/* Copyright (c) 2012, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "test.hpp" #include "libtorrent/block_cache.hpp" #include "libtorrent/io_service.hpp" #include "libtorrent/alert.hpp" #include "libtorrent/alert_types.hpp" #include "libtorrent/disk_io_thread.hpp" #include "libtorrent/storage.hpp" #include "libtorrent/session.hpp" #include #include #include using namespace libtorrent; struct test_storage_impl : storage_interface { void initialize(storage_error& ec) override {} int readv(span bufs , int piece, int offset, int flags, storage_error& ec) override { return bufs_size(bufs.data(), int(bufs.size())); } int writev(span bufs , int piece, int offset, int flags, storage_error& ec) override { return bufs_size(bufs.data(), int(bufs.size())); } bool has_any_file(storage_error& ec) override { return false; } void set_file_priority(std::vector const& prio , storage_error& ec) override {} int move_storage(std::string const& save_path, int flags , storage_error& ec) override { return 0; } bool verify_resume_data(add_torrent_params const& rd , std::vector const& links , storage_error& ec) override { return true; } void release_files(storage_error& ec) override {} void rename_file(int index, std::string const& new_filename , storage_error& ec) override {} void delete_files(int, storage_error& ec) override {} #ifndef TORRENT_NO_DEPRECATE void finalize_file(int, storage_error&) override {} #endif }; static void nop() {} #if TORRENT_USE_ASSERTS #define INITIALIZE_JOB(j) j.in_use = true; #else #define INITIALIZE_JOB(j) #endif #define TEST_SETUP \ io_service ios; \ block_cache bc(0x4000, ios, std::bind(&nop)); \ aux::session_settings sett; \ file_storage fs; \ fs.add_file("a/test0", 0x4000); \ fs.add_file("a/test1", 0x4000); \ fs.add_file("a/test2", 0x4000); \ fs.add_file("a/test3", 0x4000); \ fs.add_file("a/test4", 0x4000); \ fs.add_file("a/test5", 0x4000); \ fs.add_file("a/test6", 0x4000); \ fs.add_file("a/test7", 0x4000); \ fs.set_piece_length(0x8000); \ fs.set_num_pieces(5); \ test_storage_impl* st = new test_storage_impl; \ boost::shared_ptr pm(boost::make_shared(st, boost::shared_ptr(new int), &fs)); \ error_code ec; \ bc.set_settings(sett, ec); \ st->m_settings = &sett; \ disk_io_job rj; \ disk_io_job wj; \ INITIALIZE_JOB(rj) \ INITIALIZE_JOB(wj) \ rj.storage = pm; \ wj.storage = pm; \ cached_piece_entry* pe = NULL; \ int ret = 0; \ file::iovec_t iov[1]; \ (void)iov[0]; \ (void)ret; \ (void)pe #define WRITE_BLOCK(p, b) \ wj.flags = disk_io_job::in_progress; \ wj.action = disk_io_job::write; \ wj.d.io.offset = (b) * 0x4000; \ wj.d.io.buffer_size = 0x4000; \ wj.piece = p; \ wj.buffer.disk_block = bc.allocate_buffer("write-test"); \ pe = bc.add_dirty_block(&wj) #define READ_BLOCK(p, b, r) \ rj.action = disk_io_job::read; \ rj.d.io.offset = (b) * 0x4000; \ rj.d.io.buffer_size = 0x4000; \ rj.piece = p; \ rj.storage = pm; \ rj.requester = (void*)(r); \ rj.buffer.disk_block = 0; \ ret = bc.try_read(&rj) #define RETURN_BUFFER \ if (rj.d.io.ref.storage) bc.reclaim_block(rj.d.io.ref); \ else if (rj.buffer.disk_block) bc.free_buffer(rj.buffer.disk_block); \ rj.d.io.ref.storage = 0 #define FLUSH(flushing) \ for (int i = 0; i < int(sizeof(flushing)/sizeof((flushing)[0])); ++i) \ { \ pe->blocks[(flushing)[i]].pending = true; \ bc.inc_block_refcount(pe, 0, block_cache::ref_flushing); \ } \ bc.blocks_flushed(pe, flushing, sizeof(flushing)/sizeof((flushing)[0])) #define INSERT(p, b) \ wj.piece = p; \ wj.requester = (void*)1; \ pe = bc.allocate_piece(&wj, cached_piece_entry::read_lru1); \ ret = bc.allocate_iovec(iov, 1); \ TEST_EQUAL(ret, 0); \ bc.insert_blocks(pe, b, iov, 1, &wj) void test_write() { TEST_SETUP; // write block (0,0) WRITE_BLOCK(0, 0); counters c; bc.update_stats_counters(c); TEST_EQUAL(c[counters::write_cache_blocks], 1); TEST_EQUAL(c[counters::read_cache_blocks], 0); TEST_EQUAL(c[counters::pinned_blocks], 0); TEST_EQUAL(c[counters::arc_mru_size], 0); TEST_EQUAL(c[counters::arc_mru_ghost_size], 0); TEST_EQUAL(c[counters::arc_mfu_size], 0); TEST_EQUAL(c[counters::arc_mfu_ghost_size], 0); TEST_EQUAL(c[counters::arc_write_size], 1); TEST_EQUAL(c[counters::arc_volatile_size], 0); // try to read it back READ_BLOCK(0, 0, 1); TEST_EQUAL(bc.pinned_blocks(), 1); bc.update_stats_counters(c); TEST_EQUAL(c[counters::pinned_blocks], 1); // it's supposed to be a cache hit TEST_CHECK(ret >= 0); // return the reference to the buffer we just read RETURN_BUFFER; TEST_EQUAL(bc.pinned_blocks(), 0); bc.update_stats_counters(c); TEST_EQUAL(c[counters::pinned_blocks], 0); // try to read block (1, 0) READ_BLOCK(1, 0, 1); // that's supposed to be a cache miss TEST_CHECK(ret < 0); TEST_EQUAL(bc.pinned_blocks(), 0); bc.update_stats_counters(c); TEST_EQUAL(c[counters::pinned_blocks], 0); // just in case it wasn't we're supposed to return the reference // to the buffer RETURN_BUFFER; tailqueue jobs; bc.clear(jobs); } void test_flush() { TEST_SETUP; // write block (0,0) WRITE_BLOCK(0, 0); // pretend to flush to disk int flushing[1] = {0}; FLUSH(flushing); tailqueue jobs; bc.clear(jobs); } void test_insert() { TEST_SETUP; INSERT(0, 0); counters c; bc.update_stats_counters(c); TEST_EQUAL(c[counters::write_cache_blocks], 0); TEST_EQUAL(c[counters::read_cache_blocks], 1); TEST_EQUAL(c[counters::pinned_blocks], 0); TEST_EQUAL(c[counters::arc_mru_size], 1); TEST_EQUAL(c[counters::arc_mru_ghost_size], 0); TEST_EQUAL(c[counters::arc_mfu_size], 0); TEST_EQUAL(c[counters::arc_mfu_ghost_size], 0); TEST_EQUAL(c[counters::arc_write_size], 0); TEST_EQUAL(c[counters::arc_volatile_size], 0); tailqueue jobs; bc.clear(jobs); } void test_evict() { TEST_SETUP; INSERT(0, 0); counters c; bc.update_stats_counters(c); TEST_EQUAL(c[counters::write_cache_blocks], 0); TEST_EQUAL(c[counters::read_cache_blocks], 1); TEST_EQUAL(c[counters::pinned_blocks], 0); TEST_EQUAL(c[counters::arc_mru_size], 1); TEST_EQUAL(c[counters::arc_mru_ghost_size], 0); TEST_EQUAL(c[counters::arc_mfu_size], 