/* Copyright (c) 2008-2012, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/magnet_uri.hpp" #include "libtorrent/parse_url.hpp" #include "libtorrent/http_tracker_connection.hpp" #include "libtorrent/buffer.hpp" #include "libtorrent/entry.hpp" #include "libtorrent/bitfield.hpp" #include "libtorrent/torrent_info.hpp" #include "libtorrent/escape_string.hpp" #include "libtorrent/broadcast_socket.hpp" #include "libtorrent/identify_client.hpp" #include "libtorrent/file.hpp" #include "libtorrent/session.hpp" #include "libtorrent/bencode.hpp" #include "libtorrent/timestamp_history.hpp" #include "libtorrent/enum_net.hpp" #include "libtorrent/bloom_filter.hpp" #include "libtorrent/aux_/session_impl.hpp" #include "libtorrent/ip_voter.hpp" #include "libtorrent/socket_io.hpp" #include #include #include #include "test.hpp" #include "setup_transfer.hpp" using namespace libtorrent; sha1_hash to_hash(char const* s) { sha1_hash ret; from_hex(s, 40, (char*)&ret[0]); return ret; } address rand_v4() { return address_v4((rand() << 16 | rand()) & 0xffffffff); } #if TORRENT_USE_IPV6 address rand_v6() { address_v6::bytes_type bytes; for (int i = 0; i < bytes.size(); ++i) bytes[i] = rand(); return address_v6(bytes); } #endif int test_main() { using namespace libtorrent; using namespace libtorrent::dht; error_code ec; // make sure the retry interval keeps growing // on failing announces announce_entry ae("dummy"); int last = 0; session_settings sett; sett.tracker_backoff = 250; for (int i = 0; i < 10; ++i) { ae.failed(sett, 5); int delay = ae.next_announce_in(); TEST_CHECK(delay > last); last = delay; fprintf(stderr, "%d, ", delay); } fprintf(stderr, "\n"); // test external ip voting external_ip ipv1; // test a single malicious node // adds 50 legitimate responses from different peers // and 50 malicious responses from the same peer address real_external = address_v4::from_string("5.5.5.5", ec); TEST_CHECK(!ec); address malicious = address_v4::from_string("4.4.4.4", ec); TEST_CHECK(!ec); for (int i = 0; i < 50; ++i) { ipv1.cast_vote(real_external, aux::session_impl::source_dht, rand_v4()); ipv1.cast_vote(rand_v4(), aux::session_impl::source_dht, malicious); } TEST_CHECK(ipv1.external_address(rand_v4()) == real_external); external_ip ipv2; // test a single malicious node // adds 50 legitimate responses from different peers // and 50 consistent malicious responses from the same peer address real_external1 = address_v4::from_string("5.5.5.5", ec); TEST_CHECK(!ec); address real_external2; #if TORRENT_USE_IPV6 if (supports_ipv6()) { real_external2 = address_v6::from_string("2f80::", ec); TEST_CHECK(!ec); } #endif malicious = address_v4::from_string("4.4.4.4", ec); TEST_CHECK(!ec); address malicious_external = address_v4::from_string("3.3.3.3", ec); TEST_CHECK(!ec); for (int i = 0; i < 50; ++i) { ipv2.cast_vote(real_external1, aux::session_impl::source_dht, rand_v4()); #if TORRENT_USE_IPV6 if (supports_ipv6()) ipv2.cast_vote(real_external2, aux::session_impl::source_dht, rand_v6()); #endif ipv2.cast_vote(malicious_external, aux::session_impl::source_dht, malicious); } TEST_CHECK(ipv2.external_address(rand_v4()) == real_external1); #if TORRENT_USE_IPV6 if (supports_ipv6()) TEST_CHECK(ipv2.external_address(rand_v6()) == real_external2); #endif // test bloom_filter bloom_filter<32> filter; sha1_hash k1 = hasher("test1", 5).final(); sha1_hash k2 = hasher("test2", 5).final(); sha1_hash k3 = hasher("test3", 5).final(); sha1_hash k4 = hasher("test4", 5).final(); TEST_CHECK(!filter.find(k1)); TEST_CHECK(!filter.find(k2)); TEST_CHECK(!filter.find(k3)); TEST_CHECK(!filter.find(k4)); filter.set(k1); TEST_CHECK(filter.find(k1)); TEST_CHECK(!filter.find(k2)); TEST_CHECK(!filter.find(k3)); TEST_CHECK(!filter.find(k4)); filter.set(k4); TEST_CHECK(filter.find(k1)); TEST_CHECK(!filter.find(k2)); TEST_CHECK(!filter.find(k3)); TEST_CHECK(filter.find(k4)); // test