/* Copyright (c) 2008, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "test.hpp" #ifndef TORRENT_DISABLE_DHT #include "libtorrent/config.hpp" #include "libtorrent/session.hpp" #include "libtorrent/kademlia/msg.hpp" // for verify_message #include "libtorrent/kademlia/node.hpp" #include "libtorrent/bencode.hpp" #include "libtorrent/bdecode.hpp" #include "libtorrent/socket_io.hpp" // for hash_address #include "libtorrent/broadcast_socket.hpp" // for supports_ipv6 #include "libtorrent/performance_counters.hpp" // for counters #include "libtorrent/random.hpp" #include "libtorrent/kademlia/ed25519.hpp" #include "libtorrent/hex.hpp" // to_hex, from_hex #include "libtorrent/bloom_filter.hpp" #include "libtorrent/hasher.hpp" #include "libtorrent/aux_/time.hpp" #include "libtorrent/aux_/listen_socket_handle.hpp" #include "libtorrent/aux_/session_impl.hpp" #include "libtorrent/kademlia/node_id.hpp" #include "libtorrent/kademlia/routing_table.hpp" #include "libtorrent/kademlia/item.hpp" #include "libtorrent/kademlia/dht_observer.hpp" #include #include #include #include #include // for vsnprintf #include "setup_transfer.hpp" using namespace lt; using namespace lt::dht; using namespace std::placeholders; namespace { void get_test_keypair(public_key& pk, secret_key& sk) { aux::from_hex({"77ff84905a91936367c01360803104f92432fcd904a43511876df5cdf3e7e548", 64} , pk.bytes.data()); aux::from_hex({"e06d3183d14159228433ed599221b80bd0a5ce8352e4bdf0262f76786ef1c74d" "b7e7a9fea2c0eb269d61e3b38e450a22e754941ac78479d6c54e1faf6037881d", 128} , sk.bytes.data()); } sequence_number prev_seq(sequence_number s) { return sequence_number(s.value - 1); } sequence_number next_seq(sequence_number s) { return sequence_number(s.value + 1); } void add_and_replace(node_id& dst, node_id const& add) { bool carry = false; for (int k = 19; k >= 0; --k) { std::size_t idx = std::size_t(k); int sum = dst[idx] + add[idx] + (carry ? 1 : 0); dst[idx] = sum & 255; carry = sum > 255; } } void node_push_back(std::vector* nv, node_entry const& n) { nv->push_back(n); } void nop_node() {} // TODO: 3 make the mock_socket hold a reference to the list of where to record // packets instead of having a global variable std::list> g_sent_packets; struct mock_socket final : socket_manager { bool has_quota() override { return true; } bool send_packet(aux::listen_socket_handle const&, entry& msg, udp::endpoint const& ep) override { // TODO: 3 ideally the mock_socket would contain this queue of packets, to // make tests independent g_sent_packets.push_back(std::make_pair(ep, msg)); return true; } }; std::shared_ptr dummy_listen_socket(udp::endpoint src) { auto ret = std::make_shared(); ret->local_endpoint = tcp::endpoint(src.address(), src.port()); ret->external_address.cast_vote(src.address() , aux::session_interface::source_dht, rand_v4()); return ret; } std::shared_ptr dummy_listen_socket4() { auto ret = std::make_shared(); ret->local_endpoint = tcp::endpoint(addr4("192.168.4.1"), 6881); ret->external_address.cast_vote(addr4("236.0.0.1") , aux::session_interface::source_dht, rand_v4()); return ret; } #if TORRENT_USE_IPV6 std::shared_ptr dummy_listen_socket6() { auto ret = std::make_shared(); ret->local_endpoint = tcp::endpoint(addr6("2002::1"), 6881); ret->external_address.cast_vote(addr6("2002::1") , aux::session_interface::source_dht, rand_v6()); return ret; } #endif node* get_foreign_node_stub(node_id const&, std::string const&) { return nullptr; } sha1_hash generate_next() { sha1_hash ret; aux::random_bytes(ret); return ret; } std::list>::iterator find_packet(udp::endpoint ep) { return std::find_if(g_sent_packets.begin(), g_sent_packets.end() , [&ep] (std::pair const& p) { return p.first == ep; }); } void lazy_from_entry(entry const& e, bdecode_node& l) { error_code ec; static char inbuf[1500]; int len = bencode(inbuf, e); int ret = bdecode(inbuf, inbuf + len, l, ec); TEST_CHECK(ret == 0); } entry write_peers(std::set const& peers) { entry r; entry::list_type& pe = r.list(); for (auto const& p : peers) { std::string endpoint(18, '\0'); std::string::iterator out = endpoint.begin(); lt::detail::write_endpoint(p, out); endpoint.resize(std::size_t(out - endpoint.begin())); pe.push_back(entry(endpoint)); } return r; } struct msg_args { msg_args& info_hash(char const* i) { if (i) a["info_hash"] = std::string(i, 20); return *this; } msg_args& name(char const* n) { if (n) a["n"] = n; return *this; } msg_args& token(std::string t) { a["token"] = t; return *this; } msg_args& port(int p) { a["port"] = p; return *this; } msg_args& target(sha1_hash const& t) { a["target"] = t.to_string(); return *this; } msg_args& value(entry const& v) { a["v"] = v; return *this; } msg_args& scrape(bool s) { a["scrape"] = s ? 1 : 0; return *this; } msg_args& seed(bool s) { a["seed"] = s ? 1 : 0; return *this; } msg_args& key(public_key const& k) { a["k"] = k.bytes; return *this; } msg_args& sig(signature const& s) { a["sig"] = s.bytes; return *this; } msg_args& seq(sequence_number s) { a["seq"] = s.value; return *this; } msg_args& cas(sequence_number c) { a["cas"] = c.value; return *this; } msg_args& nid(sha1_hash const& n) { a["id"] = n.to_string(); return *this; } msg_args& salt(span s) { if (!s.empty()) a["salt"] = s; return *this; } msg_args& want(std::string w) { a["want"].list().push_back(w); return *this; } msg_args& nodes(std::vector const& n) { if (!n.empty()) a["nodes"] = dht::write_nodes_entry(n); return *this; } msg_args& nodes6(std::vector const& n) { if (!n.empty()) a["nodes6"] = dht::write_nodes_entry(n); return *this; } msg_args& peers(std::set const& p) { if (!p.empty()) a.dict()["values"] = write_peers(p); return *this; } msg_args& interval(time_duration interval) { a["interval"] = total_seconds(interval); return *this; } msg_args& num(int num) { a["num"] = num; return *this; } msg_args& samples(std::vector const& samples) { a["samples"] = span( reinterpret_cast(samples.data()), samples.size() * 20); return *this; } entry a; }; void send_dht_request(node& node, char const* msg, udp::endpoint const& ep , bdecode_node* reply, msg_args const& args = msg_args() , char const* t = "10", bool has_response = true) { // we're about to clear out the backing buffer // for this lazy_entry, so we better clear it now reply->clear(); entry e; e["q"] = msg; e["t"] = t; e["y"] = "q"; e["a"] = args.a; e["a"].dict().insert(std::make_pair("id", generate_next().to_string())); char msg_buf[1500]; int size = bencode(msg_buf, e); bdecode_node decoded; error_code ec; bdecode(msg_buf, msg_buf + size, decoded, ec); if (ec) std::printf("bdecode failed: %s\n", ec.message().c_str()); dht::msg m(decoded, ep); node.incoming(node.m_sock, m); // If the request is supposed to get a response, by now the node should have // invoked the send function and put the response in g_sent_packets auto const i = find_packet(ep); if (has_response) { if (i == g_sent_packets.end()) { TEST_ERROR("not response from DHT node"); return; } lazy_from_entry(i->second, *reply); g_sent_packets.erase(i); return; } // this request suppose won't be responsed. if (i != g_sent_packets.end()) { TEST_ERROR("shouldn't have response from DHT node"); return; } } void send_dht_response(node& node, bdecode_node const& request, udp::endpoint const& ep , msg_args const& args = msg_args()) { entry e; e["y"] = "r"; e["t"] = request.dict_find_string_value("t").to_string(); // e["ip"] = endpoint_to_bytes(ep); e["r"] = args.a; e["r"].dict().insert(std::make_pair("id", generate_next().to_string())); char msg_buf[1500]; int const size = bencode(msg_buf, e); bdecode_node decoded; error_code ec; bdecode(msg_buf, msg_buf + size, decoded, ec); if (ec) std::printf("bdecode failed: %s\n", ec.message().c_str()); dht::msg m(decoded, ep); node.incoming(node.m_sock, m); } struct announce_item { announce_item(sha1_hash nxt, int const num) : next(nxt) , num_peers(num) { num_peers = (rand() % 5) + 2; ent["next"] = next.to_string(); ent["A"] = "a"; ent["B"] = "b"; ent["num_peers"] = num_peers; char buf[512]; char* ptr = buf; int len = bencode(ptr, ent); target = hasher(buf, len).final(); } sha1_hash next; int num_peers; entry ent; sha1_hash target; }; void announce_immutable_items(node& node, udp::endpoint const* eps , announce_item const* items, int num_items) { std::string token; for (int i = 0; i < 1000; ++i) { for (int j = 0; j < num_items; ++j) { if ((i % items[j].num_peers) == 0) continue; bdecode_node response; send_dht_request(node, "get", eps[i], &response , msg_args().target(items[j].target)); key_desc_t const desc[] = { { "r", bdecode_node::dict_t, 0, key_desc_t::parse_children }, { "id", bdecode_node::string_t, 20, 0}, { "token", bdecode_node::string_t, 0, 0}, { "ip", bdecode_node::string_t, 0, key_desc_t::optional | key_desc_t::last_child}, { "y", bdecode_node::string_t, 1, 0}, }; bdecode_node parsed[5]; char error_string[200]; // std::printf("msg: %s\n", print_entry(response).c_str()); int ret = verify_message(response, desc, parsed, error_string); if (ret) { TEST_EQUAL(parsed[4].string_value(), "r"); token = parsed[2].string_value().to_string(); // std::printf("got token: %s\n", token.c_str()); } else { std::printf("msg: %s\n", print_entry(response).c_str()); std::printf(" invalid get response: %s\n", error_string); TEST_ERROR(error_string); } if (parsed[3]) { address_v4::bytes_type b; memcpy(&b[0], parsed[3].string_ptr(), b.size()); address_v4 addr(b); TEST_EQUAL(addr, eps[i].address()); } send_dht_request(node, "put", eps[i], &response , msg_args() .token(token) .target(items[j].target) .value(items[j].ent)); key_desc_t const desc2[] = { { "y", bdecode_node::string_t, 1, 0 } }; bdecode_node parsed2[1]; ret = verify_message(response, desc2, parsed2, error_string); if (ret) { if (parsed2[0].string_value() != "r") std::printf("msg: %s\n", print_entry(response).c_str()); TEST_EQUAL(parsed2[0].string_value(), "r"); } else { std::printf("msg: %s\n", print_entry(response).c_str()); std::printf(" invalid put response: %s\n", error_string); TEST_ERROR(error_string); } } } std::set items_num; for (int j = 0; j < num_items; ++j) { bdecode_node response; send_dht_request(node, "get", eps[j], &response , msg_args().target(items[j].target)); key_desc_t const desc[] = { { "r", bdecode_node::dict_t, 0, key_desc_t::parse_children }, { "v", bdecode_node::dict_t, 0, 0}, { "id", bdecode_node::string_t, 20, key_desc_t::last_child}, { "y", bdecode_node::string_t, 1, 0}, }; bdecode_node parsed[4]; char error_string[200]; int ret = verify_message(response, desc, parsed, error_string); if (ret) { items_num.insert(items_num.begin(), j); } } // TODO: check to make sure the "best" items are stored TEST_EQUAL(items_num.size(), 4); } int sum_distance_exp(int s, node_entry const& e, node_id const& ref) { return s + distance_exp(e.id, ref); } std::vector g_got_peers; void get_peers_cb(std::vector const& peers) { g_got_peers.insert(g_got_peers.end(), peers.begin(), peers.end()); } std::vector g_got_items; dht::item g_put_item; int g_put_count; void get_mutable_item_cb(dht::item const& i, bool a) { if (!a) return; if (!i.empty()) g_got_items.push_back(i); } void put_mutable_item_data_cb(dht::item& i) { if (!i.empty()) g_got_items.push_back(i); TEST_CHECK(!g_put_item.empty()); i = g_put_item; g_put_count++; } void put_mutable_item_cb(dht::item const&, int num, int expect) { TEST_EQUAL(num, expect); } void get_immutable_item_cb(dht::item const& i) { if (!i.empty()) g_got_items.push_back(i); } void put_immutable_item_cb(int num, int expect) { TEST_EQUAL(num, expect); } struct obs : dht::dht_observer { void set_external_address(aux::listen_socket_handle const& s, address const& addr , address const& /*source*/) override { s.get()->external_address.cast_vote(addr , aux::session_interface::source_dht, rand_v4()); } void get_peers(sha1_hash const&) override {} void outgoing_get_peers(sha1_hash const& /*target*/ , sha1_hash const& /*sent_target*/, udp::endpoint const&) override {} void announce(sha1_hash const&, address const&, int) override {} #ifndef TORRENT_DISABLE_LOGGING bool should_log(module_t) const override { return true; } void log(dht_logger::module_t, char const* fmt, ...) override { va_list v; va_start(v, fmt); char buf[1024]; #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wformat-nonliteral" #endif std::vsnprintf(buf, sizeof(buf), fmt, v); #ifdef __clang__ #pragma clang diagnostic pop #endif va_end(v); std::printf("%s\n", buf); m_log.emplace_back(buf); } void log_packet(message_direction_t, span , udp::endpoint const&) override {} #endif bool on_dht_request(string_view , dht::msg const&, entry&) override { return false; } virtual ~obs() = default; #ifndef TORRENT_DISABLE_LOGGING std::vector m_log; #endif }; dht::dht_settings test_settings() { dht::dht_settings sett; sett.max_torrents = 4; sett.max_dht_items = 4; sett.enforce_node_id = false; return sett; } struct dht_test_setup { explicit dht_test_setup(udp::endpoint src) : sett(test_settings()) , ls(dummy_listen_socket(src)) , dht_storage(dht_default_storage_constructor(sett)) , source(src) , dht_node(ls, &s, sett , node_id(nullptr), &observer, cnt, get_foreign_node_stub, *dht_storage) { dht_storage->update_node_ids({node_id::min()}); } dht::dht_settings sett; mock_socket s; std::shared_ptr ls; obs observer; counters cnt; std::unique_ptr dht_storage; udp::endpoint source; dht::node dht_node; char error_string[200]; }; dht::key_desc_t const err_desc[] = { {"y", bdecode_node::string_t, 1, 0}, {"e", bdecode_node::list_t, 2, 0} }; dht::key_desc_t const peer1_desc[] = { {"y", bdecode_node::string_t, 1, 0}, {"r", bdecode_node::dict_t, 0, key_desc_t::parse_children}, {"token", bdecode_node::string_t, 0, 0}, {"id", bdecode_node::string_t, 20, key_desc_t::last_child}, }; dht::key_desc_t const get_item_desc[] = { {"y", bdecode_node::string_t, 1, 0}, {"t", bdecode_node::string_t, 2, 0}, {"q", bdecode_node::string_t, 3, 0}, {"a", bdecode_node::dict_t, 0, key_desc_t::parse_children}, {"id", bdecode_node::string_t, 20, 0}, {"target", bdecode_node::string_t, 20, key_desc_t::last_child}, }; dht::key_desc_t const put_mutable_item_desc[] = { {"y", bdecode_node::string_t, 1, 0}, {"t", bdecode_node::string_t, 2, 0}, {"q", bdecode_node::string_t, 3, 0}, {"a", bdecode_node::dict_t, 0, key_desc_t::parse_children}, {"id", bdecode_node::string_t, 20, 0}, {"cas", bdecode_node::string_t, 20, key_desc_t::optional}, {"k", bdecode_node::string_t, public_key::len, 0}, {"seq", bdecode_node::int_t, 0, 0}, {"sig", bdecode_node::string_t, signature::len, 0}, {"token", bdecode_node::string_t, 2, 0}, {"v", bdecode_node::none_t, 0, key_desc_t::last_child}, }; dht::key_desc_t const sample_infohashes_desc[] = { {"y", bdecode_node::string_t, 1, 0}, {"t", bdecode_node::string_t, 2, 0}, {"q", bdecode_node::string_t, 17, 0}, {"a", bdecode_node::dict_t, 0, key_desc_t::parse_children}, {"id", bdecode_node::string_t, 20, 0}, {"target", bdecode_node::string_t, 20, key_desc_t::last_child}, }; void print_state(std::ostream& os, routing_table const& table) { #define BUFFER_CURSOR_POS &buf[std::size_t(cursor)], buf.size() - std::size_t(cursor) std::vector buf(2048); int cursor = 0; cursor += std::snprintf(BUFFER_CURSOR_POS , "kademlia routing table state\n" "bucket_size: %d\n" "global node count: %" PRId64 "\n" "node_id: %s\n\n" "number of nodes per bucket:\n" , table.bucket_size() , table.num_global_nodes() , aux::to_hex(table.id()).c_str()); if (cursor > int(buf.size()) - 500) buf.resize(buf.size() * 3 / 2); int idx = 0; for (auto i = table.buckets().begin(), end(table.buckets().end()); i != end; ++i, ++idx) { cursor += std::snprintf(BUFFER_CURSOR_POS , "%2d: ", idx); for (int k = 0; k < int(i->live_nodes.size()); ++k) cursor += std::snprintf(BUFFER_CURSOR_POS, "#"); for (int k = 0; k < int(i->replacements.size()); ++k) cursor += std::snprintf(BUFFER_CURSOR_POS, "-"); cursor += std::snprintf(BUFFER_CURSOR_POS, "\n"); if (cursor > int(buf.size()) - 500) buf.resize(buf.size() * 3 / 2); } time_point now = aux::time_now(); cursor += std::snprintf(BUFFER_CURSOR_POS , "\nnodes:"); int bucket_index = 0; for (auto i = table.buckets().begin(), end(table.buckets().end()); i != end; ++i, ++bucket_index) { cursor += std::snprintf(BUFFER_CURSOR_POS , "\n=== BUCKET == %d == %d|%d ==== \n" , bucket_index, int(i->live_nodes.size()) , int(i->replacements.size())); if (cursor > int(buf.size()) - 500) buf.resize(buf.size() * 3 / 2); int id_shift; // the last bucket is special, since it hasn't been split yet, it // includes that top bit as well if (bucket_index + 1 == int(table.buckets().size())) id_shift = bucket_index; else id_shift = bucket_index + 1; for (bucket_t::const_iterator j = i->live_nodes.begin() , end2(i->live_nodes.end()); j != end2; ++j) { int bucket_size_limit = table.bucket_limit(bucket_index); std::uint32_t top_mask = std::uint32_t(bucket_size_limit - 1); int mask_shift = 0; TORRENT_ASSERT_VAL(bucket_size_limit > 0, bucket_size_limit); while ((top_mask & 0x80) == 0) { top_mask <<= 1; ++mask_shift; } top_mask = (0xff << mask_shift) & 0xff; node_id id = j->id; id <<= id_shift; cursor += std::snprintf(BUFFER_CURSOR_POS , " prefix: %2x id: %s" , ((id[0] & top_mask) >> mask_shift) , aux::to_hex(j->id).c_str()); if (j->rtt == 0xffff) { cursor += std::snprintf(BUFFER_CURSOR_POS , " rtt: "); } else { cursor += std::snprintf(BUFFER_CURSOR_POS , " rtt: %4d", j->rtt); } cursor += std::snprintf(BUFFER_CURSOR_POS , " fail: %4d ping: %d dist: %3d" , j->fail_count() , j->pinged() , distance_exp(table.id(), j->id)); if (j->last_queried == min_time()) { cursor += std::snprintf(BUFFER_CURSOR_POS , " query: "); } else { cursor += std::snprintf(BUFFER_CURSOR_POS , " query: %3d", int(total_seconds(now - j->last_queried))); } cursor += std::snprintf(BUFFER_CURSOR_POS , " ip: %s\n", print_endpoint(j->ep()).c_str()); if (cursor > int(buf.size()) - 500) buf.resize(buf.size() * 3 / 2); } } cursor += std::snprintf(BUFFER_CURSOR_POS , "\nnode spread per bucket:\n"); bucket_index = 0; for (auto i = table.buckets().begin(), end(table.buckets().end()); i != end; ++i, ++bucket_index) { int bucket_size_limit = table.bucket_limit(bucket_index); // mask out the first 3 bits, or more depending // on the bucket_size_limit // we have all the lower bits set in (bucket_size_limit-1) // but we want the left-most bits to be set. Shift it // until the MSB is set std::uint32_t top_mask = std::uint32_t(bucket_size_limit - 1); int mask_shift = 0; TORRENT_ASSERT_VAL(bucket_size_limit > 0, bucket_size_limit); while ((top_mask & 0x80) == 0) { top_mask <<= 1; ++mask_shift; } top_mask = (0xff << mask_shift) & 0xff; bucket_size_limit = int((top_mask >> mask_shift) + 1); TORRENT_ASSERT_VAL(bucket_size_limit <= 256, bucket_size_limit); bool sub_buckets[256]; std::memset(sub_buckets, 0, sizeof(sub_buckets)); int id_shift; // the last bucket is special, since it hasn't been split yet, it // includes that top bit as well if (bucket_index + 1 == int(table.buckets().size())) id_shift = bucket_index; else id_shift = bucket_index + 1; for (bucket_t::const_iterator j = i->live_nodes.begin() , end2(i->live_nodes.end()); j != end2; ++j) { node_id id = j->id; id <<= id_shift; int b = (id[0] & top_mask) >> mask_shift; TORRENT_ASSERT(b >= 0 && b < int(sizeof(sub_buckets)/sizeof(sub_buckets[0]))); sub_buckets[b] = true; } cursor += std::snprintf(BUFFER_CURSOR_POS , "%2d mask: %2x: [", bucket_index, (top_mask >> mask_shift)); for (int j = 0; j < bucket_size_limit; ++j) { cursor += std::snprintf(BUFFER_CURSOR_POS , (sub_buckets[j] ? "X" : " ")); } cursor += std::snprintf(BUFFER_CURSOR_POS , "]\n"); if (cursor > int(buf.size()) - 500) buf.resize(buf.size() * 3 / 2); } buf[std::size_t(cursor)] = '\0'; os << &buf[0]; #undef BUFFER_CURSOR_POS } } // anonymous namespace TORRENT_TEST(ping) { dht_test_setup t(udp::endpoint(rand_v4(), 20)); bdecode_node response; send_dht_request(t.dht_node, "ping", t.source, &response); dht::key_desc_t const pong_desc[] = { {"y", bdecode_node::string_t, 1, 0}, {"t", bdecode_node::string_t, 2, 0}, {"r", bdecode_node::dict_t, 0, key_desc_t::parse_children}, {"id", bdecode_node::string_t, 20, key_desc_t::last_child}, }; bdecode_node pong_keys[4]; std::printf("msg: %s\n", print_entry(response).c_str()); bool ret = dht::verify_message(response, pong_desc, pong_keys, t.error_string); TEST_CHECK(ret); if (ret) { TEST_CHECK(pong_keys[0].string_value() == "r"); TEST_CHECK(pong_keys[1].string_value() == "10"); } else { std::printf(" invalid ping response: %s\n", t.error_string); } } TORRENT_TEST(invalid_message) { dht_test_setup t(udp::endpoint(rand_v4(), 20)); bdecode_node response; bdecode_node err_keys[2]; send_dht_request(t.dht_node, "find_node", t.source, &response); std::printf("msg: %s\n", print_entry(response).c_str()); bool ret = dht::verify_message(response, err_desc, err_keys, t.error_string); TEST_CHECK(ret); if (ret) { TEST_CHECK(err_keys[0].string_value() == "e"); if (err_keys[1].list_at(0).type() == bdecode_node::int_t && err_keys[1].list_at(1).type() == bdecode_node::string_t) { TEST_CHECK(err_keys[1].list_at(1).string_value() == "missing 'target' key"); } else { TEST_ERROR("invalid error response"); } } else { std::printf(" invalid error response: %s\n", t.error_string); } } TORRENT_TEST(node_id_testng) { node_id rnd = generate_secret_id(); TEST_CHECK(verify_secret_id(rnd)); rnd[19] ^= 0x55; TEST_CHECK(!verify_secret_id(rnd)); rnd = generate_random_id(); make_id_secret(rnd); TEST_CHECK(verify_secret_id(rnd)); } TORRENT_TEST(get_peers_announce) { dht_test_setup t(udp::endpoint(rand_v4(), 20)); bdecode_node response; send_dht_request(t.dht_node, "get_peers", t.source, &response , msg_args().info_hash("01010101010101010101")); bdecode_node peer1_keys[4]; std::string token; std::printf("msg: %s\n", print_entry(response).c_str()); bool ret = dht::verify_message(response, peer1_desc, peer1_keys, t.error_string); TEST_CHECK(ret); if (ret) { TEST_CHECK(peer1_keys[0].string_value() == "r"); token = peer1_keys[2].string_value().to_string(); // std::printf("got token: %s\n", token.c_str()); } else { std::printf("msg: %s\n", print_entry(response).c_str()); std::printf(" invalid get_peers response: %s\n", t.error_string); } send_dht_request(t.dht_node, "announce_peer", t.source, &response , msg_args() .info_hash("01010101010101010101") .name("test") .token(token) .port(8080)); dht::key_desc_t const ann_desc[] = { {"y", bdecode_node::string_t, 1, 0}, {"r", bdecode_node::dict_t, 0, key_desc_t::parse_children}, {"id", bdecode_node::string_t, 20, key_desc_t::last_child}, }; bdecode_node ann_keys[3]; std::printf("msg: %s\n", print_entry(response).c_str()); ret = dht::verify_message(response, ann_desc, ann_keys, t.error_string); TEST_CHECK(ret); if (ret) { TEST_CHECK(ann_keys[0].string_value() == "r"); } else { std::printf(" invalid announce response:\n"); TEST_ERROR(t.error_string); } } namespace { void test_scrape(address(&rand_addr)()) { dht_test_setup t(udp::endpoint(rand_addr(), 20)); bdecode_node response; init_rand_address(); // announce from 100 random IPs and make sure scrape works // 50 downloaders and 50 seeds for (int i = 0; i < 100; ++i) { t.source = udp::endpoint(rand_addr(), 6000); send_dht_request(t.dht_node, "get_peers", t.source, &response , msg_args().info_hash("01010101010101010101")); bdecode_node peer1_keys[4]; bool ret = dht::verify_message(response, peer1_desc, peer1_keys, t.error_string); std::string token; if (ret) { TEST_CHECK(peer1_keys[0].string_value() == "r"); token = peer1_keys[2].string_value().to_string(); } else { std::printf("msg: %s\n", print_entry(response).c_str()); std::printf(" invalid get_peers response: %s\n", t.error_string); } response.clear(); send_dht_request(t.dht_node, "announce_peer", t.source, &response , msg_args() .info_hash("01010101010101010101") .name("test") .token(token) .port(8080) .seed(i >= 50)); response.clear(); } // ====== get_peers ====== send_dht_request(t.dht_node, "get_peers", t.source, &response , msg_args().info_hash("01010101010101010101").scrape(true)); dht::key_desc_t const peer2_desc[] = { {"y", bdecode_node::string_t, 1, 0}, {"r", bdecode_node::dict_t, 0, key_desc_t::parse_children}, {"BFpe", bdecode_node::string_t, 256, 0}, {"BFsd", bdecode_node::string_t, 256, 0}, {"id", bdecode_node::string_t, 20, key_desc_t::last_child}, }; bdecode_node peer2_keys[5]; std::printf("msg: %s\n", print_entry(response).c_str()); bool ret = dht::verify_message(response, peer2_desc, peer2_keys, t.error_string); TEST_CHECK(ret); if (ret) { TEST_CHECK(peer2_keys[0].string_value() == "r"); TEST_EQUAL(peer2_keys[1].dict_find_string_value("n"), "test"); bloom_filter<256> downloaders; bloom_filter<256> seeds; downloaders.from_string(peer2_keys[2].string_ptr()); seeds.from_string(peer2_keys[3].string_ptr()); std::printf("seeds: %f\n", double(seeds.size())); std::printf("downloaders: %f\n", double(downloaders.size())); TEST_CHECK(fabs(seeds.size() - 50.f) <= 3.f); TEST_CHECK(fabs(downloaders.size() - 50.f) <= 3.f); } else { std::printf("invalid get_peers response:\n"); TEST_ERROR(t.error_string); } } } // anonymous namespace TORRENT_TEST(scrape_v4) { test_scrape(rand_v4); } #if TORRENT_USE_IPV6 TORRENT_TEST(scrape_v6) { if (supports_ipv6()) test_scrape(rand_v6); } #endif namespace { void test_id_enforcement(address(&rand_addr)()) { dht_test_setup t(udp::endpoint(rand_addr(), 20)); bdecode_node response; // enable node_id enforcement t.sett.enforce_node_id = true; node_id nid; if (is_v4(t.source)) { // this is one of the test vectors from: // http://libtorrent.org/dht_sec.html t.source = udp::endpoint(addr("124.31.75.21"), 1); nid = to_hash("5fbfbff10c5d6a4ec8a88e4c6ab4c28b95eee401"); } else { t.source = udp::endpoint(addr("2001:b829:2123:be84:e16c:d6ae:5290:49f1"), 1); nid = to_hash("0a8ad123be84e16cd6ae529049f1f1bbe9ebb304"); } // verify that we reject invalid node IDs // this is now an invalid node-id for 'source' nid[0] = 0x18; int nodes_num = std::get<0>(t.dht_node.size()); send_dht_request(t.dht_node, "find_node", t.source, &response , msg_args() .target(sha1_hash("0101010101010101010101010101010101010101")) .nid(nid)); bdecode_node err_keys[2]; bool ret = dht::verify_message(response, err_desc, err_keys, t.error_string); TEST_CHECK(ret); if (ret) { TEST_CHECK(err_keys[0].string_value() == "e"); if (err_keys[1].list_at(0).type() == bdecode_node::int_t && err_keys[1].list_at(1).type() == bdecode_node::string_t) { TEST_CHECK(err_keys[1].list_at(1).string_value() == "invalid node ID"); } else { std::printf("msg: %s\n", print_entry(response).c_str()); TEST_ERROR("invalid error response"); } } else { std::printf("msg: %s\n", print_entry(response).c_str()); std::printf(" invalid error response: %s\n", t.error_string); } // a node with invalid node-id shouldn't be added to routing table. TEST_EQUAL(std::get<0>(t.dht_node.size()), nodes_num); // now the node-id is valid. if (is_v4(t.source)) nid[0] = 0x5f; else nid[0] = 0x0a; send_dht_request(t.dht_node, "find_node", t.source, &response , msg_args() .target(sha1_hash("0101010101010101010101010101010101010101")) .nid(nid)); dht::key_desc_t const nodes_desc[] = { {"y", bdecode_node::string_t, 1, 0}, {"r", bdecode_node::dict_t, 0, key_desc_t::parse_children}, {"id", bdecode_node::string_t, 20, key_desc_t::last_child}, }; bdecode_node nodes_keys[3]; std::printf("msg: %s\n", print_entry(response).c_str()); ret = dht::verify_message(response, nodes_desc, nodes_keys, t.error_string); TEST_CHECK(ret); if (ret) { TEST_CHECK(nodes_keys[0].string_value() == "r"); } else { std::printf("msg: %s\n", print_entry(response).c_str()); std::printf(" invalid error response: %s\n", t.error_string); } // node with valid node-id should be added to routing table. TEST_EQUAL(std::get<0>(t.dht_node.size()), nodes_num + 1); } } // anonymous namespace TORRENT_TEST(id_enforcement_v4) { test_id_enforcement(rand_v4); } #if TORRENT_USE_IPV6 TORRENT_TEST(id_enforcement_v6) { if (supports_ipv6()) test_id_enforcement(rand_v6); } #endif TORRENT_TEST(bloom_filter) { bloom_filter<256> test; for (int i = 0; i < 256; ++i) { char adr[50]; std::snprintf(adr, sizeof(adr), "192.0.2.%d", i); address a = addr(adr); sha1_hash const iphash = hash_address(a); test.set(iphash); } if (supports_ipv6()) { for (int i = 0; i < 0x3E8; ++i) { char adr[50]; std::snprintf(adr, sizeof(adr), "2001:db8::%x", i); address a = addr(adr); sha1_hash const iphash = hash_address(a); test.set(iphash); } } // these are test vectors from BEP 33 // http://www.bittorrent.org/beps/bep_0033.html std::printf("test.size: %f\n", double(test.size())); std::string const bf_str = test.to_string(); std::printf("%s\n", aux::to_hex(bf_str).c_str()); if (supports_ipv6()) { TEST_CHECK(double(fabs(test.size() - 1224.93f)) < 0.001); TEST_CHECK(aux::to_hex(bf_str) == "f6c3f5eaa07ffd91bde89f777f26fb2b" "ff37bdb8fb2bbaa2fd3ddde7bacfff75" "ee7ccbaefe5eedb1fbfaff67f6abff5e" "43ddbca3fd9b9ffdf4ffd3e9dff12d1b" "df59db53dbe9fa5b7ff3b8fdfcde1afb" "8bedd7be2f3ee71ebbbfe93bcdeefe14" "8246c2bc5dbff7e7efdcf24fd8dc7adf" "fd8fffdfddfff7a4bbeedf5cb95ce81f" "c7fcff1ff4ffffdfe5f7fdcbb7fd79b3" "fa1fc77bfe07fff905b7b7ffc7fefeff" "e0b8370bb0cd3f5b7f2bd93feb4386cf" "dd6f7fd5bfaf2e9ebffffeecd67adbf7" "c67f17efd5d75eba6ffeba7fff47a91e" "b1bfbb53e8abfb5762abe8ff237279bf" "efbfeef5ffc5febfdfe5adffadfee1fb" "737ffffbfd9f6aeffeee76b6fd8f72ef"); } else { TEST_CHECK(double(fabs(test.size() - 257.854f)) < 0.001); TEST_CHECK(aux::to_hex(bf_str) == "24c0004020043000102012743e004800" "37110820422110008000c0e302854835" "a05401a4045021302a306c0600018810" "02d8a0a3a8001901b40a800900310008" "d2108110c2496a0028700010d804188b" "01415200082004088026411104a80404" "8002002000080680828c400080cc4002" "0c042c0494447280928041402104080d" "4240040414a41f0205654800b0811830" "d2020042b002c5800004a71d0204804a" "0028120a004c10017801490b83400404" "4106005421000c86900a002050020351" "0060144e900100924a1018141a028012" "913f0041802250042280481200002004" "430804210101c08111c1080100108000" "2038008211004266848606b035001048"); } } namespace { announce_item const items[] = { { generate_next(), 1 }, { generate_next(), 2 }, { generate_next(), 3 }, { generate_next(), 4 }, { generate_next(), 5 }, { generate_next(), 6 }, { generate_next(), 7 }, { generate_next(), 8 } }; std::array build_nodes() { std::array nodes = { { node_entry(items[0].target, udp::endpoint(addr4("1.1.1.1"), 1231)) , node_entry(items[1].target, udp::endpoint(addr4("2.2.2.2"), 1232)) , node_entry(items[2].target, udp::endpoint(addr4("3.3.3.3"), 1233)) , node_entry(items[3].target, udp::endpoint(addr4("4.4.4.4"), 1234)) , node_entry(items[4].target, udp::endpoint(addr4("5.5.5.5"), 1235)) , node_entry(items[5].target, udp::endpoint(addr4("6.6.6.6"), 1236)) , node_entry(items[6].target, udp::endpoint(addr4("7.7.7.7"), 1237)) , node_entry(items[7].target, udp::endpoint(addr4("8.8.8.8"), 1238)) } }; return nodes; } std::array build_nodes(sha1_hash target) { std::array nodes = { { node_entry(target, udp::endpoint(addr4("1.1.1.1"), 1231)) , node_entry(target, udp::endpoint(addr4("2.2.2.2"), 1232)) , node_entry(target, udp::endpoint(addr4("3.3.3.3"), 1233)) , node_entry(target, udp::endpoint(addr4("4.4.4.4"), 1234)) , node_entry(target, udp::endpoint(addr4("5.5.5.5"), 1235)) , node_entry(target, udp::endpoint(addr4("6.6.6.6"), 1236)) , node_entry(target, udp::endpoint(addr4("7.7.7.7"), 1237)) , node_entry(target, udp::endpoint(addr4("8.8.8.8"), 1238)) , node_entry(target, udp::endpoint(addr4("9.9.9.9"), 1239)) } }; return nodes; } span const empty_salt; // TODO: 3 split this up into smaller tests void test_put(address(&rand_addr)()) { dht_test_setup t(udp::endpoint(rand_addr(), 20)); bdecode_node response; bool ret; // ====== put ====== init_rand_address(); udp::endpoint eps[1000]; for (int i = 0; i < 1000; ++i) eps[i] = udp::endpoint(rand_addr(), (rand() % 16534) + 1); announce_immutable_items(t.dht_node, eps, items, sizeof(items)/sizeof(items[0])); key_desc_t const desc2[] = { { "y", bdecode_node::string_t, 1, 0 } }; bdecode_node desc2_keys[1]; key_desc_t const desc_error[] = { { "e", bdecode_node::list_t, 2, 0 }, { "y", bdecode_node::string_t, 1, 0}, }; bdecode_node desc_error_keys[2]; // ==== get / put mutable items === span itemv; signature sig; char buffer[1200]; sequence_number seq(4); public_key pk; secret_key sk; get_test_keypair(pk, sk); // TODO: 4 pass in the actual salt as a parameter for (int with_salt = 0; with_salt < 2; ++with_salt) { seq = sequence_number(4); std::printf("\nTEST GET/PUT%s \ngenerating ed25519 keys\n\n" , with_salt ? " with-salt" : " no-salt"); std::array seed = ed25519_create_seed(); std::tie(pk, sk) = ed25519_create_keypair(seed); std::printf("pub: %s priv: %s\n" , aux::to_hex(pk.bytes).c_str() , aux::to_hex(sk.bytes).c_str()); std::string salt; if (with_salt) salt = "foobar"; hasher h(pk.bytes); if (with_salt) h.update(salt); sha1_hash target_id = h.final(); std::printf("target_id: %s\n" , aux::to_hex(target_id).c_str()); send_dht_request(t.dht_node, "get", t.source, &response , msg_args().target(target_id)); key_desc_t const desc[] = { { "r", bdecode_node::dict_t, 0, key_desc_t::parse_children }, { "id", bdecode_node::string_t, 20, 0}, { "token", bdecode_node::string_t, 0, 0}, { "ip", bdecode_node::string_t, 0, key_desc_t::optional | key_desc_t::last_child}, { "y", bdecode_node::string_t, 1, 0}, }; bdecode_node desc_keys[5]; ret = verify_message(response, desc, desc_keys, t.error_string); std::string token; if (ret) { TEST_EQUAL(desc_keys[4].string_value(), "r"); token = desc_keys[2].string_value().to_string(); std::printf("get response: %s\n" , print_entry(response).c_str()); std::printf("got token: %s\n", aux::to_hex(token).c_str()); } else { std::printf("msg: %s\n", print_entry(response).c_str()); std::printf(" invalid get response: %s\n%s\n" , t.error_string, print_entry(response).c_str()); TEST_ERROR(t.error_string); } itemv = span(buffer, std::size_t(bencode(buffer, items[0].ent))); sig = sign_mutable_item(itemv, salt, seq, pk, sk); TEST_EQUAL(verify_mutable_item(itemv, salt, seq, pk, sig), true); send_dht_request(t.dht_node, "put", t.source, &response , msg_args() .token(token) .value(items[0].ent) .key(pk) .sig(sig) .seq(seq) .salt(salt)); ret = verify_message(response, desc2, desc2_keys, t.error_string); if (ret) { std::printf("put response: %s\n" , print_entry(response).c_str()); TEST_EQUAL(desc2_keys[0].string_value(), "r"); } else { std::printf(" invalid put response: %s\n%s\n" , t.error_string, print_entry(response).c_str()); TEST_ERROR(t.error_string); } send_dht_request(t.dht_node, "get", t.source, &response , msg_args().target(target_id)); std::printf("target_id: %s\n" , aux::to_hex(target_id).c_str()); key_desc_t const desc3[] = { { "r", bdecode_node::dict_t, 0, key_desc_t::parse_children }, { "id", bdecode_node::string_t, 20, 0}, { "v", bdecode_node::none_t, 0, 0}, { "seq", bdecode_node::int_t, 0, 0}, { "sig", bdecode_node::string_t, 0, 0}, { "ip", bdecode_node::string_t, 0, key_desc_t::optional | key_desc_t::last_child}, { "y", bdecode_node::string_t, 1, 0}, }; bdecode_node desc3_keys[7]; ret = verify_message(response, desc3, desc3_keys, t.error_string); if (ret == 0) { std::printf("msg: %s\n", print_entry(response).c_str()); std::printf(" invalid get response: %s\n%s\n" , t.error_string, print_entry(response).c_str()); TEST_ERROR(t.error_string); } else { std::printf("get response: %s\n" , print_entry(response).c_str()); char value[1020]; char* ptr = value; int const value_len = bencode(ptr, items[0].ent); TEST_EQUAL(value_len, int(desc3_keys[2].data_section().size())); TEST_CHECK(std::memcmp(desc3_keys[2].data_section().data(), value, std::size_t(value_len)) == 0); TEST_EQUAL(int(seq.value), desc3_keys[3].int_value()); } // also test that invalid signatures fail! itemv = span(buffer, std::size_t(bencode(buffer, items[0].ent))); sig = sign_mutable_item(itemv, salt, seq, pk, sk); TEST_EQUAL(verify_mutable_item(itemv, salt, seq, pk, sig), 1); // break the signature sig.bytes[2] ^= 0xaa; std::printf("PUT broken signature\n"); TEST_CHECK(verify_mutable_item(itemv, salt, seq, pk, sig) != 1); send_dht_request(t.dht_node, "put", t.source, &response , msg_args() .token(token) .value(items[0].ent) .key(pk) .sig(sig) .seq(seq) .salt(salt)); ret = verify_message(response, desc_error, desc_error_keys, t.error_string); if (ret) { std::printf("put response: %s\n", print_entry(response).c_str()); TEST_EQUAL(desc_error_keys[1].string_value(), "e"); // 206 is the code for invalid signature TEST_EQUAL(desc_error_keys[0].list_int_value_at(0), 206); } else { std::printf(" invalid put response: %s\n%s\n" , t.error_string, print_entry(response).c_str()); TEST_ERROR(t.error_string); } // === test conditional get === send_dht_request(t.dht_node, "get", t.source, &response , msg_args().target(target_id).seq(prev_seq(seq))); { bdecode_node const r = response.dict_find_dict("r"); TEST_CHECK(r.dict_find("v")); TEST_CHECK(r.dict_find("k")); TEST_CHECK(r.dict_find("sig")); } send_dht_request(t.dht_node, "get", t.source, &response , msg_args().target(target_id).seq(seq)); { bdecode_node r = response.dict_find_dict("r"); TEST_CHECK(!r.dict_find("v")); TEST_CHECK(!r.dict_find("k")); TEST_CHECK(!r.dict_find("sig")); } // === test CAS put === // this is the sequence number we expect to be there sequence_number cas = seq; // increment sequence number seq = next_seq(seq); // put item 1 itemv = span(buffer, std::size_t(bencode(buffer, items[1].ent))); sig = sign_mutable_item(itemv, salt, seq, pk, sk); TEST_EQUAL(verify_mutable_item(itemv, salt, seq, pk, sig), 1); TEST_CHECK(item_target_id(salt, pk) == target_id); std::printf("PUT CAS 1\n"); send_dht_request(t.dht_node, "put", t.source, &response , msg_args() .token(token) .value(items[1].ent) .key(pk) .sig(sig) .seq(seq) .cas(cas) .salt(salt)); ret = verify_message(response, desc2, desc2_keys, t.error_string); if (ret) { std::printf("put response: %s\n" , print_entry(response).c_str()); TEST_EQUAL(desc2_keys[0].string_value(), "r"); } else { std::printf(" invalid put response: %s\n%s\n" , t.error_string, print_entry(response).c_str()); TEST_ERROR(t.error_string); } std::printf("PUT CAS 2\n"); // put the same message again. This should fail because the // CAS hash is outdated, it's not the hash of the value that's // stored anymore send_dht_request(t.dht_node, "put", t.source, &response , msg_args() .token(token) .value(items[1].ent) .key(pk) .sig(sig) .seq(seq) .cas(cas) .salt(salt)); ret = verify_message(response, desc_error, desc_error_keys, t.error_string); if (ret) { std::printf("put response: %s\n" , print_entry(response).c_str()); TEST_EQUAL(desc_error_keys[1].string_value(), "e"); // 301 is the error code for CAS hash mismatch TEST_EQUAL(desc_error_keys[0].list_int_value_at(0), 301); } else { std::printf(" invalid put response: %s\n%s\nExpected failure 301 (CAS hash mismatch)\n" , t.error_string, print_entry(response).c_str()); TEST_ERROR(t.error_string); } } } } // anonymous namespace TORRENT_TEST(put_v4) { test_put(rand_v4); } #if TORRENT_USE_IPV6 TORRENT_TEST(put_v6) { if (supports_ipv6()) test_put(rand_v6); } #endif namespace { void test_routing_table(address(&rand_addr)()) { dht_test_setup t(udp::endpoint(rand_addr(), 20)); bdecode_node response; // test kademlia routing table dht::dht_settings s; s.extended_routing_table = false; // s.restrict_routing_ips = false; node_id id = to_hash("3123456789abcdef01232456789abcdef0123456"); const int bucket_size = 10; dht::routing_table table(id, t.source.protocol(), bucket_size, s, &t.observer); std::vector nodes; TEST_EQUAL(std::get<0>(table.size()), 0); node_id tmp = id; node_id diff = to_hash("15764f7459456a9453f8719b09547c11d5f34061"); address node_addr; address node_near_addr; #if TORRENT_USE_IPV6 if (is_v6(t.source)) { node_addr = addr6("2001:1111:1111:1111:1111:1111:1111:1111"); node_near_addr = addr6("2001:1111:1111:1111:eeee:eeee:eeee:eeee"); } else #endif { node_addr = addr4("4.4.4.4"); node_near_addr = addr4("4.4.4.5"); } // test a node with the same IP:port changing ID add_and_replace(tmp, diff); table.node_seen(tmp, udp::endpoint(node_addr, 4), 10); table.find_node(id, nodes, 0, 10); TEST_EQUAL(table.bucket_size(0), 1); TEST_EQUAL(std::get<0>(table.size()), 1); TEST_EQUAL(nodes.size(), 1); if (!nodes.empty()) { TEST_EQUAL(nodes[0].id, tmp); TEST_EQUAL(nodes[0].addr(), node_addr); TEST_EQUAL(nodes[0].port(), 4); TEST_EQUAL(nodes[0].timeout_count, 0); } // set timeout_count to 1 table.node_failed(tmp, udp::endpoint(node_addr, 4)); nodes.clear(); table.for_each_node(std::bind(node_push_back, &nodes, _1), nullptr); TEST_EQUAL(nodes.size(), 1); if (!nodes.empty()) { TEST_EQUAL(nodes[0].id, tmp); TEST_EQUAL(nodes[0].addr(), node_addr); TEST_EQUAL(nodes[0].port(), 4); TEST_EQUAL(nodes[0].timeout_count, 1); } // add the exact same node again, it should set the timeout_count to 0 table.node_seen(tmp, udp::endpoint(node_addr, 4), 10); nodes.clear(); table.for_each_node(std::bind(node_push_back, &nodes, _1), nullptr); TEST_EQUAL(nodes.size(), 1); if (!nodes.empty()) { TEST_EQUAL(nodes[0].id, tmp); TEST_EQUAL(nodes[0].addr(), node_addr); TEST_EQUAL(nodes[0].port(), 4); TEST_EQUAL(nodes[0].timeout_count, 0); } // test adding the same node ID again with a different IP (should be ignored) table.node_seen(tmp, udp::endpoint(node_addr, 5), 10); table.find_node(id, nodes, 0, 10); TEST_EQUAL(table.bucket_size(0), 1); if (!nodes.empty()) { TEST_EQUAL(nodes[0].id, tmp); TEST_EQUAL(nodes[0].addr(), node_addr); TEST_EQUAL(nodes[0].port(), 4); } // test adding a node that ends up in the same bucket with an IP // very close to the current one (should be ignored) // if restrict_routing_ips == true table.node_seen(tmp, udp::endpoint(node_near_addr, 5), 10); table.find_node(id, nodes, 0, 10); TEST_EQUAL(table.bucket_size(0), 1); if (!nodes.empty()) { TEST_EQUAL(nodes[0].id, tmp); TEST_EQUAL(nodes[0].addr(), node_addr); TEST_EQUAL(nodes[0].port(), 4); } // test adding the same IP:port again with a new node ID (should remove the node) add_and_replace(tmp, diff); table.node_seen(tmp, udp::endpoint(node_addr, 4), 10); table.find_node(id, nodes, 0, 10); TEST_EQUAL(table.bucket_size(0), 0); TEST_EQUAL(nodes.size(), 0); s.restrict_routing_ips = false; init_rand_address(); add_and_replace(tmp, diff); table.node_seen(id, rand_udp_ep(rand_addr), 10); nodes.clear(); for (int i = 0; i < 7000; ++i) { table.node_seen(tmp, rand_udp_ep(rand_addr), 20 + (tmp[19] & 0xff)); add_and_replace(tmp, diff); } std::printf("active buckets: %d\n", table.num_active_buckets()); TEST_EQUAL(table.num_active_buckets(), 10); TEST_CHECK(std::get<0>(table.size()) >= 10 * 10); //TODO: 2 test num_global_nodes //TODO: 2 test need_refresh print_state(std::cout, table); table.for_each_node(std::bind(node_push_back, &nodes, _1), nullptr); std::printf("nodes: %d\n", int(nodes.size())); std::vector temp; std::generate(tmp.begin(), tmp.end(), random_byte); table.find_node(tmp, temp, 0, int(nodes.size()) * 2); std::printf("returned-all: %d\n", int(temp.size())); TEST_EQUAL(temp.size(), nodes.size()); // This makes sure enough of the nodes returned are actually // part of the closest nodes std::set duplicates; const int reps = 50; for (int r = 0; r < reps; ++r) { std::generate(tmp.begin(), tmp.end(), random_byte); table.find_node(tmp, temp, 0, bucket_size * 2); std::printf("returned: %d\n", int(temp.size())); TEST_EQUAL(int(temp.size()), (std::min)(bucket_size * 2, int(nodes.size()))); std::sort(nodes.begin(), nodes.end(), std::bind(&compare_ref , std::bind(&node_entry::id, _1) , std::bind(&node_entry::id, _2), tmp)); int expected = std::accumulate(nodes.begin(), nodes.begin() + (bucket_size * 2) , 0, std::bind(&sum_distance_exp, _1, _2, tmp)); int sum_hits = std::accumulate(temp.begin(), temp.end() , 0, std::bind(&sum_distance_exp, _1, _2, tmp)); TEST_EQUAL(bucket_size * 2, int(temp.size())); std::printf("expected: %d actual: %d\n", expected, sum_hits); TEST_EQUAL(expected, sum_hits); duplicates.clear(); // This makes sure enough of the nodes returned are actually // part of the closest nodes for (std::vector::iterator i = temp.begin() , end(temp.end()); i != end; ++i) { TEST_CHECK(duplicates.count(i->id) == 0); duplicates.insert(i->id); } } char const* ips[] = { "124.31.75.21", "21.75.31.124", "65.23.51.170", "84.124.73.14", "43.213.53.83", }; int rs[] = { 1,86,22,65,90 }; std::uint8_t prefixes[][3] = { { 0x5f, 0xbf, 0xbf }, { 0x5a, 0x3c, 0xe9 }, { 0xa5, 0xd4, 0x32 }, { 0x1b, 0x03, 0x21 }, { 0xe5, 0x6f, 0x6c } }; for (int i = 0; i < 5; ++i) { address const a = addr4(ips[i]); node_id const new_id = generate_id_impl(a, std::uint32_t(rs[i])); TEST_CHECK(new_id[0] == prefixes[i][0]); TEST_CHECK(new_id[1] == prefixes[i][1]); TEST_CHECK((new_id[2] & 0xf8) == (prefixes[i][2] & 0xf8)); TEST_CHECK(new_id[19] == rs[i]); std::printf("IP address: %s r: %d node ID: %s\n", ips[i] , rs[i], aux::to_hex(new_id).c_str()); } } } // anonymous namespace TORRENT_TEST(routing_table_v4) { test_routing_table(rand_v4); } #if TORRENT_USE_IPV6 TORRENT_TEST(routing_table_v6) { if (supports_ipv6()) test_routing_table(rand_v6); } #endif namespace { void test_bootstrap(address(&rand_addr)()) { dht_test_setup t(udp::endpoint(rand_addr(), 20)); bdecode_node response; bool ret; dht::key_desc_t const find_node_desc[] = { {"y", bdecode_node::string_t, 1, 0}, {"t", bdecode_node::string_t, 2, 0}, {"q", bdecode_node::string_t, 9, 0}, {"a", bdecode_node::dict_t, 0, key_desc_t::parse_children}, {"id", bdecode_node::string_t, 20, 0}, {"target", bdecode_node::string_t, 20, key_desc_t::optional}, {"info_hash", bdecode_node::string_t, 20, key_desc_t::optional | key_desc_t::last_child}, }; bdecode_node find_node_keys[7]; // bootstrap g_sent_packets.clear(); udp::endpoint initial_node(rand_addr(), 1234); std::vector nodesv; nodesv.push_back(initial_node); t.dht_node.bootstrap(nodesv, std::bind(&nop_node)); TEST_EQUAL(g_sent_packets.size(), 1); if (g_sent_packets.empty()) return; TEST_EQUAL(g_sent_packets.front().first, initial_node); lazy_from_entry(g_sent_packets.front().second, response); ret = verify_message(response, find_node_desc, find_node_keys, t.error_string); if (ret) { TEST_EQUAL(find_node_keys[0].string_value(), "q"); TEST_CHECK(find_node_keys[2].string_value() == "find_node" || find_node_keys[2].string_value() == "get_peers"); if (find_node_keys[0].string_value() != "q" || (find_node_keys[2].string_value() != "find_node" && find_node_keys[2].string_value() != "get_peers")) return; } else { std::printf(" invalid find_node request: %s\n", print_entry(response).c_str()); TEST_ERROR(t.error_string); return; } udp::endpoint found_node(rand_addr(), 2235); std::vector nodes; nodes.push_back(node_entry{found_node}); g_sent_packets.clear(); if (is_v4(initial_node)) send_dht_response(t.dht_node, response, initial_node, msg_args().nodes(nodes)); else send_dht_response(t.dht_node, response, initial_node, msg_args().nodes6(nodes)); TEST_EQUAL(g_sent_packets.size(), 1); if (g_sent_packets.empty()) return; TEST_EQUAL(g_sent_packets.front().first, found_node); lazy_from_entry(g_sent_packets.front().second, response); ret = verify_message(response, find_node_desc, find_node_keys, t.error_string); if (ret) { TEST_EQUAL(find_node_keys[0].string_value(), "q"); TEST_CHECK(find_node_keys[2].string_value() == "find_node" || find_node_keys[2].string_value() == "get_peers"); if (find_node_keys[0].string_value() != "q" || (find_node_keys[2].string_value() != "find_node" && find_node_keys[2].string_value() != "get_peers")) return; } else { std::printf(" invalid find_node request: %s\n", print_entry(response).c_str()); TEST_ERROR(t.error_string); return; } g_sent_packets.clear(); send_dht_response(t.dht_node, response, found_node); TEST_CHECK(g_sent_packets.empty()); TEST_EQUAL(t.dht_node.num_global_nodes(), 3); } } // anonymous namespace TORRENT_TEST(bootstrap_v4) { test_bootstrap(rand_v4); } #if TORRENT_USE_IPV6 TORRENT_TEST(bootstrap_v6) { if (supports_ipv6()) test_bootstrap(rand_v6); } #endif #if TORRENT_USE_IPV6 namespace { void test_bootstrap_want(address(&rand_addr)()) { dht_test_setup t(udp::endpoint(rand_addr(), 20)); bdecode_node response; bool ret; dht::key_desc_t const find_node_desc[] = { {"y", bdecode_node::string_t, 1, 0}, {"t", bdecode_node::string_t, 2, 0}, {"q", bdecode_node::string_t, 9, 0}, {"a", bdecode_node::dict_t, 0, key_desc_t::parse_children}, {"id", bdecode_node::string_t, 20, 0}, {"target", bdecode_node::string_t, 20, key_desc_t::optional}, {"info_hash", bdecode_node::string_t, 20, key_desc_t::optional}, {"want", bdecode_node::list_t, 0, key_desc_t::last_child}, }; bdecode_node find_node_keys[8]; g_sent_packets.clear(); std::vector nodesv; if (is_v4(t.source)) nodesv.push_back(rand_udp_ep(rand_v6)); else nodesv.push_back(rand_udp_ep(rand_v4)); t.dht_node.bootstrap(nodesv, std::bind(&nop_node)); TEST_EQUAL(g_sent_packets.size(), 1); TEST_EQUAL(g_sent_packets.front().first, nodesv[0]); lazy_from_entry(g_sent_packets.front().second, response); ret = verify_message(response, find_node_desc, find_node_keys, t.error_string); if (ret) { TEST_EQUAL(find_node_keys[0].string_value(), "q"); TEST_CHECK(find_node_keys[2].string_value() == "find_node" || find_node_keys[2].string_value() == "get_peers"); TEST_EQUAL(find_node_keys[7].list_size(), 1); if (is_v4(t.source)) { TEST_EQUAL(find_node_keys[7].list_string_value_at(0), "n4"); } else { TEST_EQUAL(find_node_keys[7].list_string_value_at(0), "n6"); } } else { std::printf(" invalid find_node request: %s\n", print_entry(response).c_str()); TEST_ERROR(t.error_string); } } } // anonymous namespace TORRENT_TEST(bootstrap_want_v4) { test_bootstrap_want(rand_v4); } TORRENT_TEST(bootstrap_want_v6) { test_bootstrap_want(rand_v6); } #endif namespace { // test that the node ignores a nodes entry which is too short void test_short_nodes(address(&rand_addr)()) { dht_test_setup t(udp::endpoint(rand_addr(), 20)); bdecode_node response; bool ret; dht::key_desc_t