/* Copyright (c) 2008, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include "libtorrent/session.hpp" #include "libtorrent/hasher.hpp" #include "libtorrent/http_parser.hpp" #include "libtorrent/assert.hpp" #include "libtorrent/alert_types.hpp" #include "libtorrent/create_torrent.hpp" #include "libtorrent/socket_io.hpp" // print_endpoint #include "libtorrent/ip_filter.hpp" #include "libtorrent/session_stats.hpp" #include "libtorrent/random.hpp" #include "libtorrent/torrent_info.hpp" #include "libtorrent/broadcast_socket.hpp" // for supports_ipv6() #include "libtorrent/hex.hpp" // to_hex #include "libtorrent/aux_/vector.hpp" #include "libtorrent/aux_/path.hpp" #include "test.hpp" #include "test_utils.hpp" #include "setup_transfer.hpp" #ifndef _WIN32 #include #include #endif using namespace lt; #if defined TORRENT_WINDOWS #include #endif namespace { std::uint32_t g_addr = 0x92343023; } void init_rand_address() { g_addr = 0x92343023; } address rand_v4() { address_v4 ret; do { g_addr += 0x3080ca; ret = address_v4(g_addr); } while (is_any(ret) || is_local(ret) || is_loopback(ret)); return ret; } sha1_hash rand_hash() { sha1_hash ret; for (int i = 0; i < 20; ++i) ret[static_cast(i)] = std::uint8_t(lt::random(0xff)); return ret; } sha1_hash to_hash(char const* s) { sha1_hash ret; aux::from_hex({s, 40}, ret.data()); return ret; } #if TORRENT_USE_IPV6 address rand_v6() { address_v6::bytes_type bytes; for (int i = 0; i < int(bytes.size()); ++i) bytes[static_cast(i)] = std::uint8_t(lt::random(0xff)); return address_v6(bytes); } #endif static std::uint16_t g_port = 0; tcp::endpoint rand_tcp_ep(lt::address(&rand_addr)()) { // make sure we don't produce the same "random" port twice g_port = (g_port + 1) % 14038; return tcp::endpoint(rand_addr(), g_port + 1024); } udp::endpoint rand_udp_ep(lt::address(&rand_addr)()) { g_port = (g_port + 1) % 14037; return udp::endpoint(rand_addr(), g_port + 1024); } std::map get_counters(lt::session& s) { using namespace lt; s.post_session_stats(); std::map ret; alert const* a = wait_for_alert(s, session_stats_alert::alert_type , "get_counters()"); TEST_CHECK(a); if (!a) return ret; session_stats_alert const* sa = alert_cast(a); if (!sa) return ret; static std::vector metrics = session_stats_metrics(); for (auto const& m : metrics) ret[m.name] = sa->counters()[static_cast(m.value_index)]; return ret; } namespace { bool should_print(lt::alert* a) { #ifndef TORRENT_DISABLE_LOGGING if (auto pla = alert_cast(a)) { if (pla->direction != peer_log_alert::incoming_message && pla->direction != peer_log_alert::outgoing_message) return false; } #endif if (alert_cast(a) || alert_cast(a) || alert_cast(a) || alert_cast(a)) { return false; } return true; } } alert const* wait_for_alert(lt::session& ses, int type, char const* name , pop_alerts const p) { // we pop alerts in batches, but we wait for individual messages. This is a // cache to keep around alerts that came *after* the one we're waiting for. // To let subsequent calls to this function be able to pick those up, despite // already being popped off the sessions alert queue. static std::map> cache; auto& alerts = cache[&ses]; time_point end_time = lt::clock_type::now() + seconds(10); while (true) { time_point now = clock_type::now(); if (now > end_time) return nullptr; alert const* ret = nullptr; if (alerts.empty()) { ses.wait_for_alert(end_time - now); ses.pop_alerts(&alerts); } for (auto i = alerts.begin(); i != alerts.end(); ++i) { auto a = *i; if (should_print(a)) { std::printf("%s: %s: [%s] %s\n", time_now_string(), name , a->what(), a->message().c_str()); } if (a->type() == type) { ret = a; if (p == pop_alerts::pop_all) alerts.clear(); else alerts.erase(alerts.begin(), std::next(i)); return ret; } } alerts.clear(); } } int load_file(std::string const& filename, std::vector& v , lt::error_code& ec, int limit) { ec.clear(); FILE* f = fopen(filename.c_str(), "rb"); if (f == nullptr) { ec.assign(errno, boost::system::system_category()); return -1; } int r = fseek(f, 0, SEEK_END); if (r != 0) { ec.assign(errno, boost::system::system_category()); fclose(f); return -1; } long s = ftell(f); if (s < 