0); TEST_EQUAL(c[counters::arc_mfu_ghost_size], 0); TEST_EQUAL(c[counters::arc_write_size], 0); TEST_EQUAL(c[counters::arc_volatile_size], 0); tailqueue jobs; // this should make it not be evicted // just free the buffers ++pe->piece_refcount; bc.evict_piece(pe, jobs); bc.update_stats_counters(c); TEST_EQUAL(c[counters::write_cache_blocks], 0); TEST_EQUAL(c[counters::read_cache_blocks], 0); TEST_EQUAL(c[counters::pinned_blocks], 0); TEST_EQUAL(c[counters::arc_mru_size], 1); TEST_EQUAL(c[counters::arc_mru_ghost_size], 0); TEST_EQUAL(c[counters::arc_mfu_size], 0); TEST_EQUAL(c[counters::arc_mfu_ghost_size], 0); TEST_EQUAL(c[counters::arc_write_size], 0); TEST_EQUAL(c[counters::arc_volatile_size], 0); --pe->piece_refcount; bc.evict_piece(pe, jobs); bc.update_stats_counters(c); TEST_EQUAL(c[counters::write_cache_blocks], 0); TEST_EQUAL(c[counters::read_cache_blocks], 0); TEST_EQUAL(c[counters::pinned_blocks], 0); TEST_EQUAL(c[counters::arc_mru_size], 0); TEST_EQUAL(c[counters::arc_mru_ghost_size], 1); TEST_EQUAL(c[counters::arc_mfu_size], 0); TEST_EQUAL(c[counters::arc_mfu_ghost_size], 0); TEST_EQUAL(c[counters::arc_write_size], 0); TEST_EQUAL(c[counters::arc_volatile_size], 0); bc.clear(jobs); } // test to have two different requestors read a block and // make sure it moves into the MFU list void test_arc_promote() { TEST_SETUP; INSERT(0, 0); counters c; bc.update_stats_counters(c); TEST_EQUAL(c[counters::write_cache_blocks], 0); TEST_EQUAL(c[counters::read_cache_blocks], 1); TEST_EQUAL(c[counters::pinned_blocks], 0); TEST_EQUAL(c[counters::arc_mru_size], 1); TEST_EQUAL(c[counters::arc_mru_ghost_size], 0); TEST_EQUAL(c[counters::arc_mfu_size], 0); TEST_EQUAL(c[counters::arc_mfu_ghost_size], 0); TEST_EQUAL(c[counters::arc_write_size], 0); TEST_EQUAL(c[counters::arc_volatile_size], 0); READ_BLOCK(0, 0, 1); TEST_EQUAL(bc.pinned_blocks(), 1); bc.update_stats_counters(c); TEST_EQUAL(c[counters::pinned_blocks], 1); // it's supposed to be a cache hit TEST_CHECK(ret >= 0); // return the reference to the buffer we just read RETURN_BUFFER; bc.update_stats_counters(c); TEST_EQUAL(c[counters::write_cache_blocks], 0); TEST_EQUAL(c[counters::read_cache_blocks], 1); TEST_EQUAL(c[counters::pinned_blocks], 0); TEST_EQUAL(c[counters::arc_mru_size], 1); TEST_EQUAL(c[counters::arc_mru_ghost_size], 0); TEST_EQUAL(c[counters::arc_mfu_size], 0); TEST_EQUAL(c[counters::arc_mfu_ghost_size], 0); TEST_EQUAL(c[counters::arc_write_size], 0); TEST_EQUAL(c[counters::arc_volatile_size], 0); READ_BLOCK(0, 0, 2); TEST_EQUAL(bc.pinned_blocks(), 1); bc.update_stats_counters(c); TEST_EQUAL(c[counters::pinned_blocks], 1); // it's supposed to be a cache hit TEST_CHECK(ret >= 0); // return the reference to the buffer we just read RETURN_BUFFER; bc.update_stats_counters(c); TEST_EQUAL(c[counters::write_cache_blocks], 0); TEST_EQUAL(c[counters::read_cache_blocks], 1); TEST_EQUAL(c[counters::pinned_blocks], 0); TEST_EQUAL(c[counters::arc_mru_size], 