timestamp_history { timestamp_history h; TEST_EQUAL(h.add_sample(0x32, false), 0); TEST_EQUAL(h.base(), 0x32); TEST_EQUAL(h.add_sample(0x33, false), 0x1); TEST_EQUAL(h.base(), 0x32); TEST_EQUAL(h.add_sample(0x3433, false), 0x3401); TEST_EQUAL(h.base(), 0x32); TEST_EQUAL(h.add_sample(0x30, false), 0); TEST_EQUAL(h.base(), 0x30); // test that wrapping of the timestamp is properly handled h.add_sample(0xfffffff3, false); TEST_EQUAL(h.base(), 0xfffffff3); // TODO: test the case where we have > 120 samples (and have the base delay actually be updated) // TODO: test the case where a sample is lower than the history entry but not lower than the base } // test error codes TEST_CHECK(error_code(errors::http_error).message() == "HTTP error"); TEST_CHECK(error_code(errors::missing_file_sizes).message() == "missing or invalid 'file sizes' entry"); TEST_CHECK(error_code(errors::unsupported_protocol_version).message() == "unsupported protocol version"); TEST_CHECK(error_code(errors::no_i2p_router).message() == "no i2p router is set up"); TEST_CHECK(error_code(errors::http_parse_error).message() == "Invalid HTTP header"); TEST_CHECK(error_code(errors::error_code_max).message() == "Unknown error"); TEST_CHECK(error_code(errors::unauthorized, get_http_category()).message() == "401 Unauthorized"); TEST_CHECK(error_code(errors::service_unavailable, get_http_category()).message() == "503 Service Unavailable"); // test snprintf char msg[10]; snprintf(msg, sizeof(msg), "too %s format string", "long"); TEST_CHECK(strcmp(msg, "too long ") == 0); // make sure the time classes have correct semantics TEST_EQUAL(total_milliseconds(milliseconds(100)), 100); TEST_EQUAL(total_milliseconds(milliseconds(1)), 1); TEST_EQUAL(total_milliseconds(seconds(1)), 1000); if (supports_ipv6()) { // make sure the assumption we use in policy's peer list hold std::multimap peers; std::multimap::iterator i; peers.insert(std::make_pair(address::from_string("::1", ec), 0)); peers.insert(std::make_pair(address::from_string("::2", ec), 3)); peers.insert(std::make_pair(address::from_string("::3", ec), 5)); i = peers.find(address::from_string("::2", ec)); TEST_CHECK(i != peers.end()); if (i != peers.end()) { TEST_CHECK(i->first == address::from_string("::2", ec)); TEST_CHECK(i->second == 3); } } // test identify_client TEST_CHECK(identify_client(peer_id("-AZ1234-............")) == "Azureus 1.2.3.4"); TEST_CHECK(identify_client(peer_id("-AZ1230-............")) == "Azureus 1.2.3"); TEST_CHECK(identify_client(peer_id("S123--..............")) == "Shadow 1.2.3"); TEST_CHECK(identify_client(peer_id("M1-2-3--............")) == "Mainline 1.2.3"); // test network functions TEST_CHECK(is_local(address::from_string("192.168.0.1", ec))); TEST_CHECK(is_local(address::from_string("10.1.1.56", ec))); TEST_CHECK(!is_local(address::from_string("14.14.251.63", ec))); TEST_CHECK(is_loopback(address::from_string("127.0.0.1", ec))); #if TORRENT_USE_IPV6 if (supports_ipv6()) { TEST_CHECK(is_loopback(address::from_string("::1", ec))); TEST_CHECK(is_any(address_v6::any())); } #endif TEST_CHECK(is_any(address_v4::any())); TEST_CHECK(!is_any(address::from_string("31.53.21.64", ec))); TEST_CHECK(match_addr_mask( address::from_string("10.0.1.3", ec), address::from_string("10.0.3.3", ec), address::from_string("255.255.0.0", ec))); TEST_CHECK(!match_addr_mask( address::from_string("10.0.1.3", ec), address::from_string("10.1.3.3", ec), address::from_string("255.255.0.0", ec))); // test peer_id/sha1_hash type sha1_hash h1(0); sha1_hash h2(0); TEST_CHECK(h1 == h2); TEST_CHECK(!(h1 != h2)); TEST_CHECK(!(h1 < h2)); TEST_CHECK(!