premiere-libtorrent/src/file.cpp

2278 lines
56 KiB
C++

/*
Copyright (c) 2003-2015, Arvid Norberg
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#define _FILE_OFFSET_BITS 64
#define _LARGE_FILES 1
// on mingw this is necessary to enable 64-bit time_t, specifically used for
// the stat struct. Without this, modification times returned by stat may be
// incorrect and consistently fail resume data
#ifndef __MINGW_USE_VC2005_COMPAT
# define __MINGW_USE_VC2005_COMPAT
#endif
#include "libtorrent/config.hpp"
#include "libtorrent/alloca.hpp"
#include "libtorrent/allocator.hpp" // page_size
#include "libtorrent/file.hpp"
#include <cstring>
#include <vector>
#ifdef TORRENT_DEBUG_FILE_LEAKS
#include <set>
#include "libtorrent/thread.hpp"
#endif
// for convert_to_wstring and convert_to_native
#include "libtorrent/aux_/escape_string.hpp"
#include <stdio.h>
#include "libtorrent/assert.hpp"
#include <boost/scoped_ptr.hpp>
#include <boost/static_assert.hpp>
#ifdef TORRENT_DISK_STATS
#include "libtorrent/io.hpp"
#endif
#include <sys/stat.h>
#ifdef TORRENT_WINDOWS
// windows part
#ifndef PtrToPtr64
#define PtrToPtr64(x) (x)
#endif
#include "libtorrent/utf8.hpp"
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#include <windows.h>
#include <winioctl.h>
#ifndef TORRENT_MINGW
#include <direct.h> // for _getcwd, _mkdir
#else
#include <dirent.h>
#endif
#include <sys/types.h>
#else
// posix part
#include <unistd.h>
#include <sys/types.h>
#include <errno.h>
#include <dirent.h>
#ifdef TORRENT_LINUX
// linux specifics
#ifdef TORRENT_ANDROID
#include <sys/vfs.h>
#define statvfs statfs
#define fstatvfs fstatfs
#else
#include <sys/statvfs.h>
#endif
#include <sys/ioctl.h>
#ifdef TORRENT_ANDROID
#include <sys/syscall.h>
#define lseek lseek64
#endif
#include <asm/unistd.h> // For __NR_fallocate
// circumvent the lack of support in glibc
static int my_fallocate(int fd, int mode, loff_t offset, loff_t len)
{
#ifdef __NR_fallocate
// the man page on fallocate differes between versions of linux.
// it appears that fallocate in fact sets errno and returns -1
// on failure.
return syscall(__NR_fallocate, fd, mode, offset, len);
#else
// pretend that the system call doesn't exist
errno = ENOSYS;
return -1;
#endif
}
#elif defined __APPLE__ && defined __MACH__ && MAC_OS_X_VERSION_MIN_REQUIRED >= 1050
// mac specifics
#include <copyfile.h>
#endif
#undef _FILE_OFFSET_BITS
// make sure the _FILE_OFFSET_BITS define worked
// on this platform. It's supposed to make file
// related functions support 64-bit offsets.
// this test makes sure lseek() returns a type
// at least 64 bits wide
BOOST_STATIC_ASSERT(sizeof(lseek(0, 0, 0)) >= 8);
#endif // posix part
#if TORRENT_USE_PREADV
# if defined TORRENT_WINDOWS
namespace
{
// wrap the windows function in something that looks
// like preadv() and pwritev()
int preadv(HANDLE fd, libtorrent::file::iovec_t const* bufs, int num_bufs, boost::int64_t file_offset)
{
OVERLAPPED* ol = TORRENT_ALLOCA(OVERLAPPED, num_bufs);
memset(ol, 0, sizeof(OVERLAPPED) * num_bufs);
HANDLE* h = TORRENT_ALLOCA(HANDLE, num_bufs);
for (int i = 0; i < num_bufs; ++i)
{
ol[i].OffsetHigh = file_offset >> 32;
ol[i].Offset = file_offset & 0xffffffff;
ol[i].hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
h[i] = ol[i].hEvent;
if (h[i] == NULL)
{
// we failed to create the event, roll-back and return an error
for (int j = 0; j < i; ++j) CloseHandle(h[i]);
return -1;
}
file_offset += bufs[i].iov_len;
}
int ret = 0;
for (int i = 0; i < num_bufs; ++i)
{
DWORD num_read;
if (ReadFile(fd, bufs[i].iov_base, bufs[i].iov_len, &num_read, &ol[i]) == FALSE
&& GetLastError() != ERROR_IO_PENDING
#ifdef ERROR_CANT_WAIT
&& GetLastError() != ERROR_CANT_WAIT
#endif
)
{
ret = -1;
goto done;
}
}
WaitForMultipleObjects(num_bufs, h, TRUE, INFINITE);
for (int i = 0; i < num_bufs; ++i)
{
WaitForSingleObject(ol[i].hEvent, INFINITE);
DWORD num_read;
if (GetOverlappedResult(fd, &ol[i], &num_read, FALSE) == FALSE)
{
#ifdef ERROR_CANT_WAIT
TORRENT_ASSERT(GetLastError() != ERROR_CANT_WAIT);
#endif
ret = -1;
break;
}
ret += num_read;
}
done:
for (int i = 0; i < num_bufs; ++i)
CloseHandle(h[i]);
return ret;
}
int pwritev(HANDLE fd, libtorrent::file::iovec_t const* bufs, int num_bufs, boost::int64_t file_offset)
{
OVERLAPPED* ol = TORRENT_ALLOCA(OVERLAPPED, num_bufs);
memset(ol, 0, sizeof(OVERLAPPED) * num_bufs);
HANDLE* h = TORRENT_ALLOCA(HANDLE, num_bufs);
for (int i = 0; i < num_bufs; ++i)
{
ol[i].OffsetHigh = file_offset >> 32;
ol[i].Offset = file_offset & 0xffffffff;
ol[i].hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
h[i] = ol[i].hEvent;
if (h[i] == NULL)
{
// we failed to create the event, roll-back and return an error
for (int j = 0; j < i; ++j) CloseHandle(h[i]);
return -1;
}
file_offset += bufs[i].iov_len;
}
int ret = 0;
for (int i = 0; i < num_bufs; ++i)
{
DWORD num_written;
if (WriteFile(fd, bufs[i].iov_base, bufs[i].iov_len, &num_written, &ol[i]) == FALSE
&& GetLastError() != ERROR_IO_PENDING
#ifdef ERROR_CANT_WAIT
&& GetLastError() != ERROR_CANT_WAIT
#endif
)
{
ret = -1;
goto done;
}
}
WaitForMultipleObjects(num_bufs, h, TRUE, INFINITE);
for (int i = 0; i < num_bufs; ++i)
{
WaitForSingleObject(ol[i].hEvent, INFINITE);
DWORD num_written;
if (GetOverlappedResult(fd, &ol[i], &num_written, FALSE) == FALSE)
{
#ifdef ERROR_CANT_WAIT
TORRENT_ASSERT(GetLastError() != ERROR_CANT_WAIT);
#endif
ret = -1;
break;
}
ret += num_written;
}
done:
for (int i = 0; i < num_bufs; ++i)
CloseHandle(h[i]);
return ret;
}
}
# else
# define _BSD_SOURCE
# include <sys/uio.h>
# endif
#endif
#ifdef TORRENT_DEBUG
BOOST_STATIC_ASSERT((libtorrent::file::rw_mask & libtorrent::file::sparse) == 0);
BOOST_STATIC_ASSERT((libtorrent::file::rw_mask & libtorrent::file::attribute_mask) == 0);
BOOST_STATIC_ASSERT((libtorrent::file::sparse & libtorrent::file::attribute_mask) == 0);
#endif
#if defined TORRENT_WINDOWS && defined UNICODE && !TORRENT_USE_WSTRING
#ifdef _MSC_VER
#pragma message ( "wide character support not available. Files will be saved using narrow string names" )
#else
#warning "wide character support not available. Files will be saved using narrow string names"
#endif
#endif // TORRENT_WINDOWS
namespace libtorrent
{
#ifdef TORRENT_WINDOWS
std::string convert_separators(std::string p)
{
for (int i = 0; i < int(p.size()); ++i)
if (p[i] == '/') p[i] = '\\';
return p;
}
time_t file_time_to_posix(FILETIME f)
{
const boost::uint64_t posix_time_offset = 11644473600LL;
boost::uint64_t ft = (boost::uint64_t(f.dwHighDateTime) << 32)
| f.dwLowDateTime;
// windows filetime is specified in 100 nanoseconds resolution.