const find_node_desc[] = { { "y", bdecode_node::string_t, 1, 0 }, { "t", bdecode_node::string_t, 2, 0 }, { "q", bdecode_node::string_t, 9, 0 }, { "a", bdecode_node::dict_t, 0, key_desc_t::parse_children }, { "id", bdecode_node::string_t, 20, 0 }, { "target", bdecode_node::string_t, 20, key_desc_t::optional }, { "info_hash", bdecode_node::string_t, 20, key_desc_t::optional | key_desc_t::last_child }, }; bdecode_node find_node_keys[7]; // bootstrap g_sent_packets.clear(); udp::endpoint initial_node(rand_addr(), 1234); std::vector nodesv; nodesv.push_back(initial_node); t.dht_node.bootstrap(nodesv, std::bind(&nop_node)); TEST_EQUAL(g_sent_packets.size(), 1); if (g_sent_packets.empty()) return; TEST_EQUAL(g_sent_packets.front().first, initial_node); lazy_from_entry(g_sent_packets.front().second, response); ret = verify_message(response, find_node_desc, find_node_keys, t.error_string); if (ret) { TEST_EQUAL(find_node_keys[0].string_value(), "q"); TEST_CHECK(find_node_keys[2].string_value() == "find_node" || find_node_keys[2].string_value() == "get_peers"); if (find_node_keys[0].string_value() != "q" || (find_node_keys[2].string_value() != "find_node" && find_node_keys[2].string_value() != "get_peers")) return; } else { std::printf(" invalid find_node request: %s\n", print_entry(response).c_str()); TEST_ERROR(t.error_string); return; } udp::endpoint found_node(rand_addr(), 2235); std::vector nodes; nodes.push_back(node_entry{found_node}); g_sent_packets.clear(); msg_args args; // chop one byte off of the nodes string if (is_v4(initial_node)) { args.nodes(nodes); args.a["nodes"] = args.a["nodes"].string().substr(1); } else { args.nodes6(nodes); args.a["nodes6"] = args.a["nodes6"].string().substr(1); } send_dht_response(t.dht_node, response, initial_node, args); TEST_EQUAL(g_sent_packets.size(), 0); } } // anonymous namespace TORRENT_TEST(short_nodes_v4) { test_short_nodes(rand_v4); } #if TORRENT_USE_IPV6 TORRENT_TEST(short_nodes_v6) { if (supports_ipv6()) test_short_nodes(rand_v6); } #endif namespace { void test_get_peers(address(&rand_addr)()) { dht_test_setup t(udp::endpoint(rand_addr(), 20)); bdecode_node response; bool ret; dht::key_desc_t const get_peers_desc[] = { {"y", bdecode_node::string_t, 1, 0}, {"t", bdecode_node::string_t, 2, 0}, {"q", bdecode_node::string_t, 9, 0}, {"a", bdecode_node::dict_t, 0, key_desc_t::parse_children}, {"id", bdecode_node::string_t, 20, 0}, {"info_hash", bdecode_node::string_t, 20, key_desc_t::last_child}, }; bdecode_node get_peers_keys[6]; // get_peers g_sent_packets.clear(); dht::node_id const target = to_hash("1234876923549721020394873245098347598635"); udp::endpoint const initial_node(rand_addr(), 1234); t.dht_node.m_table.add_node(node_entry{initial_node}); t.dht_node.announce(target, 1234, false, get_peers_cb); TEST_EQUAL(g_sent_packets.size(), 1); if (g_sent_packets.empty()) return; TEST_EQUAL(g_sent_packets.front().first, initial_node); lazy_from_entry(g_sent_packets.front().second, response); ret = verify_message(response, get_peers_desc, get_peers_keys, t.error_string); if (ret) { TEST_EQUAL(get_peers_keys[0].string_value(), "q"); TEST_EQUAL(get_peers_keys[2].string_value(), "get_peers"); TEST_EQUAL(get_peers_keys[5].string_value(), target.to_string()); if (get_peers_keys[0].string_value() != "q" || get_peers_keys[2].string_value() != "get_peers") return; } else { std::printf(" invalid get_peers request: %s\n", print_entry(response).c_str()); TEST_ERROR(t.error_string); return; } std::set peers[2]; peers[0].insert(tcp::endpoint(rand_addr(), 4111)); peers[0].insert(tcp::endpoint(rand_addr(), 4112)); peers[0].insert(tcp::endpoint(rand_addr(), 4113)); udp::endpoint next_node(rand_addr(), 2235); std::vector nodes; nodes.push_back(node_entry{next_node}); g_sent_packets.clear(); if (is_v4(initial_node)) { send_dht_response(t.dht_node, response, initial_node , msg_args().nodes(nodes).token("10").port(1234).peers(peers[0])); } else { send_dht_response(t.dht_node, response, initial_node , msg_args().nodes6(nodes).token("10").port(1234).peers(peers[0])); } TEST_EQUAL(g_sent_packets.size(), 1); if (g_sent_packets.empty()) return; TEST_EQUAL(g_sent_packets.front().first, next_node); lazy_from_entry(g_sent_packets.front().second, response); ret = verify_message(response, get_peers_desc, get_peers_keys, t.error_string); if (ret) { TEST_EQUAL(get_peers_keys[0].string_value(), "q"); TEST_EQUAL(get_peers_keys[2].string_value(), "get_peers"); TEST_EQUAL(get_peers_keys[5].string_value(), target.to_string()); if (get_peers_keys[0].string_value() != "q" || get_peers_keys[2].string_value() != "get_peers") return; } else { std::printf(" invalid get_peers request: %s\n", print_entry(response).c_str()); TEST_ERROR(t.error_string); return; } peers[1].insert(tcp::endpoint(rand_addr(), 4114)); peers[1].insert(tcp::endpoint(rand_addr(), 4115)); peers[1].insert(tcp::endpoint(rand_addr(), 4116)); g_sent_packets.clear(); send_dht_response(t.dht_node, response, next_node , msg_args().token("11").port(1234).peers(peers[1])); for (auto const& p : g_sent_packets) { // std::printf(" %s:%d: %s\n", i->first.address().to_string(ec).c_str() // , i->first.port(), i->second.to_string().c_str()); TEST_EQUAL(p.second["q"].string(), "announce_peer"); } g_sent_packets.clear(); for (int i = 0; i < 2; ++i) { for (auto const& peer : peers[i]) { TEST_CHECK(std::find(g_got_peers.begin(), g_got_peers.end(), peer) != g_got_peers.end()); } } g_got_peers.clear(); } } // anonymous namespace TORRENT_TEST(get_peers_v4) { test_get_peers(rand_v4); } #if TORRENT_USE_IPV6 TORRENT_TEST(get_peers_v6) { if (supports_ipv6()) test_get_peers(rand_v6); } #endif namespace { // TODO: 4 pass in th actual salt as the argument void test_mutable_get(address(&rand_addr)(), bool const with_salt) { dht_test_setup t(udp::endpoint(rand_addr(), 20)); public_key pk; secret_key sk; get_test_keypair(pk, sk); char buffer[1200]; sequence_number seq(4); span itemv; bdecode_node response; std::string salt; if (with_salt) salt = "foobar"; // mutable get g_sent_packets.clear(); udp::endpoint const initial_node(rand_addr(), 1234); t.dht_node.m_table.add_node(node_entry{initial_node}); g_put_item.assign(items[0].ent, salt, seq, pk, sk); t.dht_node.put_item(pk, std::string() , std::bind(&put_mutable_item_cb, _1, _2, 0) , put_mutable_item_data_cb); TEST_EQUAL(g_sent_packets.size(), 1); // mutable_get g_sent_packets.clear(); t.dht_node.get_item(pk, salt, get_mutable_item_cb); TEST_EQUAL(g_sent_packets.size(), 1); if (g_sent_packets.empty()) return; TEST_EQUAL(g_sent_packets.front().first, initial_node); lazy_from_entry(g_sent_packets.front().second, response); bdecode_node get_item_keys[6]; bool const ret = verify_message(response, get_item_desc, get_item_keys, t.error_string); if (ret) { TEST_EQUAL(get_item_keys[0].string_value(), "q"); TEST_EQUAL(get_item_keys[2].string_value(), "get"); if (get_item_keys[0].string_value() != "q" || get_item_keys[2].string_value() != "get") return; } else { std::printf(" invalid get request: %s\n", print_entry(response).c_str()); TEST_ERROR(t.error_string); return; } g_sent_packets.clear(); signature sig; itemv = span(buffer, std::size_t(bencode(buffer, items[0].ent))); sig = sign_mutable_item(itemv, salt, seq, pk, sk); send_dht_response(t.dht_node, response, initial_node , msg_args() .token("10") .port(1234) .value(items[0].ent) .key(pk) .sig(sig) .salt(salt) .seq(seq)); TEST_CHECK(g_sent_packets.empty()); TEST_EQUAL(g_got_items.size(), 1); if (g_got_items.empty()) return; TEST_EQUAL(g_got_items.front().value(), items[0].ent); TEST_CHECK(g_got_items.front().pk() == pk); TEST_CHECK(g_got_items.front().sig() == sig); TEST_CHECK(g_got_items.front().seq() == seq); g_got_items.clear(); } } // anonymous namespace TORRENT_TEST(mutable_get_v4) { test_mutable_get(rand_v4, false); } TORRENT_TEST(mutable_get_salt_v4) { test_mutable_get(rand_v4, true); } #if TORRENT_USE_IPV6 TORRENT_TEST(mutable_get_v6) { if (supports_ipv6()) test_mutable_get(rand_v6, false); } TORRENT_TEST(mutable_get_salt_v6) { if (supports_ipv6()) test_mutable_get(rand_v6, true); } #endif TORRENT_TEST(immutable_get) { dht_test_setup t(udp::endpoint(rand_v4(), 20)); bdecode_node response; // immutable get g_sent_packets.clear(); udp::endpoint initial_node(addr4("4.4.4.4"), 1234); t.dht_node.m_table.add_node(node_entry{initial_node}); t.dht_node.get_item(items[0].target, get_immutable_item_cb); TEST_EQUAL(g_sent_packets.size(), 1); if (g_sent_packets.empty()) return; TEST_EQUAL(g_sent_packets.front().first, initial_node); lazy_from_entry(g_sent_packets.front().second, response); bdecode_node get_item_keys[6]; bool const ret = verify_message(response, get_item_desc, get_item_keys, t.error_string); if (ret) { TEST_EQUAL(get_item_keys[0].string_value(), "q"); TEST_EQUAL(get_item_keys[2].string_value(), "get"); TEST_EQUAL(get_item_keys[5].string_value(), items[0].target.to_string()); if (get_item_keys[0].string_value() != "q" || get_item_keys[2].string_value() != "get") return; } else { std::printf(" invalid get request: %s\n", print_entry(response).c_str()); TEST_ERROR(t.error_string); return; } g_sent_packets.clear(); send_dht_response(t.dht_node, response, initial_node , msg_args().token("10").port(1234).value(items[0].ent)); TEST_CHECK(g_sent_packets.empty()); TEST_EQUAL(g_got_items.size(), 1); if (g_got_items.empty()) return; TEST_EQUAL(g_got_items.front().value(), items[0].ent); g_got_items.clear(); } TORRENT_TEST(immutable_put) { bdecode_node response; span itemv; char buffer[1200]; dht::key_desc_t const put_immutable_item_desc[] = { {"y", bdecode_node::string_t, 1, 0}, {"t", bdecode_node::string_t, 2, 0}, {"q", bdecode_node::string_t, 3, 0}, {"a", bdecode_node::dict_t, 0, key_desc_t::parse_children}, {"id", bdecode_node::string_t, 20, 0}, {"token", bdecode_node::string_t, 2, 0}, {"v", bdecode_node::none_t, 0, key_desc_t::last_child}, }; bdecode_node put_immutable_item_keys[7]; // immutable put g_sent_packets.clear(); for (int loop = 0; loop < 9; loop++) { dht_test_setup t(udp::endpoint(rand_v4(), 20)); // set the branching factor to k to make this a little easier t.sett.search_branching = 8; std::array const nodes = build_nodes(); for (node_entry const& n : nodes) t.dht_node.m_table.add_node(n); entry put_data; put_data = "Hello world"; std::string flat_data; bencode(std::back_inserter(flat_data), put_data); sha1_hash target = item_target_id( span(flat_data.c_str(), flat_data.size())); t.dht_node.put_item(target, put_data, std::bind(&put_immutable_item_cb, _1, loop)); TEST_EQUAL(g_sent_packets.size(), 8); if (g_sent_packets.size() != 8) break; for (std::size_t i = 0; i < 8; ++i) { auto const packet = find_packet(nodes[i].ep()); TEST_CHECK(packet != g_sent_packets.end()); if (packet == g_sent_packets.end()) continue; lazy_from_entry(packet->second, response); bdecode_node get_item_keys[6]; bool const ret = verify_message(response, get_item_desc, get_item_keys, t.error_string); if (!ret) { std::printf(" invalid get request: %s\n", print_entry(response).c_str()); TEST_ERROR(t.error_string); continue; } char tok[10]; std::snprintf(tok, sizeof(tok), "%02d", int(i)); msg_args args; args.token(tok).port(1234).nid(nodes[i].id).nodes({nodes[i]}); send_dht_response(t.dht_node, response, nodes[i].ep(), args); g_sent_packets.erase(packet); } TEST_EQUAL(g_sent_packets.size(), 8); if (g_sent_packets.size() != 8) break; itemv = span(buffer, std::size_t(bencode(buffer, put_data))); for (int i = 0; i < 8; ++i) { auto const packet = find_packet(nodes[std::size_t(i)].ep()); TEST_CHECK(packet != g_sent_packets.end()); if (packet == g_sent_packets.end()) continue; lazy_from_entry(packet->second, response); bool const ret = verify_message(response, put_immutable_item_desc, put_immutable_item_keys , t.error_string); if (ret) { TEST_EQUAL(put_immutable_item_keys[0].string_value(), "q"); TEST_EQUAL(put_immutable_item_keys[2].string_value(), "put"); span v = put_immutable_item_keys[6].data_section(); TEST_EQUAL(std::string(v.data(), v.size()), flat_data); char tok[10]; std::snprintf(tok, sizeof(tok), "%02d", i); TEST_EQUAL(put_immutable_item_keys[5].string_value(), tok); if (put_immutable_item_keys[0].string_value() != "q" || put_immutable_item_keys[2].string_value() != "put") continue; if (i < loop) send_dht_response(t.dht_node, response, nodes[std::size_t(i)].ep()); } else { std::printf(" invalid immutable put request: %s\n", print_entry(response).c_str()); TEST_ERROR(t.error_string); continue; } } g_sent_packets.clear(); g_put_item.clear(); g_put_count = 0; } } TORRENT_TEST(mutable_put) { bdecode_node response; span itemv; char buffer[1200]; bdecode_node put_mutable_item_keys[11]; public_key pk; secret_key sk; get_test_keypair(pk, sk); sequence_number seq(4); // mutable put g_sent_packets.clear(); for (int loop = 0; loop < 9; loop++) { dht_test_setup t(udp::endpoint(rand_v4(), 20)); // set the branching factor to k to make this a little easier t.sett.search_branching = 8; enum { num_test_nodes = 8 }; std::array const nodes = build_nodes(); for (auto const& n : nodes) t.dht_node.m_table.add_node(n); g_put_item.assign(items[0].ent, empty_salt, seq, pk, sk); signature const sig = g_put_item.sig(); t.dht_node.put_item(pk, std::string() , std::bind(&put_mutable_item_cb, _1, _2, loop) , put_mutable_item_data_cb); TEST_EQUAL(g_sent_packets.size(), 8); if (g_sent_packets.size() != 8) break; for (std::size_t i = 0; i < 8; ++i) { auto const packet = find_packet(nodes[i].ep()); TEST_CHECK(packet != g_sent_packets.end()); if (packet == g_sent_packets.end()) continue; lazy_from_entry(packet->second, response); bdecode_node get_item_keys[6]; bool const ret = verify_message(response, get_item_desc, get_item_keys, t.error_string); if (!ret) { std::printf(" invalid get request: %s\n", print_entry(response).c_str()); TEST_ERROR(t.error_string); continue; } char tok[10]; std::snprintf(tok, sizeof(tok), "%02d", int(i)); msg_args args; args.token(tok).port(1234).nid(nodes[i].id).nodes({nodes[i]}); send_dht_response(t.dht_node, response, nodes[i].ep(), args); g_sent_packets.erase(packet); } TEST_EQUAL(g_sent_packets.size(), 8); if (g_sent_packets.size() != 8) break; itemv = span(buffer, std::size_t(bencode(buffer, items[0].ent))); for (int i = 0; i < 8; ++i) { auto const packet = find_packet(nodes[std::size_t(i)].ep()); TEST_CHECK(packet != g_sent_packets.end()); if (packet == g_sent_packets.end()) continue; lazy_from_entry(packet->second, response); bool const ret = verify_message(response, put_mutable_item_desc, put_mutable_item_keys , t.error_string); if (ret) { TEST_EQUAL(put_mutable_item_keys[0].string_value(), "q"); TEST_EQUAL(put_mutable_item_keys[2].string_value(), "put"); TEST_EQUAL(put_mutable_item_keys[6].string_value() , std::string(pk.bytes.data(), public_key::len)); TEST_EQUAL(put_mutable_item_keys[7].int_value(), int(seq.value)); TEST_EQUAL(put_mutable_item_keys[8].string_value() , std::string(sig.bytes.data(), signature::len)); span v = put_mutable_item_keys[10].data_section(); TEST_EQUAL(v.size(), itemv.size()); TEST_CHECK(memcmp(v.data(), itemv.data(), itemv.size()) == 0); char tok[10]; std::snprintf(tok, sizeof(tok), "%02d", i); TEST_EQUAL(put_mutable_item_keys[9].string_value(), tok); if (put_mutable_item_keys[0].string_value() != "q" || put_mutable_item_keys[2].string_value() != "put") continue; if (i < loop) send_dht_response(t.dht_node, response, nodes[std::size_t(i)].ep()); } else { std::printf(" invalid put request: %s\n", print_entry(response).c_str()); TEST_ERROR(t.error_string); continue; } } g_sent_packets.clear(); g_put_item.clear(); g_put_count = 0; } } TORRENT_TEST(traversal_done) { dht_test_setup t(udp::endpoint(rand_v4(), 20)); // set the branching factor to k to make this a little easier t.sett.search_branching = 8; public_key pk; secret_key sk; get_test_keypair(pk, sk); sequence_number seq(4); bdecode_node response; // verify that done() is only invoked once // See PR 252 g_sent_packets.clear(); sha1_hash const target = hasher(pk.bytes).final(); enum { num_test_nodes = 9 }; // we need K + 1 nodes to create the failing sequence std::array nodes = build_nodes(target); // invert the ith most significant byte so that the test nodes are // progressively closer to the target item for (std::size_t i = 0; i < num_test_nodes; ++i) nodes[i].id[i] = ~nodes[i].id[i]; // add the first k nodes to the subject's routing table for (std::size_t i = 0; i < 8; ++i) t.dht_node.m_table.add_node(nodes[i]); // kick off a mutable put request g_put_item.assign(items[0].ent, empty_salt, seq, pk, sk); t.dht_node.put_item(pk, std::string() , std::bind(&put_mutable_item_cb, _1, _2, 0) , put_mutable_item_data_cb); TEST_EQUAL(g_sent_packets.size(), 8); if (g_sent_packets.size() != 8) return; // first send responses for the k closest nodes for (int i = 1;; ++i) { // once the k closest nodes have responded, send the final response // from the farthest node, this shouldn't trigger a second call to // get_item_cb if (i == num_test_nodes) i = 0; auto const packet = find_packet(nodes[std::size_t(i)].ep()); TEST_CHECK(packet != g_sent_packets.end()); if (packet == g_sent_packets.end()) continue; lazy_from_entry(packet->second, response); bdecode_node get_item_keys[6]; bool const ret = verify_message(response, get_item_desc, get_item_keys, t.error_string); if (!ret) { std::printf(" invalid get request: %s\n", print_entry(response).c_str()); TEST_ERROR(t.error_string); continue; } char tok[10]; std::snprintf(tok, sizeof(tok), "%02d", i); msg_args args; args.token(tok).port(1234).nid(nodes[std::size_t(i)].id); // add the address of the closest node to the first response if (i == 1) args.nodes({nodes[8]}); send_dht_response(t.dht_node, response, nodes[std::size_t(i)].ep(), args); g_sent_packets.erase(packet); // once we've sent the response from the farthest node, we're done if (i == 0) break; } TEST_EQUAL(g_put_count, 1); // k nodes should now have outstanding put requests TEST_EQUAL(g_sent_packets.size(), 8); g_sent_packets.clear(); g_put_item.clear(); g_put_count = 0; } #if TORRENT_USE_IPV6 TORRENT_TEST(dht_dual_stack) { // TODO: 3 use dht_test_setup class to simplify the node setup dht::dht_settings sett = test_settings(); mock_socket s; auto sock4 = dummy_listen_socket4(); auto sock6 = dummy_listen_socket6(); obs observer; counters cnt; node* node4p = nullptr, *node6p = nullptr; auto get_foreign_node = [&](node_id const&, std::string const& family) { if (family == "n4") return node4p; if (family == "n6") return node6p; TEST_CHECK(false); return static_cast(nullptr); }; std::unique_ptr dht_storage(dht_default_storage_constructor(sett)); dht_storage->update_node_ids({node_id(nullptr)}); dht::node node4(sock4, &s, sett, node_id(nullptr), &observer, cnt, get_foreign_node, *dht_storage); dht::node node6(sock6, &s, sett, node_id(nullptr), &observer, cnt, get_foreign_node, *dht_storage); node4p = &node4; node6p = &node6; // DHT should be running on port 48199 now bdecode_node response; char error_string[200]; bool ret; node_id id = to_hash("3123456789abcdef01232456789abcdef0123456"); node4.m_table.node_seen(id, udp::endpoint(addr("4.4.4.4"), 4440), 10); node6.m_table.node_seen(id, udp::endpoint(addr("4::4"), 4441), 10); // v4 node requesting v6 nodes udp::endpoint source(addr("10.0.0.1"), 20); send_dht_request(node4, "find_node", source, &response , msg_args() .target(sha1_hash("0101010101010101010101010101010101010101")) .want("n6")); dht::key_desc_t const nodes6_desc[] = { { "y", bdecode_node::string_t, 1, 0 }, { "r", bdecode_node::dict_t, 0, key_desc_t::parse_children }, { "id", bdecode_node::string_t, 20, 0 }, { "nodes6", bdecode_node::string_t, 38, key_desc_t::last_child } }; bdecode_node nodes6_keys[4]; ret = verify_message(response, nodes6_desc, nodes6_keys, error_string); if (ret) { char const* nodes_ptr = nodes6_keys[3].string_ptr(); TEST_CHECK(memcmp(nodes_ptr, id.data(), id.size()) == 0); nodes_ptr += id.size(); udp::endpoint rep = detail::read_v6_endpoint(nodes_ptr); TEST_EQUAL(rep, udp::endpoint(addr("4::4"), 4441)); } else { std::printf("find_node response: %s\n", print_entry(response).c_str()); TEST_ERROR(error_string); } // v6 node requesting v4 nodes source.address(addr("10::1")); send_dht_request(node6, "get_peers", source, &response , msg_args().info_hash("0101010101010101010101010101010101010101").want("n4")); dht::key_desc_t const nodes_desc[] = { { "y", bdecode_node::string_t, 1, 0 }, { "r", bdecode_node::dict_t, 0, key_desc_t::parse_children }, { "id", bdecode_node::string_t, 20, 0 }, { "nodes", bdecode_node::string_t, 26, key_desc_t::last_child } }; bdecode_node nodes_keys[4]; ret = verify_message(response, nodes_desc, nodes_keys, error_string); if (ret) { char const* nodes_ptr = nodes_keys[3].string_ptr(); TEST_CHECK(memcmp(nodes_ptr, id.data(), id.size()) == 0); nodes_ptr += id.size(); udp::endpoint rep = detail::read_v4_endpoint(nodes_ptr); TEST_EQUAL(rep, udp::endpoint(addr("4.4.4.4"), 4440)); } else { std::printf("find_node response: %s\n", print_entry(response).c_str()); TEST_ERROR(error_string); } // v6 node requesting both v4 and v6 nodes send_dht_request(node6, "find_nodes", source, &response , msg_args().info_hash("0101010101010101010101010101010101010101") .want("n4") .want("n6")); dht::key_desc_t const nodes46_desc[] = { { "y", bdecode_node::string_t, 1, 0 }, { "r", bdecode_node::dict_t, 0, key_desc_t::parse_children }, { "id", bdecode_node::string_t, 20, 0 }, { "nodes", bdecode_node::string_t, 26, 0 }, { "nodes6", bdecode_node::string_t, 38, key_desc_t::last_child } }; bdecode_node nodes46_keys[5]; ret = verify_message(response, nodes46_desc, nodes46_keys, error_string); if (ret) { char const* nodes_ptr = nodes46_keys[3].string_ptr(); TEST_CHECK(memcmp(nodes_ptr, id.data(), id.size()) == 0); nodes_ptr += id.size(); udp::endpoint rep = detail::read_v4_endpoint(nodes_ptr); TEST_EQUAL(rep, udp::endpoint(addr("4.4.4.4"), 4440)); nodes_ptr = nodes46_keys[4].string_ptr(); TEST_CHECK(memcmp(nodes_ptr, id.data(), id.size()) == 0); nodes_ptr += id.size(); rep = detail::read_v6_endpoint(nodes_ptr); TEST_EQUAL(rep, udp::endpoint(addr("4::4"), 4441)); } else { std::printf("find_node response: %s\n", print_entry(response).c_str()); TEST_ERROR(error_string); } } #endif TORRENT_TEST(multi_home) { // send a request with a different listen socket and make sure the node ignores it dht_test_setup t(udp::endpoint(rand_v4(), 20)); bdecode_node response; entry e; e["q"] = "ping"; e["t"] = "10"; e["y"] = "q"; e["a"].dict().insert(std::make_pair("id", generate_next().to_string())); char msg_buf[1500]; int size = bencode(msg_buf, e); bdecode_node decoded; error_code ec; bdecode(msg_buf, msg_buf + size, decoded, ec); if (ec) std::printf("bdecode failed: %s\n", ec.message().c_str()); dht::msg m(decoded, t.source); t.dht_node.incoming(dummy_listen_socket(udp::endpoint(rand_v4(), 21)), m); TEST_CHECK(g_sent_packets.empty()); g_sent_packets.clear(); } TORRENT_TEST(signing_test1) { // test vector 1 // test content span test_content("12:Hello World!", 15); // test salt span test_salt("foobar", 6); public_key pk; secret_key sk; get_test_keypair(pk, sk); signature sig; sig = sign_mutable_item(test_content, empty_salt, sequence_number(1), pk, sk); TEST_EQUAL(aux::to_hex(sig.bytes) , "305ac8aeb6c9c151fa120f120ea2cfb923564e11552d06a5d856091e5e853cff" "1260d3f39e4999684aa92eb73ffd136e6f4f3ecbfda0ce53a1608ecd7ae21f01"); sha1_hash const target_id = item_target_id(empty_salt, pk); TEST_EQUAL(aux::to_hex(target_id), "4a533d47ec9c7d95b1ad75f576cffc641853b750"); } TORRENT_TEST(signing_test2) { public_key pk; secret_key sk; get_test_keypair(pk, sk); // test content span test_content("12:Hello World!", 15); signature sig; // test salt span test_salt("foobar", 6); // test vector 2 (the keypair is the same as test 1) sig = sign_mutable_item(test_content, test_salt, sequence_number(1), pk, sk); TEST_EQUAL(aux::to_hex(sig.bytes) , "6834284b6b24c3204eb2fea824d82f88883a3d95e8b4a21b8c0ded553d17d17d" "df9a8a7104b1258f30bed3787e6cb896fca78c58f8e03b5f18f14951a87d9a08"); sha1_hash target_id = item_target_id(test_salt, pk); TEST_EQUAL(aux::to_hex(target_id), "411eba73b6f087ca51a3795d9c8c938d365e32c1"); } TORRENT_TEST(signing_test3) { // test vector 3 // test content span test_content("12:Hello World!", 15); sha1_hash target_id = item_target_id(test_content); TEST_EQUAL(aux::to_hex(target_id), "e5f96f6f38320f0f33959cb4d3d656452117aadb"); } // TODO: 2 split this up into smaller test cases TORRENT_TEST(verify_message) { char error_string[200]; // test verify_message static const key_desc_t msg_desc[] = { {"A", bdecode_node::string_t, 4, 0}, {"B", bdecode_node::dict_t, 0, key_desc_t::optional | key_desc_t::parse_children}, {"B1", bdecode_node::string_t, 0, 0}, {"B2", bdecode_node::string_t, 0, key_desc_t::last_child}, {"C", bdecode_node::dict_t, 0, key_desc_t::optional | key_desc_t::parse_children}, {"C1", bdecode_node::string_t, 0, 0}, {"C2", bdecode_node::string_t, 