premiere-libtorrent/include/libtorrent/kademlia/routing_table.hpp

316 lines
9.3 KiB
C++

/*
Copyright (c) 2006-2018, Arvid Norberg
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef ROUTING_TABLE_HPP
#define ROUTING_TABLE_HPP
#include <vector>
#include <set>
#include <unordered_set>
#include <cstdint>
#include <tuple>
#include <array>
#include <libtorrent/fwd.hpp>
#include <libtorrent/kademlia/node_id.hpp>
#include <libtorrent/kademlia/node_entry.hpp>
#include <libtorrent/assert.hpp>
#include <libtorrent/time.hpp>
#include <libtorrent/aux_/vector.hpp>
namespace libtorrent { namespace dht {
struct dht_settings;
struct dht_logger;
using bucket_t = aux::vector<node_entry>;
struct routing_table_node
{
bucket_t replacements;
bucket_t live_nodes;
};
struct ipv4_hash
{
using argument_type = address_v4::bytes_type;
using result_type = std::size_t;
result_type operator()(argument_type const& ip) const
{
return std::hash<std::uint32_t>()(*reinterpret_cast<std::uint32_t const*>(&ip[0]));
}
};
#if TORRENT_USE_IPV6
struct ipv6_hash
{
using argument_type = address_v6::bytes_type;
using result_type = std::size_t;
result_type operator()(argument_type const& ip) const
{
return std::hash<std::uint64_t>()(*reinterpret_cast<std::uint64_t const*>(&ip[0]));
}
};
#endif
struct ip_set
{
void insert(address const& addr);
bool exists(address const& addr) const;
void erase(address const& addr);
void clear()
{
m_ip4s.clear();
#if TORRENT_USE_IPV6
m_ip6s.clear();
#endif
}
bool operator==(ip_set const& rh)
{
#if TORRENT_USE_IPV6
return m_ip4s == rh.m_ip4s && m_ip6s == rh.m_ip6s;
#else
return m_ip4s == rh.m_ip4s;
#endif
}
// these must be multisets because there can be multiple routing table
// entries for a single IP when restrict_routing_ips is set to false
std::unordered_multiset<address_v4::bytes_type, ipv4_hash> m_ip4s;
#if TORRENT_USE_IPV6
std::unordered_multiset<address_v6::bytes_type, ipv6_hash> m_ip6s;
#endif
};
// differences in the implementation from the description in
// the paper:
//
// * Nodes are not marked as being stale, they keep a counter
// that tells how many times in a row they have failed. When
// a new node is to be inserted, the node that has failed
// the most times is replaced. If none of the nodes in the
// bucket has failed, then it is put in the replacement
// cache (just like in the paper).
TORRENT_EXTRA_EXPORT bool compare_ip_cidr(address const& lhs, address const& rhs);
class TORRENT_EXTRA_EXPORT routing_table
{
public:
// TODO: 3 to improve memory locality and scanning performance, turn the
// routing table into a single vector with boundaries for the nodes instead.
// Perhaps replacement nodes should be in a separate vector.
using table_t = aux::vector<routing_table_node>;
routing_table(node_id const& id, udp proto
, int bucket_size
, dht_settings const& settings
, dht_logger* log);
routing_table(routing_table const&) = delete;
routing_table& operator=(routing_table const&) = delete;
#if TORRENT_ABI_VERSION == 1
void status(session_status& s) const;
#endif
void status(std::vector<dht_routing_bucket>& s) const;
void node_failed(node_id const& id, udp::endpoint const& ep);
// adds an endpoint that will never be added to
// the routing table
void add_router_node(udp::endpoint const& router);
// iterates over the router nodes added
using router_iterator = std::set<udp::endpoint>::const_iterator;
router_iterator begin() const { return m_router_nodes.begin(); }
router_iterator end() const { return m_router_nodes.end(); }
enum add_node_status_t {
failed_to_add = 0,
node_added,
need_bucket_split
};
add_node_status_t add_node_impl(node_entry e);
bool add_node(node_entry const& e);
// this function is called every time the node sees
// a sign of a node being alive. This node will either
// be inserted in the k-buckets or be moved to the top
// of its bucket.