// convert to seconds
return time_t(ft / 10000000 - posix_time_offset);
}
#endif
void stat_file(std::string const& inf, file_status* s
, error_code& ec, int flags)
{
ec.clear();
#ifdef TORRENT_WINDOWS
#if TORRENT_USE_WSTRING && defined TORRENT_WINDOWS
#define GetFileAttributesEx_ GetFileAttributesExW
std::wstring f = convert_to_wstring(inf);
// apparently windows doesn't expect paths
// to directories to ever end with a \ or /
if (!f.empty() && (f[f.size() - 1] == L'\\'
|| f[f.size() - 1] == L'/'))
f.resize(f.size() - 1);
#else
#define GetFileAttributesEx_ GetFileAttributesExA
std::string f = convert_to_native(inf);
// apparently windows doesn't expect paths
// to directories to ever end with a \ or /
if (!f.empty() && (f[f.size() - 1] == '\\'
|| f[f.size() - 1] == '/'))
f.resize(f.size() - 1);
#endif
WIN32_FILE_ATTRIBUTE_DATA data;
if (!GetFileAttributesEx(f.c_str(), GetFileExInfoStandard, &data))
{
ec.assign(GetLastError(), system_category());
return;
}
s->file_size = (boost::uint64_t(data.nFileSizeHigh) << 32) | data.nFileSizeLow;
s->ctime = file_time_to_posix(data.ftCreationTime);
s->atime = file_time_to_posix(data.ftLastAccessTime);
s->mtime = file_time_to_posix(data.ftLastWriteTime);
s->mode = (data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)
? file_status::directory
: (data.dwFileAttributes & FILE_ATTRIBUTE_DEVICE)
? file_status::character_special : file_status::regular_file;
#else
// posix version
std::string const& f = convert_to_native(inf);
struct stat ret;
int retval;
if (flags & dont_follow_links)
retval = ::lstat(f.c_str(), &ret);
else
retval = ::stat(f.c_str(), &ret);
if (retval < 0)
{
ec.assign(errno, generic_category());
return;
}
s->file_size = ret.st_size;
s->atime = ret.st_atime;
s->mtime = ret.st_mtime;
s->ctime = ret.st_ctime;
s->mode = (S_ISREG(ret.st_mode) ? file_status::regular_file : 0)
| (S_ISDIR(ret.st_mode) ? file_status::directory : 0)
| (S_ISLNK(ret.st_mode) ? file_status::link : 0)
| (S_ISFIFO(ret.st_mode) ? file_status::fifo : 0)
| (S_ISCHR(ret.st_mode) ? file_status::character_special : 0)
| (S_ISBLK(ret.st_mode) ? file_status::block_special : 0)
| (S_ISSOCK(ret.st_mode) ? file_status::socket : 0);
#endif // TORRENT_WINDOWS
}
void rename(std::string const& inf, std::string const& newf, error_code& ec)
{
ec.clear();
#if TORRENT_USE_WSTRING && defined TORRENT_WINDOWS
std::wstring f1 = convert_to_wstring(inf);
std::wstring f2 = convert_to_wstring(newf);
if (_wrename(f1.c_str(), f2.c_str()) < 0)
#else
std::string const& f1 = convert_to_native(inf);
std::string const& f2 = convert_to_native(newf);
if (::rename(f1.c_str(), f2.c_str()) < 0)
#endif
{
ec.assign(errno, generic_category());
return;
}
}
void create_directories(std::string const& f, error_code& ec)
{
ec.clear();
if (is_directory(f, ec)) return;
if (ec != boost::system::errc::no_such_file_or_directory)
return;
ec.clear();
if (is_root_path(f)) return;
if (has_parent_path(f))
{
create_directories(parent_path(f), ec);
if (ec) return;
}
create_directory(f, ec);
}
void create_directory(std::string const& f, error_code& ec)
{
ec.clear();
#ifdef TORRENT_WINDOWS
#if TORRENT_USE_WSTRING
#define CreateDirectory_ CreateDirectoryW
std::wstring n = convert_to_wstring(f);
#else
#define CreateDirectory_ CreateDirectoryA
std::string const& n = convert_to_native(f);
#endif // TORRENT_USE_WSTRING
if (CreateDirectory_(n.c_str(), 0) == 0
&& GetLastError() != ERROR_ALREADY_EXISTS)
ec.assign(GetLastError(), system_category());
#else
std::string n = convert_to_native(f);
int ret = mkdir(n.c_str(), 0777);
if (ret < 0 && errno != EEXIST)
ec.assign(errno, generic_category());
#endif
}
void hard_link(std::string const& file, std::string const& link
, error_code& ec)
{
#ifdef TORRENT_WINDOWS
#if TORRENT_USE_WSTRING
#define CreateHardLink_ CreateHardLinkW
std::wstring n_exist = convert_to_wstring(file);
std::wstring n_link = convert_to_wstring(link);
#else
#define CreateHardLink_ CreateHardLinkA
std::string n_exist = convert_to_native(file);
std::string n_link = convert_to_native(link);
#endif
BOOL ret = CreateHardLink(n_link.c_str(), n_exist.c_str(), NULL);
if (ret)
{
ec.clear();
return;
}
// something failed. Does the filesystem not support hard links?
// TODO: 3 find out what error code is reported when the filesystem
// does not support hard links.
// it's possible CreateHardLink will copy the file internally too,
// if the filesystem does not support it.
ec.assign(GetLastError(), system_category());
return;
#else
std::string n_exist = convert_to_native(file);
std::string n_link = convert_to_native(link);
// assume posix's link() function exists
int ret = ::link(n_exist.c_str(), n_link.c_str());
if (ret == 0)
{
ec.clear();
return;
}
// most errors are passed through, except for the ones that indicate that
// hard links are not supported and require a copy.
// TODO: 2 test this on a FAT volume to see what error we get!