0, key_desc_t::last_child}, }; bdecode_node msg_keys[7]; bdecode_node ent; error_code ec; char const test_msg[] = "d1:A4:test1:Bd2:B15:test22:B25:test3ee"; bdecode(test_msg, test_msg + sizeof(test_msg)-1, ent, ec); std::printf("%s\n", print_entry(ent).c_str()); bool ret = verify_message(ent, msg_desc, msg_keys, error_string); TEST_CHECK(ret); TEST_CHECK(msg_keys[0]); if (msg_keys[0]) TEST_EQUAL(msg_keys[0].string_value(), "test"); TEST_CHECK(msg_keys[1]); TEST_CHECK(msg_keys[2]); if (msg_keys[2]) TEST_EQUAL(msg_keys[2].string_value(), "test2"); TEST_CHECK(msg_keys[3]); if (msg_keys[3]) TEST_EQUAL(msg_keys[3].string_value(), "test3"); TEST_CHECK(!msg_keys[4]); TEST_CHECK(!msg_keys[5]); TEST_CHECK(!msg_keys[6]); char const test_msg2[] = "d1:A4:test1:Cd2:C15:test22:C25:test3ee"; bdecode(test_msg2, test_msg2 + sizeof(test_msg2)-1, ent, ec); std::printf("%s\n", print_entry(ent).c_str()); ret = verify_message(ent, msg_desc, msg_keys, error_string); TEST_CHECK(ret); TEST_CHECK(msg_keys[0]); if (msg_keys[0]) TEST_EQUAL(msg_keys[0].string_value(), "test"); TEST_CHECK(!msg_keys[1]); TEST_CHECK(!msg_keys[2]); TEST_CHECK(!msg_keys[3]); TEST_CHECK(msg_keys[4]); TEST_CHECK(msg_keys[5]); if (msg_keys[5]) TEST_EQUAL(msg_keys[5].string_value(), "test2"); TEST_CHECK(msg_keys[6]); if (msg_keys[6]) TEST_EQUAL(msg_keys[6].string_value(), "test3"); char const test_msg3[] = "d1:Cd2:C15:test22:C25:test3ee"; bdecode(test_msg3, test_msg3 + sizeof(test_msg3)-1, ent, ec); std::printf("%s\n", print_entry(ent).c_str()); ret = verify_message(ent, msg_desc, msg_keys, error_string); TEST_CHECK(!ret); std::printf("%s\n", error_string); TEST_EQUAL(error_string, std::string("missing 'A' key")); char const test_msg4[] = "d1:A6:foobare"; bdecode(test_msg4, test_msg4 + sizeof(test_msg4)-1, ent, ec); std::printf("%s\n", print_entry(ent).c_str()); ret = verify_message(ent, msg_desc, msg_keys, error_string); TEST_CHECK(!ret); std::printf("%s\n", error_string); TEST_EQUAL(error_string, std::string("invalid value for 'A'")); char const test_msg5[] = "d1:A4:test1:Cd2:C15:test2ee"; bdecode(test_msg5, test_msg5 + sizeof(test_msg5)-1, ent, ec); std::printf("%s\n", print_entry(ent).c_str()); ret = verify_message(ent, msg_desc, msg_keys, error_string); TEST_CHECK(!ret); std::printf("%s\n", error_string); TEST_EQUAL(error_string, std::string("missing 'C2' key")); // test empty strings [ { "":1 }, "" ] char const test_msg6[] = "ld0:i1ee0:e"; bdecode(test_msg6, test_msg6 + sizeof(test_msg6)-1, ent, ec); std::printf("%s\n", print_entry(ent).c_str()); TEST_CHECK(ent.type() == bdecode_node::list_t); if (ent.type() == bdecode_node::list_t) { TEST_CHECK(ent.list_size() == 2); if (ent.list_size() == 2) { TEST_CHECK(ent.list_at(0).dict_find_int_value("") == 1); TEST_CHECK(ent.list_at(1).string_value() == ""); } } } TORRENT_TEST(routing_table_uniform) { // test routing table dht::dht_settings sett = test_settings(); obs observer; sett.extended_routing_table = false; node_id id = to_hash("1234876923549721020394873245098347598635"); node_id diff = to_hash("15764f7459456a9453f8719b09547c11d5f34061"); routing_table tbl(id, udp::v4(), 8, sett, &observer); // insert 256 nodes evenly distributed across the ID space. // we expect to fill the top 5 buckets for (int i = 255; i >= 0; --i) { // test a node with the same IP:port changing ID add_and_replace(id, diff); // in order to make this node-load a bit more realistic, start from // distant nodes and work our way in closer to the node id // the routing table will reject nodes that are too imbalanced (if all // nodes are very close to our ID and none are far away, it's // suspicious). id[0] ^= i; tbl.node_seen(id, rand_udp_ep(), 20 + (id[19] & 0xff)); // restore the first byte of the node ID id[0] ^= i; } std::printf("num_active_buckets: %d\n", tbl.num_active_buckets()); // number of nodes per tree level (when adding 256 evenly distributed // nodes): // 0: 128 // 1: 64 // 2: 32 // 3: 16 // 4: 8 // i.e. no more than 5 levels TEST_EQUAL(tbl.num_active_buckets(), 5); print_state(std::cout, tbl); } TORRENT_TEST(routing_table_balance) { dht::dht_settings sett = test_settings(); obs observer; sett.extended_routing_table = false; node_id id = to_hash("1234876923549721020394873245098347598635"); routing_table tbl(id, udp::v4(), 8, sett, &observer); // insert nodes in the routing table that will force it to split // and make sure we don't end up with a table completely out of balance for (int i = 0; i < 32; ++i) { id[4] = i & 0xff; tbl.node_seen(id, rand_udp_ep(), 20 + (id[19] & 0xff)); } std::printf("num_active_buckets: %d\n", tbl.num_active_buckets()); TEST_EQUAL(tbl.num_active_buckets(), 2); print_state(std::cout, tbl); } TORRENT_TEST(routing_table_extended) { dht::dht_settings sett = test_settings(); obs observer; sett.extended_routing_table = true; node_id id = to_hash("1234876923549721020394873245098347598635"); node_id diff = to_hash("15764f7459456a9453f8719b09547c11d5f34061"); // we can't add the nodes in straight 0,1,2,3 order. That way the routing // table would get unbalanced and intermediate nodes would be dropped std::vector node_id_prefix; node_id_prefix.reserve(256); for (int i = 0; i < 256; ++i) node_id_prefix.push_back(i & 0xff); aux::random_shuffle(node_id_prefix.begin(), node_id_prefix.end()); routing_table tbl(id, udp::v4(), 8, sett, &observer); for (std::size_t i = 0; i < 256; ++i) { add_and_replace(id, diff); id[0] = node_id_prefix[i]; tbl.node_seen(id, rand_udp_ep(), 20 + (id[19] & 0xff)); } TEST_EQUAL(tbl.num_active_buckets(), 6); print_state(std::cout, tbl); } namespace { void inserter(std::set* nodes, node_entry const& ne) { nodes->insert(nodes->begin(), ne.id); } } // anonymous namespace TORRENT_TEST(routing_table_set_id) { dht::dht_settings sett = test_settings(); sett.enforce_node_id = false; sett.extended_routing_table = false; obs observer; node_id id = to_hash("0000000000000000000000000000000000000000"); // we can't add the nodes in straight 0,1,2,3 order. That way the routing // table would get unbalanced and intermediate nodes would be dropped std::vector node_id_prefix; node_id_prefix.reserve(256); for (int i = 0; i < 256; ++i) node_id_prefix.push_back(i & 0xff); aux::random_shuffle(node_id_prefix.begin(), node_id_prefix.end()); routing_table tbl(id, udp::v4(), 8, sett, &observer); for (std::size_t i = 0; i < 256; ++i) { id[0] = node_id_prefix[i]; tbl.node_seen(id, rand_udp_ep(), 20 + (id[19] & 0xff)); } TEST_EQUAL(tbl.num_active_buckets(), 6); std::set original_nodes; tbl.for_each_node(std::bind(&inserter, &original_nodes, _1)); print_state(std::cout, tbl); id = to_hash("ffffffffffffffffffffffffffffffffffffffff"); tbl.update_node_id(id); TEST_CHECK(tbl.num_active_buckets() <= 4); std::set remaining_nodes; tbl.for_each_node(std::bind(&inserter, &remaining_nodes, _1)); std::set intersection; std::set_intersection(remaining_nodes.begin(), remaining_nodes.end() , original_nodes.begin(), original_nodes.end() , std::inserter(intersection, intersection.begin())); // all remaining nodes also exist in the original nodes TEST_EQUAL(intersection.size(), remaining_nodes.size()); print_state(std::cout, tbl); } TORRENT_TEST(routing_table_for_each) { dht::dht_settings sett = test_settings(); obs observer; sett.extended_routing_table = false; node_id id = to_hash("1234876923549721020394873245098347598635"); routing_table tbl(id, udp::v4(), 2, sett, &observer); for (int i = 0; i < 32; ++i) { id[4] = i & 0xff; tbl.node_seen(id, rand_udp_ep(), 20 + (id[19] & 0xff)); } int nodes; int replacements; std::tie(nodes, replacements, std::ignore) = tbl.size(); std::printf("num_active_buckets: %d\n", tbl.num_active_buckets()); std::printf("live nodes: %d\n", nodes); std::printf("replacements: %d\n", replacements); TEST_EQUAL(tbl.num_active_buckets(), 2); TEST_EQUAL(nodes, 2); TEST_EQUAL(replacements, 2); print_state(std::cout, tbl); std::vector v; tbl.for_each_node(std::bind(node_push_back, &v, _1), nullptr); TEST_EQUAL(v.size(), 2); v.clear(); tbl.for_each_node(nullptr, std::bind(node_push_back, &v, _1)); TEST_EQUAL(v.size(), 2); v.clear(); tbl.for_each_node(std::bind(node_push_back, &v, _1)); TEST_EQUAL(v.size(), 4); } TORRENT_TEST(node_set_id) { dht_test_setup t(udp::endpoint(rand_v4(), 20)); node_id old_nid = t.dht_node.nid(); // put in a few votes to make sure the address really changes for (int i = 0; i < 25; ++i) t.observer.set_external_address(aux::listen_socket_handle(t.ls), addr4("237.0.0.1"), rand_v4()); t.dht_node.update_node_id(); TEST_CHECK(old_nid != t.dht_node.nid()); // now that we've changed the node's id, make sure the id sent in outgoing messages // reflects the change bdecode_node response; send_dht_request(t.dht_node, "ping", t.source, &response); dht::key_desc_t const pong_desc[] = { { "y", bdecode_node::string_t, 1, 0 }, { "t", bdecode_node::string_t, 2, 0 }, { "r", bdecode_node::dict_t, 0, key_desc_t::parse_children }, { "id", bdecode_node::string_t, 20, key_desc_t::last_child }, }; bdecode_node pong_keys[4]; bool ret = dht::verify_message(response, pong_desc, pong_keys, t.error_string); TEST_CHECK(ret); if (!ret) return; TEST_EQUAL(node_id(pong_keys[3].string_ptr()), t.dht_node.nid()); } TORRENT_TEST(read_only_node) { // TODO: 3 use dht_test_setup class to simplify the node setup dht::dht_settings sett = test_settings(); sett.read_only = true; mock_socket s; auto ls = dummy_listen_socket4(); obs observer; counters cnt; std::unique_ptr dht_storage(dht_default_storage_constructor(sett)); dht_storage->update_node_ids({node_id(nullptr)}); dht::node node(ls, &s, sett, node_id(nullptr), &observer, cnt, get_foreign_node_stub, *dht_storage); udp::endpoint source(addr("10.0.0.1"), 20); bdecode_node response; msg_args args; // for incoming requests, read_only node won't response. send_dht_request(node, "ping", source, &response, args, "10", false); TEST_EQUAL(response.type(), bdecode_node::none_t); args.target(sha1_hash("01010101010101010101")); send_dht_request(node, "get", source, &response, args, "10", false); TEST_EQUAL(response.type(), bdecode_node::none_t); // also, the sender shouldn't be added to routing table. TEST_EQUAL(std::get<0>(node.size()), 0); // for outgoing requests, read_only node will add 'ro' key (value == 1) // in top-level of request. bdecode_node parsed[7]; char error_string[200]; udp::endpoint initial_node(addr("4.4.4.4"), 1234); node.m_table.add_node(node_entry{initial_node}); bdecode_node request; sha1_hash target = generate_next(); node.get_item(target, get_immutable_item_cb); TEST_EQUAL(g_sent_packets.size(), 1); TEST_EQUAL(g_sent_packets.front().first, initial_node); dht::key_desc_t const get_item_desc_ro[] = { {"y", bdecode_node::string_t, 1, 0}, {"t", bdecode_node::string_t, 2, 0}, {"q", bdecode_node::string_t, 3, 0}, {"ro", bdecode_node::int_t, 4, key_desc_t::optional}, {"a", bdecode_node::dict_t, 0, key_desc_t::parse_children}, {"id", bdecode_node::string_t, 20, 0}, {"target", bdecode_node::string_t, 20, key_desc_t::last_child}, }; lazy_from_entry(g_sent_packets.front().second, request); bool ret = verify_message(request, get_item_desc_ro, parsed, error_string); TEST_CHECK(ret); TEST_EQUAL(parsed[3].int_value(), 1); // should have one node now, which is 4.4.4.4:1234 TEST_EQUAL(std::get<0>(node.size()), 1); // now, disable read_only, try again. g_sent_packets.clear(); sett.read_only = false; send_dht_request(node, "get", source, &response); // sender should be added to routing table, there are 2 nodes now. TEST_EQUAL(std::get<0>(node.size()), 2); g_sent_packets.clear(); target = generate_next(); node.get_item(target, get_immutable_item_cb); // since we have 2 nodes, we should have two packets. TEST_EQUAL(g_sent_packets.size(), 2); // both of them shouldn't have a 'ro' key. lazy_from_entry(g_sent_packets.front().second, request); ret = verify_message(request, get_item_desc_ro, parsed, error_string); TEST_CHECK(ret); TEST_CHECK(!parsed[3]); lazy_from_entry(g_sent_packets.back().second, request); ret = verify_message(request, get_item_desc_ro, parsed, error_string); TEST_CHECK(ret); TEST_CHECK(!parsed[3]); } #ifndef TORRENT_DISABLE_LOGGING // these tests rely on logging being enabled TORRENT_TEST(invalid_error_msg) { // TODO: 3 use dht_test_setup class to simplify the node setup dht::dht_settings sett = test_settings(); mock_socket s; auto ls = dummy_listen_socket4(); obs observer; counters cnt; std::unique_ptr dht_storage(dht_default_storage_constructor(sett)); dht_storage->update_node_ids({node_id(nullptr)}); dht::node