0) { ec.assign(errno, boost::system::system_category()); fclose(f); return -1; } if (s > limit) { fclose(f); return -2; } r = fseek(f, 0, SEEK_SET); if (r != 0) { ec.assign(errno, boost::system::system_category()); fclose(f); return -1; } v.resize(static_cast(s)); if (s == 0) { fclose(f); return 0; } r = int(fread(&v[0], 1, v.size(), f)); if (r < 0) { ec.assign(errno, boost::system::system_category()); fclose(f); return -1; } fclose(f); if (r != s) return -3; return 0; } bool print_alerts(lt::session& ses, char const* name , bool allow_no_torrents, bool allow_failed_fastresume , std::function predicate, bool no_output) { bool ret = false; std::vector handles = ses.get_torrents(); TEST_CHECK(!handles.empty() || allow_no_torrents); torrent_handle h; if (!handles.empty()) h = handles[0]; std::vector alerts; ses.pop_alerts(&alerts); for (auto a : alerts) { if (predicate && predicate(a)) ret = true; if (peer_disconnected_alert const* p = alert_cast(a)) { std::printf("%s: %s: [%s] (%s): %s\n", time_now_string(), name, a->what() , print_endpoint(p->endpoint).c_str(), p->message().c_str()); } else if (should_print(a) && !no_output) { std::printf("%s: %s: [%s] %s\n", time_now_string(), name, a->what(), a->message().c_str()); } TEST_CHECK(alert_cast(a) == nullptr || allow_failed_fastresume); invalid_request_alert const* ira = alert_cast(a); if (ira) { std::printf("peer error: %s\n", ira->message().c_str()); TEST_CHECK(false); } } return ret; } void wait_for_listen(lt::session& ses, char const* name) { bool listen_done = false; alert const* a = nullptr; do { print_alerts(ses, name, true, true, [&listen_done](lt::alert const* al) { if (alert_cast(al) || alert_cast(al)) { listen_done = true; } return true; }, false); if (listen_done) break; a = ses.wait_for_alert(milliseconds(500)); } while (a); // we din't receive a listen alert! TEST_CHECK(listen_done); } void wait_for_downloading(lt::session& ses, char const* name) { time_point start = clock_type::now(); bool downloading_done = false; alert const* a = nullptr; do { print_alerts(ses, name, true, true, [&downloading_done](lt::alert const* al) { state_changed_alert const* sc = alert_cast(al); if (sc && sc->state == torrent_status::downloading) downloading_done = true; return true; }, false); if (downloading_done) break; if (total_seconds(clock_type::now() - start) > 10) break; a = ses.wait_for_alert(seconds(2)); } while (a); if (!downloading_done) { std::printf("%s: did not receive a state_changed_alert indicating " "the torrent is downloading. waited: %d ms\n" , name, int(total_milliseconds(clock_type::now() - start))); } } void print_ses_rate(float const time , lt::torrent_status const* st1 , lt::torrent_status const* st2 , lt::torrent_status const* st3) { if (st1) { std::printf("%3.1fs | %dkB/s %dkB/s %d%% %d cc:%d%s", static_cast(time) , int(st1->download_payload_rate / 1000) , int(st1->upload_payload_rate / 1000) , int(st1->progress * 100) , st1->num_peers , st1->connect_candidates , st1->errc ? (" [" + st1->errc.message() + "]").c_str() : ""); } if (st2) std::printf(" : %3.1fs | %dkB/s %dkB/s %d%% %d cc:%d%s", static_cast(time) , int(st2->download_payload_rate / 1000) , int(st2->upload_payload_rate / 1000) , int(st2->progress * 100) , st2->num_peers , st2->connect_candidates , st2->errc ? (" [" + st1->errc.message() + "]").c_str() : ""); if (st3) std::printf(" : %3.1fs | %dkB/s %dkB/s %d%% %d cc:%d%s", static_cast(time) , int(st3->download_payload_rate / 1000) , int(st3->upload_payload_rate / 1000) , int(st3->progress * 100) , st3->num_peers , st3->connect_candidates , st3->errc ? (" [" + st1->errc.message() + "]").c_str() : ""); std::printf("\n"); } #ifdef _WIN32 typedef DWORD pid_type; #else typedef pid_t pid_type; #endif struct proxy_t { pid_type pid; int type; }; // maps port to proxy type static std::map running_proxies; void stop_proxy(int port) { std::printf("stopping proxy on port %d\n", port); // don't shut down proxies until the test is // completely done. This saves a lot of time. // they're closed at the end of main() by // calling stop_all_proxies(). } namespace { // returns 0 on failure, otherwise pid pid_type async_run(char