if (errno != EMLINK || errno != EXDEV)
{
// some error happened, report up to the caller
ec.assign(errno, generic_category());
return;
}
#endif
// if we get here, we should copy the file
copy_file(file, link, ec);
}
bool is_directory(std::string const& f, error_code& ec)
{
ec.clear();
error_code e;
file_status s;
stat_file(f, &s, e);
if (!e && s.mode & file_status::directory) return true;
ec = e;
return false;
}
void recursive_copy(std::string const& old_path, std::string const& new_path, error_code& ec)
{
TORRENT_ASSERT(!ec);
if (is_directory(old_path, ec))
{
create_directory(new_path, ec);
if (ec) return;
for (directory i(old_path, ec); !i.done(); i.next(ec))
{
std::string f = i.file();
if (f == ".." || f == ".") continue;
recursive_copy(combine_path(old_path, f), combine_path(new_path, f), ec);
if (ec) return;
}
}
else if (!ec)
{
copy_file(old_path, new_path, ec);
}
}
void copy_file(std::string const& inf, std::string const& newf, error_code& ec)
{
ec.clear();
#ifdef TORRENT_WINDOWS
#if TORRENT_USE_WSTRING
#define CopyFile_ CopyFileW
std::wstring f1 = convert_to_wstring(inf);
std::wstring f2 = convert_to_wstring(newf);
#else
#define CopyFile_ CopyFileA
std::string const& f1 = convert_to_native(inf);
std::string const& f2 = convert_to_native(newf);
#endif
if (CopyFile_(f1.c_str(), f2.c_str(), false) == 0)
ec.assign(GetLastError(), system_category());
#elif defined __APPLE__ && defined __MACH__ && MAC_OS_X_VERSION_MIN_REQUIRED >= 1050
std::string f1 = convert_to_native(inf);
std::string f2 = convert_to_native(newf);
// this only works on 10.5
copyfile_state_t state = copyfile_state_alloc();
if (copyfile(f1.c_str(), f2.c_str(), state, COPYFILE_ALL) < 0)
ec.assign(errno, generic_category());
copyfile_state_free(state);
#else
std::string f1 = convert_to_native(inf);
std::string f2 = convert_to_native(newf);
int infd = ::open(f1.c_str(), O_RDONLY);
if (infd < 0)
{
ec.assign(errno, generic_category());
return;
}
// rely on default umask to filter x and w permissions
// for group and others
int permissions = S_IRUSR | S_IWUSR
| S_IRGRP | S_IWGRP
| S_IROTH | S_IWOTH;
int outfd = ::open(f2.c_str(), O_WRONLY | O_CREAT, permissions);
if (outfd < 0)
{
close(infd);
ec.assign(errno, generic_category());
return;
}
char buffer[4096];
for (;;)
{
int num_read = read(infd, buffer, sizeof(buffer));
if (num_read == 0) break;
if (num_read < 0)
{
ec.assign(errno, generic_category());
break;
}
int num_written = write(outfd, buffer, num_read);
if (num_written < num_read)
{
ec.assign(errno, generic_category());
break;
}
if (num_read < int(sizeof(buffer))) break;
}
close(infd);
close(outfd);
#endif // TORRENT_WINDOWS
}
std::string split_path(std::string const& f)
{
if (f.empty()) return f;
std::string ret;
char const* start = f.c_str();
char const* p = start;
while (*start != 0)
{
while (*p != '/'
&& *p != '\0'
#if defined(TORRENT_WINDOWS) || defined(TORRENT_OS2)
&& *p != '\\'
#endif
) ++p;
if (p - start > 0)
{
ret.append(start, p - start);
ret.append(1, '\0');
}
if (*p != 0) ++p;
start = p;
}
ret.append(1, '\0');
return ret;
}
char const* next_path_element(char const* p)
{
p += strlen(p) + 1;
if (*p == 0) return 0;
return p;
}
std::string extension(std::string const& f)
{
for (int i = f.size() - 1; i >= 0; --i)
{
if (f[i] == '/') break;
#ifdef TORRENT_WINDOWS
if (f[i] == '\\') break;
#endif
if (f[i] != '.') continue;
return f.substr(i);
}
return "";
}
std::string remove_extension(std::string const& f)
{
char const* slash = strrchr(f.c_str(), '/');
#ifdef TORRENT_WINDOWS
slash = (std::max)((char const*)strrchr(f.c_str(), '\\'), slash);
#endif
char const* ext = strrchr(f.c_str(), '.');
// if we don't have an extension, just return f
if (ext == 0 || ext == &f[0] || (slash != NULL && ext < slash)) return f;
return f.substr(0, ext - &f[0]);
}
void replace_extension(std::string& f, std::string const& ext)
{
for (int i = f.size() - 1; i >= 0; --i)
{
if (f[i] == '/') break;
#ifdef TORRENT_WINDOWS
if (f[i] == '\\') break;
#endif
if (f[i] != '.') continue;
f.resize(i);
break;
}
f += '.';
f += ext;
}
bool is_root_path(std::string const& f)
{
if (f.empty()) return false;
#if defined(TORRENT_WINDOWS) || defined(TORRENT_OS2)
// match \\ form
if (f == "\\\\") return true;
int i = 0;
// match the xx:\ or xx:/ form
while (f[i] && is_alpha(f[i])) ++i;
if (i == int(f.size()-2) && f[i] == ':' && (f[i+1] == '\\' || f[i+1] == '/'))
return true;
// match network paths \\computer_name\ form
if (f.size() > 2 && f[0] == '\\' && f[1] == '\\')
{
// we don't care about the last character, since it's OK for it
// to be a slash or a back slash
bool found = false;
for (int i = 2; i < int(f.size()) - 1; ++i)
{
if (f[i] != '\\' && f[i] != '/') continue;
// there is a directory separator in here,
// i.e. this is not the root
found = true;
break;
}
if (!found) return true;
}
#else
// as well as parent_path("/") should be "/".
if (f == "/") return true;
#endif
return false;
}
bool has_parent_path(std::string const& f)
{
if (f.empty()) return false;
if (is_root_path(f)) return false;
int len = f.size() - 1;
// if the last character is / or \ ignore it
if (f[len] == '/' || f[len] == '\\') --len;
while (len >= 0)
{
if (f[len] == '/' || f[len] == '\\')
break;
--len;
}
return len >= 0;
}
std::string parent_path(std::string const& f)
{
if (f.empty()) return f;
#ifdef TORRENT_WINDOWS
if (f == "\\\\") return "";
#endif
if (f == "/") return "";
int len = f.size();
// if the last character is / or \ ignore it
if (f[len-1] == '/' || f[len-1] == '\\') --len;
while (len > 0)
{
--len;
if (f[len] == '/' || f[len] == '\\')
break;
}
if (f[len] == '/' || f[len] == '\\') ++len;
return std::string(f.c_str(), len);
}
char const* filename_cstr(char const* f)
{
if (f == 0) return f;
char const* sep = strrchr(f, '/');
#ifdef TORRENT_WINDOWS
char const* altsep = strrchr(f, '\\');
if (sep == 0 || altsep > sep) sep = altsep;
#endif
if (sep == 0) return f;
return sep+1;
}
std::string filename(std::string const& f)
{
if (f.empty()) return "";
char const* first = f.c_str();
char const* sep = strrchr(first, '/');
#if defined(TORRENT_WINDOWS) || defined(TORRENT_OS2)
char const* altsep = strrchr(first, '\\');
if (sep == 0 || altsep > sep) sep = altsep;
#endif
if (sep == 0) return f;
if (sep - first == int(f.size()) - 1)
{
// if the last character is a / (or \)
// ignore it
int len = 0;
while (sep > first)
{
--sep;
if (*sep == '/'
#if defined(TORRENT_WINDOWS) || defined(TORRENT_OS2)
|| *sep == '\\'
#endif
)
return std::string(sep + 1, len);
++len;
}
return std::string(first, len);
}
return std::string(sep + 1);
}
void append_path(std::string& branch, std::string const& leaf)
{
append_path(branch, leaf.c_str(), leaf.size());
}
void append_path(std::string& branch
, char const* str, int len)
{
TORRENT_ASSERT(!is_complete(std::string(str, len)));
if (branch.empty() || branch == ".")