0); TEST_EQUAL(c[counters::arc_mru_ghost_size], 0); TEST_EQUAL(c[counters::arc_mfu_size], 1); TEST_EQUAL(c[counters::arc_mfu_ghost_size], 0); TEST_EQUAL(c[counters::arc_write_size], 0); TEST_EQUAL(c[counters::arc_volatile_size], 0); tailqueue jobs; bc.clear(jobs); } void test_arc_unghost() { TEST_SETUP; INSERT(0, 0); counters c; bc.update_stats_counters(c); TEST_EQUAL(c[counters::write_cache_blocks], 0); TEST_EQUAL(c[counters::read_cache_blocks], 1); TEST_EQUAL(c[counters::pinned_blocks], 0); TEST_EQUAL(c[counters::arc_mru_size], 1); TEST_EQUAL(c[counters::arc_mru_ghost_size], 0); TEST_EQUAL(c[counters::arc_mfu_size], 0); TEST_EQUAL(c[counters::arc_mfu_ghost_size], 0); TEST_EQUAL(c[counters::arc_write_size], 0); TEST_EQUAL(c[counters::arc_volatile_size], 0); tailqueue jobs; bc.evict_piece(pe, jobs); bc.update_stats_counters(c); TEST_EQUAL(c[counters::write_cache_blocks], 0); TEST_EQUAL(c[counters::read_cache_blocks], 0); TEST_EQUAL(c[counters::pinned_blocks], 0); TEST_EQUAL(c[counters::arc_mru_size], 0); TEST_EQUAL(c[counters::arc_mru_ghost_size], 1); TEST_EQUAL(c[counters::arc_mfu_size], 0); TEST_EQUAL(c[counters::arc_mfu_ghost_size], 0); TEST_EQUAL(c[counters::arc_write_size], 0); TEST_EQUAL(c[counters::arc_volatile_size], 0); // the block is now a ghost. If we cache-hit it, // it should be promoted back to the main list bc.cache_hit(pe, (void*)1, false); bc.update_stats_counters(c); TEST_EQUAL(c[counters::write_cache_blocks], 0); // we didn't actually read in any blocks, so the cache size // is still 0 TEST_EQUAL(c[counters::read_cache_blocks], 0); TEST_EQUAL(c[counters::pinned_blocks], 0); TEST_EQUAL(c[counters::arc_mru_size], 1); TEST_EQUAL(c[counters::arc_mru_ghost_size], 0); TEST_EQUAL(c[counters::arc_mfu_size], 0); TEST_EQUAL(c[counters::arc_mfu_ghost_size], 0); TEST_EQUAL(c[counters::arc_write_size], 0); TEST_EQUAL(c[counters::arc_volatile_size], 0); bc.clear(jobs); } void test_iovec() { TEST_SETUP; ret = bc.allocate_iovec(iov, 1); bc.free_iovec(iov, 1); } void test_unaligned_read() { TEST_SETUP; INSERT(0, 0); INSERT(0, 1); rj.action = disk_io_job::read; rj.d.io.offset = 0x2000; rj.d.io.buffer_size = 0x4000; rj.piece = 0; rj.storage = pm; rj.requester = (void*)1; rj.buffer.disk_block = nullptr; ret = bc.try_read(&rj); // unaligned reads copies the data into a new buffer // rather than TEST_EQUAL(bc.pinned_blocks(), 0); counters c; bc.update_stats_counters(c); TEST_EQUAL(c[counters::pinned_blocks], 0); // it's supposed to be a cache hit TEST_CHECK(ret >= 0); // return the reference to the buffer we just read RETURN_BUFFER; tailqueue jobs; bc.clear(jobs); } TORRENT_TEST(block_cache) { test_write(); test_flush(); test_insert(); test_evict(); test_arc_promote(); test_arc_unghost(); test_iovec(); test_unaligned_read(); // TODO: test try_evict_blocks // TODO: test evicting volatile pieces, to see them be removed // TODO: test evicting dirty pieces // TODO: test free_piece // TODO: test abort_dirty // TODO: test unaligned reads }