(h1 < h2)); TEST_CHECK(h1.is_all_zeros()); h1 = to_hash("0123456789012345678901234567890123456789"); h2 = to_hash("0113456789012345678901234567890123456789"); TEST_CHECK(h2 < h1); TEST_CHECK(h2 == h2); TEST_CHECK(h1 == h1); h2.clear(); TEST_CHECK(h2.is_all_zeros()); h2 = to_hash("ffffffffff0000000000ffffffffff0000000000"); h1 = to_hash("fffff00000fffff00000fffff00000fffff00000"); h1 &= h2; TEST_CHECK(h1 == to_hash("fffff000000000000000fffff000000000000000")); h2 = to_hash("ffffffffff0000000000ffffffffff0000000000"); h1 = to_hash("fffff00000fffff00000fffff00000fffff00000"); h1 |= h2; TEST_CHECK(h1 == to_hash("fffffffffffffff00000fffffffffffffff00000")); h2 = to_hash("0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f"); h1 ^= h2; #if TORRENT_USE_IOSTREAM std::cerr << h1 << std::endl; #endif TEST_CHECK(h1 == to_hash("f0f0f0f0f0f0f0ff0f0ff0f0f0f0f0f0f0ff0f0f")); TEST_CHECK(h1 != h2); h2 = sha1_hash(" "); TEST_CHECK(h2 == to_hash("2020202020202020202020202020202020202020")); h1 = to_hash("ffffffffff0000000000ffffffffff0000000000"); #if TORRENT_USE_IOSTREAM std::cerr << h1 << std::endl; #endif h1 <<= 12; #if TORRENT_USE_IOSTREAM std::cerr << h1 << std::endl; #endif TEST_CHECK(h1 == to_hash("fffffff0000000000ffffffffff0000000000000")); h1 >>= 12; #if TORRENT_USE_IOSTREAM std::cerr << h1 << std::endl; #endif TEST_CHECK(h1 == to_hash("000fffffff0000000000ffffffffff0000000000")); h1 = to_hash("7000000000000000000000000000000000000000"); h1 <<= 1; #if TORRENT_USE_IOSTREAM std::cerr << h1 << std::endl; #endif TEST_CHECK(h1 == to_hash("e000000000000000000000000000000000000000")); h1 = to_hash("0000000000000000000000000000000000000007"); h1 <<= 1; #if TORRENT_USE_IOSTREAM std::cerr << h1 << std::endl; #endif TEST_CHECK(h1 == to_hash("000000000000000000000000000000000000000e")); h1 = to_hash("0000000000000000000000000000000000000007"); h1 >>= 1; #if TORRENT_USE_IOSTREAM std::cerr << h1 << std::endl; #endif TEST_CHECK(h1 == to_hash("0000000000000000000000000000000000000003")); h1 = to_hash("7000000000000000000000000000000000000000"); h1 >>= 1; #if TORRENT_USE_IOSTREAM std::cerr << h1 << std::endl; #endif TEST_CHECK(h1 == to_hash("3800000000000000000000000000000000000000")); // CIDR distance test h1 = to_hash("0123456789abcdef01232456789abcdef0123456"); h2 = to_hash("0123456789abcdef01232456789abcdef0123456"); TEST_CHECK(common_bits(&h1[0], &h2[0], 20) == 160); h2 = to_hash("0120456789abcdef01232456789abcdef0123456"); TEST_CHECK(common_bits(&h1[0], &h2[0], 20) == 14); h2 = to_hash("012f456789abcdef01232456789abcdef0123456"); TEST_CHECK(common_bits(&h1[0], &h2[0], 20) == 12); h2 = to_hash("0123456789abcdef11232456789abcdef0123456"); TEST_CHECK(common_bits(&h1[0], &h2[0], 20) == 16 * 4 + 3); // test bitfield bitfield test1(10, false); TEST_CHECK(test1.count() == 0); test1.set_bit(9); TEST_CHECK(test1.count() == 1); test1.clear_bit(9); TEST_CHECK(test1.count() == 0); test1.set_bit(2); TEST_CHECK(test1.count() == 1); test1.set_bit(1); test1.set_bit(9); TEST_CHECK(test1.count() == 3); TEST_CHECK(test1.all_set() == false); test1.clear_bit(2); TEST_CHECK(test1.count() == 2); int distance = std::distance(test1.begin(), test1.end()); std::cerr << distance << std::endl; TEST_CHECK(distance == 10); test1.set_all(); TEST_CHECK(test1.count() == 10); test1.clear_all(); TEST_CHECK(test1.count() == 0); test1.resize(2); test1.set_bit(0); test1.resize(16, true); TEST_CHECK(test1.count() == 15); test1.resize(20, true); TEST_CHECK(test1.count() == 19); test1.set_bit(1); test1.resize(1); TEST_CHECK(test1.count() == 1); test1.resize(100, true); TEST_CHECK(test1.all_set() == true); // test address_to_bytes TEST_EQUAL(address_to_bytes(address_v4::from_string("10.11.12.13")), "\x0a\x0b\x0c\x0d"); TEST_EQUAL(address_to_bytes(address_v4::from_string("16.5.127.1")), "\x10\x05\x7f\x01"); // test endpoint_to_bytes TEST_EQUAL(endpoint_to_bytes(udp::endpoint(address_v4::from_string("10.11.12.13"), 8080)), "\x0a\x0b\x0c\x0d\x1f\x90"); TEST_EQUAL(endpoint_to_bytes(udp::endpoint(address_v4::from_string("16.5.127.1"), 12345)), "\x10\x05\x7f\x01\x30\x39"); return 0; }