{
branch.assign(str, len);
return;
}
if (len == 0) return;
#if defined(TORRENT_WINDOWS) || defined(TORRENT_OS2)
#define TORRENT_SEPARATOR_CHAR '\\'
bool need_sep = branch[branch.size()-1] != '\\'
&& branch[branch.size()-1] != '/';
#else
#define TORRENT_SEPARATOR_CHAR '/'
bool need_sep = branch[branch.size()-1] != '/';
#endif
if (need_sep) branch += TORRENT_SEPARATOR_CHAR;
branch.append(str, len);
}
std::string combine_path(std::string const& lhs, std::string const& rhs)
{
TORRENT_ASSERT(!is_complete(rhs));
if (lhs.empty() || lhs == ".") return rhs;
if (rhs.empty() || rhs == ".") return lhs;
#if defined(TORRENT_WINDOWS) || defined(TORRENT_OS2)
#define TORRENT_SEPARATOR "\\"
bool need_sep = lhs[lhs.size()-1] != '\\' && lhs[lhs.size()-1] != '/';
#else
#define TORRENT_SEPARATOR "/"
bool need_sep = lhs[lhs.size()-1] != '/';
#endif
std::string ret;
int target_size = lhs.size() + rhs.size() + 2;
ret.resize(target_size);
target_size = snprintf(&ret[0], target_size, "%s%s%s", lhs.c_str()
, (need_sep?TORRENT_SEPARATOR:""), rhs.c_str());
ret.resize(target_size);
return ret;
}
std::string current_working_directory()
{
#if defined TORRENT_WINDOWS && !defined TORRENT_MINGW
#if TORRENT_USE_WSTRING
wchar_t cwd[TORRENT_MAX_PATH];
_wgetcwd(cwd, sizeof(cwd) / sizeof(wchar_t));
#else
char cwd[TORRENT_MAX_PATH];
_getcwd(cwd, sizeof(cwd));
#endif // TORRENT_USE_WSTRING
#else
char cwd[TORRENT_MAX_PATH];
if (getcwd(cwd, sizeof(cwd)) == 0) return "/";
#endif
#if defined TORRENT_WINDOWS && !defined TORRENT_MINGW && TORRENT_USE_WSTRING
return convert_from_wstring(cwd);
#else
return convert_from_native(cwd);
#endif
}
#if TORRENT_USE_UNC_PATHS
std::string canonicalize_path(std::string const& f)
{
std::string ret;
ret.resize(f.size());
char* write_cur = &ret[0];
char* last_write_sep = write_cur;
char const* read_cur = f.c_str();
char const* last_read_sep = read_cur;
// the last_*_sep pointers point to one past
// the last path separator encountered and is
// initializes to the first character in the path
while (*read_cur)
{
if (*read_cur != '\\')
{
*write_cur++ = *read_cur++;
continue;
}
int element_len = read_cur - last_read_sep;
if (element_len == 1 && memcmp(last_read_sep, ".", 1) == 0)
{
--write_cur;
++read_cur;
last_read_sep = read_cur;
continue;
}
if (element_len == 2 && memcmp(last_read_sep, "..", 2) == 0)
{
// find the previous path separator
if (last_write_sep > &ret[0])
{
--last_write_sep;
while (last_write_sep > &ret[0]
&& last_write_sep[-1] != '\\')
--last_write_sep;
}
write_cur = last_write_sep;
// find the previous path separator
if (last_write_sep > &ret[0])
{
--last_write_sep;
while (last_write_sep > &ret[0]
&& last_write_sep[-1] != '\\')
--last_write_sep;
}
++read_cur;
last_read_sep = read_cur;
continue;
}
*write_cur++ = *read_cur++;
last_write_sep = write_cur;
last_read_sep = read_cur;
}
// terminate destination string
*write_cur = 0;
ret.resize(write_cur - &ret[0]);
return ret;
}
#endif
boost::int64_t file_size(std::string const& f)
{
error_code ec;
file_status s;
stat_file(f, &s, ec);
if (ec) return 0;
return s.file_size;
}
bool exists(std::string const& f, error_code& ec)
{
file_status s;
stat_file(f, &s, ec);
if (ec)
{
if (ec == boost::system::errc::no_such_file_or_directory)
ec.clear();
return false;
}
return true;
}
bool exists(std::string const& f)
{
error_code ec;
return exists(f, ec);
}
void remove(std::string const& inf, error_code& ec)
{
ec.clear();
#ifdef TORRENT_WINDOWS
// windows does not allow trailing / or \ in
// the path when removing files
std::string pruned;
if (inf[inf.size() - 1] == '/'
|| inf[inf.size() - 1] == '\\')
pruned = inf.substr(0, inf.size() - 1);
else
pruned = inf;
#if TORRENT_USE_WSTRING
#define DeleteFile_ DeleteFileW
#define RemoveDirectory_ RemoveDirectoryW
std::wstring f = convert_to_wstring(pruned);
#else
#define DeleteFile_ DeleteFileA
#define RemoveDirectory_ RemoveDirectoryA
std::string f = convert_to_native(pruned);
#endif
if (DeleteFile_(f.c_str()) == 0)
{
if (GetLastError() == ERROR_ACCESS_DENIED)
{
if (RemoveDirectory_(f.c_str()) != 0)
return;
}
ec.assign(GetLastError(), system_category());
return;
}
#else // TORRENT_WINDOWS
std::string const& f = convert_to_native(inf);
if (::remove(f.c_str()) < 0)
{
ec.assign(errno, generic_category());
return;
}
#endif // TORRENT_WINDOWS
}
void remove_all(std::string const& f, error_code& ec)
{
ec.clear();
file_status s;
stat_file(f, &s, ec);
if (ec) return;
if (s.mode & file_status::directory)
{
for (directory i(f, ec); !i.done(); i.next(ec))
{
if (ec) return;
std::string p = i.file();
if (p == "." || p == "..") continue;
remove_all(combine_path(f, p), ec);
if (ec) return;
}
}
remove(f, ec);
}
std::string complete(std::string const& f)
{
if (is_complete(f)) return f;
if (f == ".") return current_working_directory();
return combine_path(current_working_directory(), f);
}
bool is_complete(std::string const& f)
{
if (f.empty()) return false;
#if defined(TORRENT_WINDOWS) || defined(TORRENT_OS2)
int i = 0;
// match the xx:\ or xx:/ form
while (f[i] && is_alpha(f[i])) ++i;
if (i < int(f.size()-1) && f[i] == ':' && (f[i+1] == '\\' || f[i+1] == '/'))
return true;
// match the \\ form
if (int(f.size()) >= 2 && f[0] == '\\' && f[1] == '\\')
return true;
return false;
#else
if (f[0] == '/') return true;
return false;
#endif
}
directory::directory(std::string const& path, error_code& ec)
: m_done(false)
{
ec.clear();
#ifdef TORRENT_WINDOWS
m_inode = 0;
// the path passed to FindFirstFile() must be
// a pattern
std::string f = convert_separators(path);
if (!f.empty() && f[f.size()-1] != '\\') f += "\\*";
else f += "*";
#if TORRENT_USE_WSTRING
#define FindFirstFile_ FindFirstFileW
std::wstring p = convert_to_wstring(f);
#else
#define FindFirstFile_ FindFirstFileA
std::string p = convert_to_native(f);
#endif
m_handle = FindFirstFile_(p.c_str(), &m_fd);
if (m_handle == INVALID_HANDLE_VALUE)
{
ec.assign(GetLastError(), system_category());
m_done = true;
return;
}
#else
memset(&m_dirent, 0, sizeof(dirent));
m_name[0] = 0;
// the path passed to opendir() may not
// end with a /
std::string p = path;
if (!path.empty() && path[path.size()-1] == '/')
p.resize(path.size()-1);
p = convert_to_native(p);
m_handle = opendir(p.c_str());
if (m_handle == 0)
{
ec.assign(errno, generic_category());
m_done = true;
return;
}
// read the first entry
next(ec);
#endif
}
directory::~directory()
{
#ifdef TORRENT_WINDOWS
if (m_handle != INVALID_HANDLE_VALUE)
FindClose(m_handle);
#else
if (m_handle) closedir(m_handle);
#endif
}
boost::uint64_t directory::inode() const
{
#ifdef TORRENT_WINDOWS
return m_inode;
#else