node(ls, &s, sett, node_id(nullptr), &observer, cnt, get_foreign_node_stub, *dht_storage); udp::endpoint source(addr("10.0.0.1"), 20); entry e; e["y"] = "e"; e["e"].string() = "Malformed Error"; char msg_buf[1500]; int size = bencode(msg_buf, e); bdecode_node decoded; error_code ec; bdecode(msg_buf, msg_buf + size, decoded, ec); if (ec) std::printf("bdecode failed: %s\n", ec.message().c_str()); dht::msg m(decoded, source); node.incoming(node.m_sock, m); bool found = false; for (auto const& log : observer.m_log) { if (log.find("INCOMING ERROR") != std::string::npos && log.find("(malformed)") != std::string::npos) found = true; std::printf("%s\n", log.c_str()); } TEST_EQUAL(found, true); } struct test_algo : dht::traversal_algorithm { test_algo(node& dht_node, node_id const& target) : traversal_algorithm(dht_node, target) {} std::vector const& results() const { return m_results; } using traversal_algorithm::num_sorted_results; }; TORRENT_TEST(unsorted_traversal_results) { // make sure the handling of an unsorted tail of nodes is correct in the // traversal algorithm. Initial nodes (that we bootstrap from) remain // unsorted, since we don't know their node IDs dht_test_setup t(udp::endpoint(rand_v4(), 20)); node_id const our_id = t.dht_node.nid(); auto algo = std::make_shared(t.dht_node, our_id); std::vector eps; for (int i = 0; i < 10; ++i) { eps.push_back(rand_udp_ep(rand_v4)); algo->add_entry(node_id(), eps.back(), observer::flag_initial); } // we should have 10 unsorted nodes now TEST_CHECK(algo->num_sorted_results() == 0); auto results = algo->results(); TEST_CHECK(results.size() == eps.size()); for (std::size_t i = 0; i < eps.size(); ++i) TEST_CHECK(eps[i] == results[i]->target_ep()); // setting the node ID, regardless of what we set it to, should cause this // observer to become sorted. i.e. be moved to the beginning of the result // list. results[5]->set_id(node_id("abababababababababab")); TEST_CHECK(algo->num_sorted_results() == 1); results = algo->results(); TEST_CHECK(results.size() == eps.size()); TEST_CHECK(eps[5] == results[0]->target_ep()); } TORRENT_TEST(rpc_invalid_error_msg) { // TODO: 3 use dht_test_setup class to simplify the node setup dht::dht_settings sett = test_settings(); mock_socket s; auto ls = dummy_listen_socket4(); obs observer; counters cnt; dht::routing_table table(node_id(), udp::v4(), 8, sett, &observer); dht::rpc_manager rpc(node_id(), sett, table, ls, &s, &observer); std::unique_ptr dht_storage(dht_default_storage_constructor(sett)); dht_storage->update_node_ids({node_id(nullptr)}); dht::node node(ls, &s, sett, node_id(nullptr), &observer, cnt, get_foreign_node_stub, *dht_storage); udp::endpoint source(addr("10.0.0.1"), 20); // we need this to create an entry for this transaction ID, otherwise the // incoming message will just be dropped entry req; req["y"] = "q"; req["q"] = "bogus_query"; req["t"] = "\0\0\0\0"; g_sent_packets.clear(); auto algo = std::make_shared(node, node_id()); auto o = rpc.allocate_observer(std::move(algo), source, node_id()); #if TORRENT_USE_ASSERTS o->m_in_constructor = false; #endif rpc.invoke(req, source, o); // here's the incoming (malformed) error message entry err; err["y"] = "e"; err["e"].string() = "Malformed Error"; err["t"] = g_sent_packets.begin()->second["t"].string(); char msg_buf[1500]; int size = bencode(msg_buf, err); bdecode_node decoded; error_code ec; bdecode(msg_buf, msg_buf + size, decoded, ec); if (ec) std::printf("bdecode failed: %s\n", ec.message().c_str()); dht::msg m(decoded, source); node_id nid; rpc.incoming(m, &nid); bool found = false; for (auto const& log : observer.m_log) { if (log.find("reply with") != std::string::npos && log.find("(malformed)") != std::string::npos && log.find("error") != std::string::npos) found = true; std::printf("%s\n", log.c_str()); } TEST_EQUAL(found, true); } #endif // test bucket distribution TORRENT_TEST(node_id_bucket_distribution) { int nodes_per_bucket[160] = {0}; dht::node_id reference_id = generate_id(rand_v4()); int const num_samples = 100000; for (int i = 0; i < num_samples; ++i) { dht::node_id nid = generate_id(rand_v4()); int const bucket = 159 - distance_exp(reference_id, nid); ++nodes_per_bucket[bucket]; } for (int i = 0; i < 25; ++i) { std::printf("%3d ", nodes_per_bucket[i]); } std::printf("\n"); int expected = num_samples / 2; for (int i = 0; i < 25; ++i) { TEST_CHECK(std::abs(nodes_per_bucket[i] - expected) < num_samples / 20); expected /= 2; } } TORRENT_TEST(node_id_min_distance_exp) { node_id const n1 = to_hash("0000000000000000000000000000000000000002"); node_id const n2 = to_hash("0000000000000000000000000000000000000004"); node_id const n3 = to_hash("0000000000000000000000000000000000000008"); std::vector ids; ids.push_back(n1); TEST_EQUAL(min_distance_exp(sha1_hash::min(), ids), 1); ids.push_back(n1); ids.push_back(n2); TEST_EQUAL(min_distance_exp(sha1_hash::min(), ids), 1); ids.push_back(n1); ids.push_back(n2); ids.push_back(n3); TEST_EQUAL(min_distance_exp(sha1_hash::min(), ids), 1); ids.clear(); ids.push_back(n3); ids.push_back(n2); ids.push_back(n2); TEST_EQUAL(min_distance_exp(sha1_hash::min(), ids), 2); } TORRENT_TEST(dht_verify_node_address) { obs observer; // initial setup taken from dht test above dht::dht_settings s; s.extended_routing_table = false; node_id id = to_hash("3123456789abcdef01232456789abcdef0123456"); const int bucket_size = 10; dht::routing_table table(id, udp::v4(), bucket_size, s, &observer); std::vector nodes; TEST_EQUAL(std::get<0>(table.size()), 0); node_id tmp = id; node_id diff = to_hash("15764f7459456a9453f8719b09547c11d5f34061"); add_and_replace(tmp, diff); table.node_seen(tmp, udp::endpoint(addr("4.4.4.4"), 4), 10); table.find_node(id, nodes, 0, 10); TEST_EQUAL(std::get<0>(table.size()), 1); TEST_EQUAL(nodes.size(), 1); // incorrect data, wrong IP table.node_seen(tmp , udp::endpoint(addr("4.4.4.6"), 4), 10); table.find_node(id, nodes, 0, 10); TEST_EQUAL(std::get<0>(table.size()), 1); TEST_EQUAL(nodes.size(), 1); // incorrect data, wrong id, should cause node to be removed table.node_seen(to_hash("0123456789abcdef01232456789abcdef0123456") , udp::endpoint(addr("4.4.4.4"), 4), 10); table.find_node(id, nodes, 0, 10); TEST_EQUAL(std::get<0>(table.size()), 0); TEST_EQUAL(nodes.size(), 0); } TORRENT_TEST(generate_prefix_mask) { std::vector> const test = { { 0, "0000000000000000000000000000000000000000" }, { 1, "8000000000000000000000000000000000000000" }, { 2, "c000000000000000000000000000000000000000" }, { 11, "ffe0000000000000000000000000000000000000" }, { 17, "ffff800000000000000000000000000000000000" }, { 37, "fffffffff8000000000000000000000000000000" }, { 160, "ffffffffffffffffffffffffffffffffffffffff" }, }; for (auto const& i : test) { TEST_EQUAL(generate_prefix_mask(i.first), to_hash(i.second)); } } TORRENT_TEST(distance_exp) { // distance_exp using tst = std::tuple; std::vector> const distance_tests = { tst{ "ffffffffffffffffffffffffffffffffffffffff" , "0000000000000000000000000000000000000000", 159 }, tst{ "ffffffffffffffffffffffffffffffffffffffff" , "7fffffffffffffffffffffffffffffffffffffff", 159 }, tst{ "ffffffffffffffffffffffffffffffffffffffff" , "ffffffffffffffffffffffffffffffffffffffff", 0 }, tst{ "ffffffffffffffffffffffffffffffffffffffff" , "fffffffffffffffffffffffffffffffffffffffe", 0 }, tst{ "8000000000000000000000000000000000000000" , "fffffffffffffffffffffffffffffffffffffffe", 158 }, tst{ "c000000000000000000000000000000000000000" , "fffffffffffffffffffffffffffffffffffffffe", 157 }, tst{ "e000000000000000000000000000000000000000" , "fffffffffffffffffffffffffffffffffffffffe", 156 }, tst{ "f000000000000000000000000000000000000000" , "fffffffffffffffffffffffffffffffffffffffe", 155 }, tst{ "f8f2340985723049587230495872304958703294" , "f743589043r890f023980f90e203980d090c3840", 155 }, tst{ "ffff740985723049587230495872304958703294" , "ffff889043r890f023980f90e203980d090c3840", 159 - 16 }, }; for (auto const& t : distance_tests) { std::printf("%s %s: %d\n" , std::get<0>(t), std::get<1>(t), std::get<2>(t)); TEST_EQUAL(distance_exp(to_hash(std::get<0>(t)) , to_hash(std::get<1>(t))), std::get<2>(t)); } } TORRENT_TEST(compare_ip_cidr) { using tst = std::tuple; std::vector const v4tests = { tst{"10.255.255.0", "10.255.255.255", true}, tst{"11.0.0.0", "10.255.255.255", false}, tst{"0.0.0.0", "128.255.255.255", false}, tst{"0.0.0.0", "127.255.255.255", false}, tst{"255.255.255.0", "255.255.255.255", true}, tst{"255.254.255.0", "255.255.255.255", false}, tst{"0.0.0.0", "0.0.0.0", true}, tst{"255.255.255.255", "255.255.255.255", true}, }; for (auto const& t : v4tests) { std::printf("%s %s\n", std::get<0>(t), std::get<1>(t)); TEST_EQUAL(compare_ip_cidr( addr4(std::get<0>(t)), addr4(std::get<1>(t))), std::get<2>(t)); } #if TORRENT_USE_IPV6 std::vector const v6tests = { tst{"::1", "::ffff:ffff:ffff:ffff", true}, tst{"::2:0000:0000:0000:0000", "::1:ffff:ffff:ffff:ffff", false}, tst{"::ff:0000:0000:0000:0000", "::ffff:ffff:ffff:ffff", false}, tst{"::caca:0000:0000:0000:0000", "::ffff:ffff:ffff:ffff:ffff", false}, tst{"::a:0000:0000:0000:0000", "::b:ffff:ffff:ffff:ffff", false}, tst{"::7f:0000:0000:0000:0000", "::ffff:ffff:ffff:ffff", false}, tst{"7f::", "ff::", false}, tst{"ff::", "ff::", true}, tst{"::", "::", true}, tst{"ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", true}, }; for (auto const& t : v6tests) { TEST_EQUAL(compare_ip_cidr( addr6(std::get<0>(t)), addr6(std::get<1>(t))), std::get<2>(t)); } #endif } TORRENT_TEST(dht_state) { dht_state s; s.nids.emplace_back(address::from_string("1.1.1.1"), to_hash("0000000000000000000000000000000000000001")); s.nodes.push_back(uep("1.1.1.1", 1)); s.nodes.push_back(uep("2.2.2.2", 2)); // remove these for now because they will only get used if the host system has IPv6 support // hopefully in the future we can rely on the test system supporting IPv6 //s.nids.emplace_back(address::from_string("1::1"), to_hash("0000000000000000000000000000000000000002")); //s.nodes6.push_back(uep("1::1", 3)); //s.nodes6.push_back(uep("2::2", 4)); entry const e = save_dht_state(s); std::vector tmp; bencode(std::back_inserter(tmp), e); bdecode_node n; error_code ec; int r = bdecode(&tmp[0], &tmp[0] + tmp.size(), n, ec); TEST_CHECK(!r); dht_state const s1 = read_dht_state(n); TEST_CHECK(s1.nids == s.nids); TEST_CHECK(s1.nodes == s.nodes); // empty bdecode_node n1; dht_state const s2 = read_dht_state(n1); TEST_CHECK(s2.nids.empty()); TEST_CHECK(s2.nodes.empty()); } TORRENT_TEST(sample_infohashes) { dht_test_setup t(rand_udp_ep()); bdecode_node response; g_sent_packets.clear(); udp::endpoint initial_node = rand_udp_ep(); t.dht_node.m_table.add_node(node_entry{initial_node}); // nodes sha1_hash const h1 = rand_hash(); sha1_hash const h2 = rand_hash(); udp::endpoint const ep1 = rand_udp_ep(rand_v4); udp::endpoint const ep2 = rand_udp_ep(rand_v4); t.dht_node.sample_infohashes(initial_node, items[0].target, [h1, ep1, h2, ep2](time_duration interval, int num , std::vector samples , std::vector> const& nodes) { TEST_EQUAL(total_seconds(interval), 10); TEST_EQUAL(num, 2); TEST_EQUAL(samples.size(), 1); TEST_EQUAL(samples[0], to_hash("1000000000000000000000000000000000000001")); TEST_EQUAL(nodes.size(), 2); TEST_EQUAL(nodes[0].first, h1); TEST_EQUAL(nodes[0].second, ep1); TEST_EQUAL(nodes[1].first, h2); TEST_EQUAL(nodes[1].second, ep2); }); TEST_EQUAL(g_sent_packets.size(), 1); if (g_sent_packets.empty()) return; TEST_EQUAL(g_sent_packets.front().first, initial_node); lazy_from_entry(g_sent_packets.front().second, response); bdecode_node sample_infohashes_keys[6]; bool const ret = verify_message(response , sample_infohashes_desc, sample_infohashes_keys, t.error_string); if (ret) { TEST_EQUAL(sample_infohashes_keys[0].string_value(), "q"); TEST_EQUAL(sample_infohashes_keys[2].string_value(), "sample_infohashes"); TEST_EQUAL(sample_infohashes_keys[5].string_value(), items[0].target.to_string()); } else { std::printf(" invalid sample_infohashes request: %s\n", print_entry(response).c_str()); TEST_ERROR(t.error_string); return; } std::vector nodes; nodes.emplace_back(h1, ep1); nodes.emplace_back(h2, ep2); g_sent_packets.clear(); send_dht_response(t.dht_node, response, initial_node , msg_args() .interval(seconds(10)) .num(2) .samples({to_hash("1000000000000000000000000000000000000001")}) .nodes(nodes)); TEST_CHECK(g_sent_packets.empty()); } // TODO: test obfuscated_get_peers #else TORRENT_TEST(dht) { // dummy dht test TEST_CHECK(true); } #endif