bool node_seen(node_id const& id, udp::endpoint const& ep, int rtt);
// this may add a node to the routing table and mark it as
// not pinged. If the bucket the node falls into is full,
// the node will be ignored.
void heard_about(node_id const& id, udp::endpoint const& ep);
// change our node ID. This can be expensive since nodes must be moved around
// and potentially dropped
void update_node_id(node_id const& id);
node_entry const* next_refresh();
enum
{
// nodes that have not been pinged are considered failed by this flag
include_failed = 1
};
// fills the vector with the count nodes from our buckets that
// are nearest to the given id.
void find_node(node_id const& id, std::vector<node_entry>& l
, int options, int count = 0);
void remove_node(node_entry* n
, table_t::iterator bucket) ;
int bucket_size(int bucket) const
{
int num_buckets = int(m_buckets.size());
if (num_buckets == 0) return 0;
if (bucket >= num_buckets) bucket = num_buckets - 1;
table_t::const_iterator i = m_buckets.begin();
std::advance(i, bucket);
return int(i->live_nodes.size());
}
void for_each_node(std::function<void(node_entry const&)> live_cb
, std::function<void(node_entry const&)> replacements_cb) const;
void for_each_node(std::function<void(node_entry const&)> f) const
{ for_each_node(f, f); }
int bucket_size() const { return m_bucket_size; }
// returns the number of nodes in the main buckets, number of nodes in the
// replacement buckets and the number of nodes in the main buckets that have
// been pinged and confirmed up
std::tuple<int, int, int> size() const;
std::int64_t num_global_nodes() const;
// the number of bits down we have full buckets
// i.e. essentially the number of full buckets
// we have
int depth() const;
int num_active_buckets() const { return int(m_buckets.size()); }
int bucket_limit(int bucket) const;
#if TORRENT_USE_INVARIANT_CHECKS
void check_invariant() const;
#endif
bool is_full(int bucket) const;
bool native_address(address const& addr) const
{
return (addr.is_v4() && m_protocol == udp::v4())
|| (addr.is_v6() && m_protocol == udp::v6());
}
bool native_endpoint(udp::endpoint const& ep) const
{ return ep.protocol() == m_protocol; }
node_id const& id() const
{ return m_id; }
table_t const& buckets() const
{ return m_buckets; }
private:
#ifndef TORRENT_DISABLE_LOGGING
dht_logger* m_log;
void log_node_failed(node_id const& nid, node_entry const& ne) const;
#endif
table_t::iterator find_bucket(node_id const& id);
void remove_node_internal(node_entry* n, bucket_t& b);
void split_bucket();
// return a pointer the node_entry with the given endpoint
// or 0 if we don't have such a node. Both the address and the
// port has to match
node_entry* find_node(udp::endpoint const& ep
, routing_table::table_t::iterator* bucket);
// if the bucket is not full, try to fill it with nodes from the
// replacement list
void fill_from_replacements(table_t::iterator bucket);
dht_settings const& m_settings;
// (k-bucket, replacement cache) pairs
// the first entry is the bucket the furthest
// away from our own ID. Each time the bucket
// closest to us (m_buckets.back()) has more than
// bucket size nodes in it, another bucket is
// added to the end and it's split up between them
table_t m_buckets;
node_id m_id; // our own node id
udp m_protocol; // protocol this table is for
// the last seen depth (i.e. levels in the routing table)
// it's mutable because it's updated by depth(), which is const
mutable int m_depth;
// the last time we refreshed our own bucket
// refreshed every 15 minutes
mutable time_point m_last_self_refresh;
// this is a set of all the endpoints that have
// been identified as router nodes. They will
// be used in searches, but they will never
// be added to the routing table.
std::set<udp::endpoint> m_router_nodes;
// these are all the IPs that are in the routing
// table. It's used to only allow a single entry
// per IP in the whole table.
ip_set m_ips;
// constant called k in paper
int const m_bucket_size;
};
} } // namespace libtorrent::dht
#endif // ROUTING_TABLE_HPP