return m_dirent.d_ino;
#endif
}
std::string directory::file() const
{
#ifdef TORRENT_WINDOWS
#if TORRENT_USE_WSTRING
return convert_from_wstring(m_fd.cFileName);
#else
return convert_from_native(m_fd.cFileName);
#endif
#else
return convert_from_native(m_dirent.d_name);
#endif
}
void directory::next(error_code& ec)
{
ec.clear();
#ifdef TORRENT_WINDOWS
#if TORRENT_USE_WSTRING
#define FindNextFile_ FindNextFileW
#else
#define FindNextFile_ FindNextFileA
#endif
if (FindNextFile_(m_handle, &m_fd) == 0)
{
m_done = true;
int err = GetLastError();
if (err != ERROR_NO_MORE_FILES)
ec.assign(err, system_category());
}
++m_inode;
#else
dirent* dummy;
if (readdir_r(m_handle, &m_dirent, &dummy) != 0)
{
ec.assign(errno, generic_category());
m_done = true;
}
if (dummy == 0) m_done = true;
#endif
}
#ifndef INVALID_HANDLE_VALUE
#define INVALID_HANDLE_VALUE -1
#endif
#ifdef TORRENT_WINDOWS
struct overlapped_t
{
overlapped_t()
{
memset(&ol, 0, sizeof(ol));
ol.hEvent = CreateEvent(0, true, false, 0);
}
~overlapped_t()
{
if (ol.hEvent != INVALID_HANDLE_VALUE)
CloseHandle(ol.hEvent);
}
int wait(HANDLE file, error_code& ec)
{
if (ol.hEvent != INVALID_HANDLE_VALUE
&& WaitForSingleObject(ol.hEvent, INFINITE) == WAIT_FAILED)
{
ec.assign(GetLastError(), system_category());
return -1;
}
DWORD ret = -1;
if (GetOverlappedResult(file, &ol, &ret, false) == 0)
{
DWORD last_error = GetLastError();
if (last_error != ERROR_HANDLE_EOF)
{
#ifdef ERROR_CANT_WAIT
TORRENT_ASSERT(last_error != ERROR_CANT_WAIT);
#endif
ec.assign(last_error, system_category());
return -1;
}
}
return ret;
}
OVERLAPPED ol;
};
#endif // TORRENT_WINDOWS
#ifdef TORRENT_WINDOWS
bool get_manage_volume_privs();
// this needs to be run before CreateFile
bool file::has_manage_volume_privs = get_manage_volume_privs();
#endif
file::file()
: m_file_handle(INVALID_HANDLE_VALUE)
, m_open_mode(0)
#if defined TORRENT_WINDOWS || defined TORRENT_LINUX
, m_sector_size(0)
#endif
{
#ifdef TORRENT_DISK_STATS
m_file_id = 0;
#endif
}
file::file(std::string const& path, int mode, error_code& ec)
: m_file_handle(INVALID_HANDLE_VALUE)
, m_open_mode(0)
#if defined TORRENT_WINDOWS || defined TORRENT_LINUX
, m_sector_size(0)
#endif
{
#ifdef TORRENT_DISK_STATS
m_file_id = 0;
#endif
// the return value is not important, since the
// error code contains the same information
open(path, mode, ec);
}
file::~file()
{
close();
}
#ifdef TORRENT_DISK_STATS
boost::uint32_t silly_hash(std::string const& str)
{
boost::uint32_t ret = 1;
for (int i = 0; i < str.size(); ++i)
{
if (str[i] == 0) continue;
ret *= int(str[i]);
}
return ret;
}
#endif
bool file::open(std::string const& path, int mode, error_code& ec)
{
close();
#ifdef TORRENT_DEBUG_FILE_LEAKS
m_file_path = path;
#endif
#ifdef TORRENT_DISK_STATS
m_file_id = silly_hash(path);
#endif
#ifdef TORRENT_WINDOWS
struct open_mode_t
{
DWORD rw_mode;
DWORD create_mode;
};
static const open_mode_t mode_array[] =
{
// read_only
{GENERIC_READ, OPEN_EXISTING},
// write_only
{GENERIC_WRITE, OPEN_ALWAYS},
// read_write
{GENERIC_WRITE | GENERIC_READ, OPEN_ALWAYS},
};
static const DWORD attrib_array[] =
{
FILE_ATTRIBUTE_NORMAL, // no attrib
FILE_ATTRIBUTE_HIDDEN, // hidden
FILE_ATTRIBUTE_NORMAL, // executable
FILE_ATTRIBUTE_HIDDEN, // hidden + executable
};
std::string p = convert_separators(path);
#if TORRENT_USE_UNC_PATHS
// UNC paths must be absolute
// network paths are already UNC paths
if (path.substr(0,2) == "\\\\") p = path;
else p = "\\\\?\\" + (is_complete(p) ? p : combine_path(current_working_directory(), p));
#endif
#if TORRENT_USE_WSTRING
#define CreateFile_ CreateFileW
m_path = convert_to_wstring(p);
#else
#define CreateFile_ CreateFileA
m_path = convert_to_native(p);
#endif
TORRENT_ASSERT((mode & rw_mask) < sizeof(mode_array)/sizeof(mode_array[0]));
open_mode_t const& m = mode_array[mode & rw_mask];
DWORD a = attrib_array[(mode & attribute_mask) >> 12];
// one might think it's a good idea to pass in FILE_FLAG_RANDOM_ACCESS. It
// turns out that it isn't. That flag will break your operating system:
// http://support.microsoft.com/kb/2549369
DWORD flags = ((mode & random_access) ? 0 : FILE_FLAG_SEQUENTIAL_SCAN)
| (a ? a : FILE_ATTRIBUTE_NORMAL)
| FILE_FLAG_OVERLAPPED
| ((mode & direct_io) ? FILE_FLAG_NO_BUFFERING : 0)
| ((mode & no_cache) ? FILE_FLAG_WRITE_THROUGH : 0);
handle_type handle = CreateFile_(m_path.c_str(), m.rw_mode
, (mode & lock_file) ? FILE_SHARE_READ : FILE_SHARE_READ | FILE_SHARE_WRITE
, 0, m.create_mode, flags, 0);
if (handle == INVALID_HANDLE_VALUE)
{
ec.assign(GetLastError(), system_category());
TORRENT_ASSERT(ec);
return false;
}
m_file_handle = handle;
// try to make the file sparse if supported
// only set this flag if the file is opened for writing
if ((mode & file::sparse) && (mode & rw_mask) != read_only)
{
DWORD temp;
overlapped_t ol;
BOOL ret = ::DeviceIoControl(native_handle(), FSCTL_SET_SPARSE, 0, 0
, 0, 0, &temp, &ol.ol);
error_code error;
if (ret == FALSE && GetLastError() == ERROR_IO_PENDING)
ol.wait(native_handle(), error);
}
#else // TORRENT_WINDOWS
// rely on default umask to filter x and w permissions
// for group and others
int permissions = S_IRUSR | S_IWUSR
| S_IRGRP | S_IWGRP
| S_IROTH | S_IWOTH;
if (mode & attribute_executable)
permissions |= S_IXGRP | S_IXOTH | S_IXUSR;
#ifdef O_BINARY
static const int mode_array[] = {O_RDONLY | O_BINARY, O_WRONLY | O_CREAT | O_BINARY, O_RDWR | O_CREAT | O_BINARY};
#else
static const int mode_array[] = {O_RDONLY, O_WRONLY | O_CREAT, O_RDWR | O_CREAT};
#endif
int open_mode = 0
#ifdef O_NOATIME
| ((mode & no_atime) ? O_NOATIME : 0)
#endif
#ifdef O_DIRECT
| ((mode & direct_io) ? O_DIRECT : 0)
#endif
#ifdef O_SYNC
| ((mode & no_cache) ? O_SYNC: 0)
#endif
;
handle_type handle = ::open(convert_to_native(path).c_str()
, mode_array[mode & rw_mask] | open_mode
, permissions);
#ifdef O_NOATIME
// O_NOATIME is not allowed for files we don't own
// so, if we get EPERM when we try to open with it
// try again without O_NOATIME
if (handle == -1 && (mode & no_atime) && errno == EPERM)
{
mode &= ~no_atime;
open_mode &= ~O_NOATIME;
handle = ::open(path.c_str(), mode_array[mode & rw_mask] | open_mode
, permissions);
}
#endif
if (handle == -1)
{
ec.assign(errno, generic_category());
TORRENT_ASSERT(ec);
return false;
}
m_file_handle = handle;
// The purpose of the lock_file flag is primarily to prevent other
// processes from corrupting files that are being used by libtorrent.
// the posix file locking mechanism does not prevent others from
// accessing files, unless they also attempt to lock the file. That's
// why the SETLK mechanism is not used here.
