
}
|
|
}
|
|
|
|
if( stabsect == -1 || stabstrsect == -1 )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
/*
|
|
* OK, now just parse all of the stabs.
|
|
*/
|
|
rtn = DEBUG_ParseStabs(addr, load_offset,
|
|
spnt[stabsect].sh_offset,
|
|
spnt[stabsect].sh_size,
|
|
spnt[stabstrsect].sh_offset,
|
|
spnt[stabstrsect].sh_size);
|
|
|
|
if( rtn != TRUE )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
for(i=0; i < nsect; i++)
|
|
{
|
|
if( (strcmp(shstrtab + spnt[i].sh_name, ".symtab") == 0)
|
|
&& (spnt[i].sh_type == SHT_SYMTAB) )
|
|
{
|
|
DEBUG_ProcessElfSymtab(addr, load_offset,
|
|
spnt + i, spnt + spnt[i].sh_link);
|
|
}
|
|
|
|
if( (strcmp(shstrtab + spnt[i].sh_name, ".dynsym") == 0)
|
|
&& (spnt[i].sh_type == SHT_DYNSYM) )
|
|
{
|
|
DEBUG_ProcessElfSymtab(addr, load_offset,
|
|
spnt + i, spnt + spnt[i].sh_link);
|
|
}
|
|
}
|
|
|
|
leave:
|
|
|
|
if( addr != (char *) 0xffffffff )
|
|
{
|
|
munmap(addr, statbuf.st_size);
|
|
}
|
|
|
|
if( fd != -1 )
|
|
{
|
|
close(fd);
|
|
}
|
|
|
|
return (rtn);
|
|
|
|
}
|
|
|
|
int
|
|
DEBUG_ReadExecutableDbgInfo(void)
|
|
{
|
|
Elf32_Ehdr * ehdr;
|
|
char * exe_name;
|
|
Elf32_Dyn * dynpnt;
|
|
struct r_debug * dbg_hdr;
|
|
struct link_map * lpnt = NULL;
|
|
extern Elf32_Dyn _DYNAMIC[];
|
|
int rtn = FALSE;
|
|
|
|
exe_name = DEBUG_argv0;
|
|
|
|
/*
|
|
* Make sure we can stat and open this file.
|
|
*/
|
|
if( exe_name == NULL )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
DEBUG_ProcessElfObject(exe_name, 0);
|
|
|
|
/*
|
|
* Finally walk the tables that the dynamic loader maintains to find all
|
|
* of the other shared libraries which might be loaded. Perform the
|
|
* same step for all of these.
|
|
*/
|
|
dynpnt = _DYNAMIC;
|
|
if( dynpnt == NULL )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
/*
|
|
* Now walk the dynamic section (of the executable, looking for a DT_DEBUG
|
|
* entry.
|
|
*/
|
|
for(; dynpnt->d_tag != DT_NULL; dynpnt++)
|
|
{
|
|
if( dynpnt->d_tag == DT_DEBUG )
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( (dynpnt->d_tag != DT_DEBUG)
|
|
|| (dynpnt->d_un.d_ptr == NULL) )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
/*
|
|
* OK, now dig into the actual tables themselves.
|
|
*/
|
|
dbg_hdr = (struct r_debug *) dynpnt->d_un.d_ptr;
|
|
lpnt = dbg_hdr->r_map;
|
|
|
|
/*
|
|
* Now walk the linked list. In all known ELF implementations,
|
|
* the dynamic loader maintains this linked list for us. In some
|
|
* cases the first entry doesn't appear with a name, in other cases it
|
|
* does.
|
|
*/
|
|
for(; lpnt; lpnt = lpnt->l_next )
|
|
{
|
|
/*
|
|
* We already got the stuff for the executable using the
|
|
* argv[0] entry above. Here we only need to concentrate on any
|
|
* shared libraries which may be loaded.
|
|
*/
|
|
ehdr = (Elf32_Ehdr *) lpnt->l_addr;
|
|
if( (lpnt->l_addr == NULL) || (ehdr->e_type != ET_DYN) )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if( lpnt->l_name != NULL )
|
|
{
|
|
DEBUG_ProcessElfObject(lpnt->l_name, lpnt->l_addr);
|
|
}
|
|
}
|
|
|
|
rtn = TRUE;
|
|
|
|
leave:
|
|
|
|
return (rtn);
|
|
|
|
}
|
|
|
|
#else /* !__ELF__ */
|
|
|
|
#ifdef linux
|
|
/*
|
|
* a.out linux.
|
|
*/
|
|
int
|
|
DEBUG_ReadExecutableDbgInfo(void)
|
|
{
|
|
char * addr = (char *) 0xffffffff;
|
|
char * exe_name;
|
|
struct exec * ahdr;
|
|
int fd = -1;
|
|
int rtn = FALSE;
|
|
unsigned int staboff;
|
|
struct stat statbuf;
|
|
int status;
|
|
unsigned int stroff;
|
|
|
|
exe_name = DEBUG_argv0;
|
|
|
|
/*
|
|
* Make sure we can stat and open this file.
|
|
*/
|
|
if( exe_name == NULL )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
status = stat(exe_name, &statbuf);
|
|
if( status == -1 )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
/*
|
|
* Now open the file, so that we can mmap() it.
|
|
*/
|
|
fd = open(exe_name, O_RDONLY);
|
|
if( fd == -1 )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
|
|
/*
|
|
* Now mmap() the file.
|
|
*/
|
|
addr = mmap(0, statbuf.st_size, PROT_READ,
|
|
MAP_PRIVATE, fd, 0);
|
|
if( addr == (char *) 0xffffffff )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
ahdr = (struct exec *) addr;
|
|
|
|
staboff = N_SYMOFF(*ahdr);
|
|
stroff = N_STROFF(*ahdr);
|
|
rtn = DEBUG_ParseStabs(addr, 0,
|
|
staboff,
|
|
ahdr->a_syms,
|
|
stroff,
|
|
statbuf.st_size - stroff);
|
|
|
|
/*
|
|
* Give a nice status message here...
|
|
*/
|
|
fprintf(stderr, " %s", exe_name);
|
|
|
|
rtn = TRUE;
|
|
|
|
leave:
|
|
|
|
if( addr != (char *) 0xffffffff )
|
|
{
|
|
munmap(addr, statbuf.st_size);
|
|
}
|
|
|
|
if( fd != -1 )
|
|
{
|
|
close(fd);
|
|
}
|
|
|
|
return (rtn);
|
|
|
|
}
|
|
#else
|
|
/*
|
|
* Non-linux, non-ELF platforms.
|
|
*/
|
|
int
|
|
DEBUG_ReadExecutableDbgInfo(void)
|
|
{
|
|
return FALSE;
|
|
}
|
|
#endif
|
|
|
|
#endif /* __ELF__ */
|