#ifdef DIRECTIO_ON
// for solaris
if (mode & no_cache)
{
int yes = 1;
directio(native_handle(), DIRECTIO_ON);
}
#endif
#ifdef F_NOCACHE
// for BSD/Mac
if (mode & no_cache)
{
int yes = 1;
fcntl(native_handle(), F_NOCACHE, &yes);
#ifdef F_NODIRECT
// it's OK to temporarily cache written pages
fcntl(native_handle(), F_NODIRECT, &yes);
#endif
}
#endif
#ifdef POSIX_FADV_RANDOM
if (mode & random_access)
{
// disable read-ahead
posix_fadvise(native_handle(), 0, 0, POSIX_FADV_RANDOM);
}
#endif
#endif
m_open_mode = mode;
TORRENT_ASSERT(is_open());
return true;
}
#ifdef TORRENT_DEBUG_FILE_LEAKS
void file::print_info(FILE* out) const
{
if (!is_open()) return;
fprintf(out, "\n===> FILE: %s\n", m_file_path.c_str());
}
#endif
bool file::is_open() const
{
return m_file_handle != INVALID_HANDLE_VALUE;
}
#ifdef TORRENT_WINDOWS
// returns true if the given file has any regions that are
// sparse, i.e. not allocated.
bool is_sparse(HANDLE file)
{
LARGE_INTEGER file_size;
if (!GetFileSizeEx(file, &file_size))
return false;
overlapped_t ol;
if (ol.ol.hEvent == NULL) return false;
#ifdef TORRENT_MINGW
typedef struct _FILE_ALLOCATED_RANGE_BUFFER {
LARGE_INTEGER FileOffset;
LARGE_INTEGER Length;
} FILE_ALLOCATED_RANGE_BUFFER, *PFILE_ALLOCATED_RANGE_BUFFER;
#define FSCTL_QUERY_ALLOCATED_RANGES ((0x9 << 16) | (1 << 14) | (51 << 2) | 3)
#endif
FILE_ALLOCATED_RANGE_BUFFER in;
in.FileOffset.QuadPart = 0;
in.Length.QuadPart = file_size.QuadPart;
FILE_ALLOCATED_RANGE_BUFFER out[2];
DWORD returned_bytes = 0;
BOOL ret = DeviceIoControl(file, FSCTL_QUERY_ALLOCATED_RANGES, (void*)&in, sizeof(in)
, out, sizeof(out), &returned_bytes, &ol.ol);
if (ret == FALSE && GetLastError() == ERROR_IO_PENDING)
{
error_code ec;
returned_bytes = ol.wait(file, ec);
if (ec) return true;
}
else if (ret == FALSE)
{
int error = GetLastError();
return true;
}
// if we have more than one range in the file, we're sparse
if (returned_bytes != sizeof(FILE_ALLOCATED_RANGE_BUFFER)) {
return true;
}
return (in.Length.QuadPart != out[0].Length.QuadPart);
}
#endif
void file::close()
{
#ifdef TORRENT_DISK_STATS
m_file_id = 0;
#endif
#if defined TORRENT_WINDOWS || defined TORRENT_LINUX
m_sector_size = 0;
#endif
if (!is_open()) return;
#ifdef TORRENT_WINDOWS
// if this file is open for writing, has the sparse
// flag set, but there are no sparse regions, unset
// the flag
int rw_mode = m_open_mode & rw_mask;
if ((rw_mode != read_only)
&& (m_open_mode & sparse)
&& !is_sparse(native_handle()))
{
overlapped_t ol;
// according to MSDN, clearing the sparse flag of a file only
// works on windows vista and later
#ifdef TORRENT_MINGW
typedef struct _FILE_SET_SPARSE_BUFFER {
BOOLEAN SetSparse;
} FILE_SET_SPARSE_BUFFER, *PFILE_SET_SPARSE_BUFFER;
#endif
DWORD temp;
FILE_SET_SPARSE_BUFFER b;
b.SetSparse = FALSE;
BOOL ret = ::DeviceIoControl(native_handle(), FSCTL_SET_SPARSE, &b, sizeof(b)
, 0, 0, &temp, &ol.ol);
error_code ec;
if (ret == FALSE && GetLastError() == ERROR_IO_PENDING)
{
ol.wait(native_handle(), ec);
}
}
CloseHandle(native_handle());
m_path.clear();
#else
if (m_file_handle != INVALID_HANDLE_VALUE)
::close(m_file_handle);
#endif
m_file_handle = INVALID_HANDLE_VALUE;
m_open_mode = 0;
}
// defined in storage.cpp
int bufs_size(file::iovec_t const* bufs, int num_bufs);
namespace {
void gather_copy(file::iovec_t const* bufs, int num_bufs, char* dst)
{
int offset = 0;
for (int i = 0; i < num_bufs; ++i)
{
memcpy(dst + offset, bufs[i].iov_base, bufs[i].iov_len);
offset += bufs[i].iov_len;
}
}
void scatter_copy(file::iovec_t const* bufs, int num_bufs, char const* src)
{
int offset = 0;
for (int i = 0; i < num_bufs; ++i)
{
memcpy(bufs[i].iov_base, src + offset, bufs[i].iov_len);
offset += bufs[i].iov_len;
}
}
bool coalesce_read_buffers(file::iovec_t const*& bufs, int& num_bufs, file::iovec_t* tmp)
{
int buf_size = bufs_size(bufs, num_bufs);
// this is page aligned since it's used in APIs which
// are likely to require that (depending on OS)
char* buf = (char*)page_aligned_allocator::malloc(buf_size);
if (!buf) return false;
tmp->iov_base = buf;
tmp->iov_len = buf_size;
bufs = tmp;
num_bufs = 1;
return true;
}
void coalesce_read_buffers_end(file::iovec_t const* bufs, int num_bufs, char* buf, bool copy)
{
if (copy) scatter_copy(bufs, num_bufs, buf);
page_aligned_allocator::free(buf);
}
bool coalesce_write_buffers(file::iovec_t const*& bufs, int& num_bufs, file::iovec_t* tmp)
{
// coalesce buffers means allocate a temporary buffer and
// issue a single write operation instead of using a vector
// operation
int buf_size = 0;
for (int i = 0; i < num_bufs; ++i) buf_size += bufs[i].iov_len;
char* buf = (char*)page_aligned_allocator::malloc(buf_size);
if (!buf) return false;
gather_copy(bufs, num_bufs, buf);
tmp->iov_base = buf;
tmp->iov_len = buf_size;
bufs = tmp;
num_bufs = 1;
return true;
}
template <class Fun>
boost::int64_t iov(Fun f, handle_type fd, boost::int64_t file_offset, file::iovec_t const* bufs_in
, int num_bufs_in, error_code& ec)
{
file::iovec_t const* bufs = bufs_in;
int num_bufs = num_bufs_in;
#if TORRENT_USE_PREADV
int ret = 0;
while (num_bufs > 0)
{
int nbufs = (std::min)(num_bufs, TORRENT_IOV_MAX);
int tmp_ret = 0;
tmp_ret = f(fd, bufs, nbufs, file_offset);
if (tmp_ret < 0)
{
#ifdef TORRENT_WINDOWS
ec.assign(GetLastError(), system_category());
#else
ec.assign(errno, generic_category());
#endif
return -1;
}
file_offset += tmp_ret;
ret += tmp_ret;
num_bufs -= nbufs;
bufs += nbufs;
}
return ret;
#elif TORRENT_USE_PREAD
int ret = 0;
for (file::iovec_t const* i = bufs, *end(bufs + num_bufs); i < end; ++i)
{
int tmp_ret = f(fd, i->iov_base, i->iov_len, file_offset);
if (tmp_ret < 0)
{
#ifdef TORRENT_WINDOWS
ec.assign(GetLastError(), system_category());
#else
ec.assign(errno, generic_category());
#endif
return -1;
}
file_offset += tmp_ret;
ret += tmp_ret;
if (tmp_ret < int(i->iov_len)) break;
}
return ret;
#else // not PREADV nor PREAD
int ret = 0;
#ifdef TORRENT_WINDOWS
if (SetFilePointerEx(fd, offs, &offs, FILE_BEGIN) == FALSE)
{
ec.assign(GetLastError(), system_category());
return -1;
}
#else
if (lseek(fd, file_offset, SEEK_SET) < 0)
{
ec.assign(errno, generic_category());
return -1;
}
#endif
for (file::iovec_t const* i = bufs, *end(bufs + num_bufs); i < end; ++i)
{
int tmp_ret = f(fd, i->iov_base, i->iov_len);
if (tmp_ret < 0)
{
#ifdef TORRENT_WINDOWS
ec.assign(GetLastError(), system_category());
#else
ec.assign(errno, generic_category());
#endif
return -1;
}
file_offset += tmp_ret;
ret += tmp_ret;
if (tmp_ret < int(i->iov_len)) break;
}
return ret;
#endif
}
} // anonymous namespace
// this has to be thread safe and atomic. i.e. on posix systems it has to be
// turned into a series of pread() calls
boost::int64_t file::readv(boost::int64_t file_offset, iovec_t const* bufs, int num_bufs
, error_code& ec, int flags)
{
if (m_file_handle == INVALID_HANDLE_VALUE)
{
#ifdef TORRENT_WINDOWS
ec = error_code(ERROR_INVALID_HANDLE, system_category());
#else
ec = error_code(EBADF, generic_category());
#endif
return -1;
}
TORRENT_ASSERT((m_open_mode & rw_mask) == read_only || (m_open_mode & rw_mask) == read_write);
TORRENT_ASSERT(bufs);
TORRENT_ASSERT(num_bufs > 0);
TORRENT_ASSERT(is_open());
#if TORRENT_USE_PREADV
int ret = iov(&::preadv, native_handle(), file_offset, bufs, num_bufs, ec);
#else
file::iovec_t tmp;
if (flags & file::coalesce_buffers)
{
if (!coalesce_read_buffers(bufs, num_bufs, &tmp))
// ok, that failed, don't coalesce this read
flags &= ~file::coalesce_buffers;
}
#if TORRENT_USE_PREAD
int ret = iov(&::pread, native_handle(), file_offset, bufs, num_bufs, ec);
#else
int ret = iov(&::read, native_handle(), file_offset, bufs, num_bufs, ec);
#endif
if (flags & file::coalesce_buffers)
coalesce_read_buffers_end(bufs, num_bufs, (char*)tmp.iov_base, !ec);
#endif
return ret;
}
// This has to be thread safe, i.e. atomic.
// that means, on posix this has to be turned into a series of
// pwrite() calls
boost::int64_t file::writev(boost::int64_t file_offset, iovec_t const* bufs, int num_bufs
, error_code& ec, int flags)
{
if (m_file_handle == INVALID_HANDLE_VALUE)
{
#ifdef TORRENT_WINDOWS
ec = error_code(ERROR_INVALID_HANDLE, system_category());
#else
ec = error_code(EBADF, generic_category());
#endif
return -1;
}
TORRENT_ASSERT((m_open_mode & rw_mask) == write_only || (m_open_mode & rw_mask) == read_write);
TORRENT_ASSERT(bufs);
TORRENT_ASSERT(num_bufs > 0);
TORRENT_ASSERT(is_open());
ec.clear();
#if TORRENT_USE_PREADV
int ret = iov(&::pwritev, native_handle(), file_offset, bufs, num_bufs, ec);
#else
file::iovec_t tmp;
if (flags & file::coalesce_buffers)
{
if (!coalesce_write_buffers(bufs, num_bufs, &tmp))
// ok, that failed, don't coalesce writes
flags &= ~file::coalesce_buffers;
}
#if TORRENT_USE_PREAD
int ret = iov(&::pwrite, native_handle(), file_offset, bufs, num_bufs, ec);
#else
int ret = iov(&::write, native_handle(), file_offset, bufs, num_bufs, ec);
#endif
if (flags & file::coalesce_buffers)
free(tmp.iov_base);
#endif
#if TORRENT_HAVE_FDATASYNC \
&& !defined F_NOCACHE && \
!defined DIRECTIO_ON
if (m_open_mode & no_cache)
{
if (fdatasync(native_handle()) != 0
&& errno != EINVAL
&& errno != ENOSYS)
{
ec.assign(errno, generic_category());
}
}
#endif
return ret;
}
#ifdef TORRENT_WINDOWS
bool get_manage_volume_privs()
{
typedef BOOL (WINAPI *OpenProcessToken_t)(
HANDLE ProcessHandle,
DWORD DesiredAccess,
PHANDLE TokenHandle);
typedef BOOL (WINAPI *LookupPrivilegeValue_t)(
LPCSTR lpSystemName,
LPCSTR lpName,
PLUID lpLuid);
typedef BOOL (WINAPI *AdjustTokenPrivileges_t)(
HANDLE TokenHandle,
BOOL DisableAllPrivileges,
PTOKEN_PRIVILEGES NewState,
DWORD BufferLength,
PTOKEN_PRIVILEGES PreviousState,
PDWORD ReturnLength);
static OpenProcessToken_t pOpenProcessToken = NULL;
static LookupPrivilegeValue_t pLookupPrivilegeValue = NULL;
static AdjustTokenPrivileges_t pAdjustTokenPrivileges = NULL;
static bool failed_advapi = false;
if (pOpenProcessToken == NULL && !failed_advapi)
{
HMODULE advapi = LoadLibraryA("advapi32");
if (advapi == NULL)
{
failed_advapi = true;
return false;
}
pOpenProcessToken = (OpenProcessToken_t)GetProcAddress(advapi, "OpenProcessToken");
pLookupPrivilegeValue = (LookupPrivilegeValue_t)GetProcAddress(advapi, "LookupPrivilegeValueA");
pAdjustTokenPrivileges = (AdjustTokenPrivileges_t)GetProcAddress(advapi, "AdjustTokenPrivileges");
if (pOpenProcessToken == NULL
|| pLookupPrivilegeValue == NULL
|| pAdjustTokenPrivileges == NULL)
{
failed_advapi = true;
return false;
}
}
HANDLE token;
if (!pOpenProcessToken(GetCurrentProcess()
, TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token))
return false;
TOKEN_PRIVILEGES privs;
if (!pLookupPrivilegeValue(NULL, "SeManageVolumePrivilege"
, &privs.Privileges[0].Luid))
{
CloseHandle(token);
return false;
}
privs.PrivilegeCount = 1;
privs.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
bool ret = pAdjustTokenPrivileges(token, FALSE, &privs, 0, NULL, NULL)
&& GetLastError() == ERROR_SUCCESS;
CloseHandle(token);
return ret;
}
void set_file_valid_data(HANDLE f, boost::int64_t size)
{
typedef BOOL (WINAPI *SetFileValidData_t)(HANDLE, LONGLONG);
static SetFileValidData_t pSetFileValidData = NULL;
static bool failed_kernel32 = false;
if (pSetFileValidData == NULL && !failed_kernel32)
{
HMODULE k32 = LoadLibraryA("kernel32");
if (k32 == NULL)
{
failed_kernel32 = true;
return;
}
pSetFileValidData = (SetFileValidData_t)GetProcAddress(k32, "SetFileValidData");
if (pSetFileValidData == NULL)
{
failed_kernel32 = true;
return;
}
}
TORRENT_ASSERT(pSetFileValidData);
// we don't necessarily expect to have enough
// privilege to do this, so ignore errors.
pSetFileValidData(f, size);
}
#endif
bool file::set_size(boost::int64_t s, error_code& ec)
{
TORRENT_ASSERT(is_open());
TORRENT_ASSERT(s >= 0);
#ifdef TORRENT_WINDOWS
LARGE_INTEGER offs;
LARGE_INTEGER cur_size;
if (GetFileSizeEx(native_handle(), &cur_size) == FALSE)
{
ec.assign(GetLastError(), system_category());
return false;
}
offs.QuadPart = s;
// only set the file size if it's not already at
// the right size. We don't want to update the
// modification time if we don't have to
if (cur_size.QuadPart != s)
{
if (SetFilePointerEx(native_handle(), offs, &offs, FILE_BEGIN) == FALSE)
{
ec.assign(GetLastError(), system_category());
return false;
}
if (::SetEndOfFile(native_handle()) == FALSE)
{
ec.assign(GetLastError(), system_category());
return false;
}
}
if ((m_open_mode & sparse) == 0)
{
#if TORRENT_USE_WSTRING
typedef DWORD (WINAPI *GetCompressedFileSize_t)(LPCWSTR lpFileName, LPDWORD lpFileSizeHigh);
#else
typedef DWORD (WINAPI *GetCompressedFileSize_t)(LPCSTR lpFileName, LPDWORD lpFileSizeHigh);
#endif
static GetCompressedFileSize_t GetCompressedFileSize_ = NULL;
static bool failed_kernel32 = false;
if ((GetCompressedFileSize_ == NULL) && !failed_kernel32)
{
HMODULE kernel32 = LoadLibraryA("kernel32.dll");
if (kernel32)
{
#if TORRENT_USE_WSTRING
GetCompressedFileSize_ = (GetCompressedFileSize_t)GetProcAddress(kernel32, "GetCompressedFileSizeW");
#else
GetCompressedFileSize_ = (GetCompressedFileSize_t)GetProcAddress(kernel32, "GetCompressedFileSizeA");
#endif
}
else
{
failed_kernel32 = true;
}
}
offs.QuadPart = 0;
if (GetCompressedFileSize_)
{
// only allocate the space if the file
// is not fully allocated
DWORD high_dword = 0;
offs.LowPart = GetCompressedFileSize_(m_path.c_str(), &high_dword);
offs.HighPart = high_dword;
if (offs.LowPart == INVALID_FILE_SIZE)
{
ec.assign(GetLastError(), system_category());
if (ec) return false;
}
}
if (offs.QuadPart != s)
{
// if the user has permissions, avoid filling
// the file with zeroes, but just fill it with
// garbage instead
set_file_valid_data(m_file_handle, s);
}
}
#else // NON-WINDOWS
struct stat st;
if (fstat(native_handle(), &st) != 0)
{
ec.assign(errno, generic_category());
return false;
}
// only truncate the file if it doesn't already
// have the right size. We don't want to update
if (st.st_size != s && ftruncate(native_handle(), s) < 0)
{
ec.assign(errno, generic_category());
return false;
}
// if we're not in sparse mode, allocate the storage
// but only if the number of allocated blocks for the file
// is less than the file size. Otherwise we would just
// update the modification time of the file for no good
// reason.
if ((m_open_mode & sparse) == 0
&& st.st_blocks < (s + st.st_blksize - 1) / st.st_blksize)
{
// How do we know that the file is already allocated?
// if we always try to allocate the space, we'll update
// the modification time without actually changing the file
// but if we don't do anything if the file size is
#ifdef F_PREALLOCATE
fstore_t f = {F_ALLOCATECONTIG, F_PEOFPOSMODE, 0, s, 0};
if (fcntl(native_handle(), F_PREALLOCATE, &f) < 0)
{
if (errno != ENOSPC)
{
ec.assign(errno, generic_category());
return false;
}
// ok, let's try to allocate non contiguous space then
fstore_t f = {F_ALLOCATEALL, F_PEOFPOSMODE, 0, s, 0};
if (fcntl(native_handle(), F_PREALLOCATE, &f) < 0)
{
ec.assign(errno, generic_category());
return false;
}
}
#endif // F_PREALLOCATE
#ifdef F_ALLOCSP64
flock64 fl64;
fl64.l_whence = SEEK_SET;
fl64.l_start = 0;
fl64.l_len = s;
if (fcntl(native_handle(), F_ALLOCSP64, &fl64) < 0)
{
ec.assign(errno, generic_category());
return false;
}
#endif // F_ALLOCSP64
#if defined TORRENT_LINUX || TORRENT_HAS_FALLOCATE
int ret;
#endif
#if defined TORRENT_LINUX
ret = my_fallocate(native_handle(), 0, 0, s);
// if we return 0, everything went fine
// the fallocate call succeeded
if (ret == 0) return true;
// otherwise, something went wrong. If the error
// is ENOSYS, just keep going and do it the old-fashioned
// way. If fallocate failed with some other error, it
// probably means the user should know about it, error out
// and report it.
if (errno != ENOSYS && errno != EOPNOTSUPP && errno != EINVAL)
{
ec.assign(errno, generic_category());
return false;
}
#endif // TORRENT_LINUX
#if TORRENT_HAS_FALLOCATE
// if fallocate failed, we have to use posix_fallocate
// which can be painfully slow
// if you get a compile error here, you might want to
// define TORRENT_HAS_FALLOCATE to 0.
ret = posix_fallocate(native_handle(), 0, s);
// posix_allocate fails with EINVAL in case the underlying
// filesystem does bot support this operation
if (ret != 0 && ret != EINVAL)
{
ec.assign(ret, generic_category());
return false;
}
#endif // TORRENT_HAS_FALLOCATE
}
#endif // TORRENT_WINDOWS
return true;
}
boost::int64_t file::get_size(error_code& ec) const
{
#ifdef TORRENT_WINDOWS
LARGE_INTEGER file_size;
if (!GetFileSizeEx(native_handle(), &file_size))
{
ec.assign(GetLastError(), system_category());
return -1;
}
return file_size.QuadPart;
#else
struct stat fs;
if (fstat(native_handle(), &fs) != 0)
{
ec.assign(errno, generic_category());
return -1;
}
return fs.st_size;
#endif
}
boost::int64_t file::sparse_end(boost::int64_t start) const
{
#ifdef TORRENT_WINDOWS
#ifdef TORRENT_MINGW
typedef struct _FILE_ALLOCATED_RANGE_BUFFER {
LARGE_INTEGER FileOffset;
LARGE_INTEGER Length;
} FILE_ALLOCATED_RANGE_BUFFER, *PFILE_ALLOCATED_RANGE_BUFFER;
#define FSCTL_QUERY_ALLOCATED_RANGES ((0x9 << 16) | (1 << 14) | (51 << 2) | 3)
#endif // TORRENT_MINGW
FILE_ALLOCATED_RANGE_BUFFER buffer;
DWORD bytes_returned = 0;
FILE_ALLOCATED_RANGE_BUFFER in;
error_code ec;
boost::int64_t file_size = get_size(ec);
if (ec) return start;
in.FileOffset.QuadPart = start;
in.Length.QuadPart = file_size - start;
if (!DeviceIoControl(native_handle(), FSCTL_QUERY_ALLOCATED_RANGES
, &in, sizeof(FILE_ALLOCATED_RANGE_BUFFER)
, &buffer, sizeof(FILE_ALLOCATED_RANGE_BUFFER), &bytes_returned, 0))
{
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) return start;
}
// if there are no allocated regions within the rest
// of the file, return the end of the file
if (bytes_returned == 0) return file_size;
// assume that this range overlaps the start of the
// region we were interested in, and that start actually
// resides in an allocated region.
if (buffer.FileOffset.QuadPart < start) return start;
// return the offset to the next allocated region
return buffer.FileOffset.QuadPart;
#elif defined SEEK_DATA
// this is supported on solaris
boost::int64_t ret = lseek(native_handle(), start, SEEK_DATA);
if (ret < 0) return start;
return start;
#else
return start;
#endif
}
#ifdef TORRENT_DEBUG_FILE_LEAKS
std::set<file_handle*> global_file_handles;
mutex file_handle_mutex;
file_handle::file_handle()
{
mutex::scoped_lock l(file_handle_mutex);
global_file_handles.insert(this);
stack[0] = 0;
}
file_handle::file_handle(file* f): m_file(f)
{
mutex::scoped_lock l(file_handle_mutex);
global_file_handles.insert(this);
if (f) print_backtrace(stack, sizeof(stack), 10);
else stack[0] = 0;
}
file_handle::file_handle(file_handle const& fh)
{
mutex::scoped_lock l(file_handle_mutex);
global_file_handles.insert(this);
m_file = fh.m_file;
if (m_file) print_backtrace(stack, sizeof(stack), 10);
else stack[0] = 0;
}
file_handle::~file_handle()
{
mutex::scoped_lock l(file_handle_mutex);
global_file_handles.erase(this);
stack[0] = 0;
}
file* file_handle::operator->() { return m_file.get(); }
file const* file_handle::operator->() const { return m_file.get(); }
file& file_handle::operator*() { return *m_file.get(); }
file const& file_handle::operator*() const { return *m_file.get(); }
file* file_handle::get() { return m_file.get(); }
file const* file_handle::get() const { return m_file.get(); }
file_handle::operator bool() const { return m_file.get(); }
file_handle& file_handle::reset(file* f)
{
mutex::scoped_lock l(file_handle_mutex);
if (f) print_backtrace(stack, sizeof(stack), 10);
else stack[0] = 0;
l.unlock();
m_file.reset(f);
return *this;
}
void print_open_files(char const* event, char const* name)
{
FILE* out = fopen("open_files.log", "a+");
mutex::scoped_lock l(file_handle_mutex);
fprintf(out, "\n\nEVENT: %s TORRENT: %s\n\n", event, name);
for (std::set<file_handle*>::iterator i = global_file_handles.begin()
, end(global_file_handles.end()); i != end; ++i)
{
TORRENT_ASSERT(*i != NULL);
if (!*i) continue;
file_handle const& h = **i;
if (!h) continue;
if (!h->is_open()) continue;
h->print_info(out);
fprintf(out, "\n%s\n\n", h.stack);
}
fclose(out);
}
#endif
}