const* cmdline) { #ifdef _WIN32 char buf[2048]; std::snprintf(buf, sizeof(buf), "%s", cmdline); PROCESS_INFORMATION pi; STARTUPINFOA startup; memset(&startup, 0, sizeof(startup)); startup.cb = sizeof(startup); startup.hStdInput = GetStdHandle(STD_INPUT_HANDLE); startup.hStdOutput = GetStdHandle(STD_OUTPUT_HANDLE); startup.hStdError = GetStdHandle(STD_INPUT_HANDLE); int ret = CreateProcessA(NULL, buf, NULL, NULL, TRUE , CREATE_NEW_PROCESS_GROUP, NULL, NULL, &startup, &pi); if (ret == 0) { int error = GetLastError(); std::printf("failed (%d) %s\n", error, error_code(error, system_category()).message().c_str()); return 0; } return pi.dwProcessId; #else pid_type p; char arg_storage[4096]; char* argp = arg_storage; std::vector argv; argv.push_back(argp); for (char const* in = cmdline; *in != '\0'; ++in) { if (*in != ' ') { *argp++ = *in; continue; } *argp++ = '\0'; argv.push_back(argp); } *argp = '\0'; argv.push_back(nullptr); int ret = posix_spawnp(&p, argv[0], nullptr, nullptr, &argv[0], nullptr); if (ret != 0) { std::printf("failed (%d) %s\n", errno, strerror(errno)); return 0; } return p; #endif } void stop_process(pid_type p) { #ifdef _WIN32 HANDLE proc = OpenProcess(PROCESS_TERMINATE | SYNCHRONIZE, FALSE, p); TerminateProcess(proc, 138); CloseHandle(proc); #else std::printf("killing pid: %d\n", p); kill(p, SIGKILL); #endif } } // anonymous namespace void stop_all_proxies() { std::map proxies = running_proxies; for (std::map::iterator i = proxies.begin() , end(proxies.end()); i != end; ++i) { stop_process(i->second.pid); running_proxies.erase(i->second.pid); } } // returns a port on success and -1 on failure int start_proxy(int proxy_type) { using namespace lt; std::map :: iterator i = running_proxies.begin(); for (; i != running_proxies.end(); ++i) { if (i->second.type == proxy_type) { return i->first; } } int port = 2000 + static_cast(lt::random(6000)); error_code ec; io_service ios; // make sure the port we pick is free do { ++port; tcp::socket s(ios); s.open(tcp::v4(), ec); if (ec) break; s.bind(tcp::endpoint(address::from_string("127.0.0.1") , std::uint16_t(port)), ec); } while (ec); char const* type = ""; char const* auth = ""; char const* cmd = ""; switch (proxy_type) { case settings_pack::socks4: type = "socks4"; auth = " --allow-v4"; cmd = "python ../socks.py"; break; case settings_pack::socks5: type = "socks5"; cmd = "python ../socks.py"; break; case settings_pack::socks5_pw: type = "socks5"; auth = " --username testuser --password testpass"; cmd = "python ../socks.py"; break; case settings_pack::http: type = "http"; cmd = "python ../http.py"; break; case settings_pack::http_pw: type = "http"; auth = " --username testuser --password testpass"; cmd = "python ../http.py"; break; } char buf[512]; std::snprintf(buf, sizeof(buf), "%s --port %d%s", cmd, port, auth); std::printf("%s starting proxy on port %d (%s %s)...\n", time_now_string(), port, type, auth); std::printf("%s\n", buf); pid_type r = async_run(buf); if (r == 0) abort(); proxy_t t = { r, proxy_type }; running_proxies.insert(std::make_pair(port, t)); std::printf("%s launched\n", time_now_string()); std::this_thread::sleep_for(lt::milliseconds(500)); return port; } using namespace lt; template std::shared_ptr clone_ptr(std::shared_ptr const& ptr) { return std::make_shared(*ptr); } std::uint8_t random_byte() { return static_cast(lt::random(0xff)); } std::vector generate_piece(piece_index_t const idx, int const piece_size) { using namespace lt; std::vector ret(static_cast(piece_size)); std::mt19937 rng(static_cast(static_cast(idx))); std::uniform_int_distribution rand(-128, 127); for (char& c : ret) { c = static_cast(rand(rng)); } return ret; } lt::file_storage make_file_storage(const int file_sizes[], int num_files , int const piece_size, std::string base_name) { using namespace lt; file_storage fs; for (int i = 0; i != num_files; ++i) { char filename[200]; std::snprintf(filename, sizeof(filename), "test%d", i); char dirname[200]; std::snprintf(dirname, sizeof(dirname), "%s%d", base_name.c_str() , i / 5); std::string full_path = combine_path(dirname, filename); fs.add_file(full_path, file_sizes[i]); } fs.set_piece_length(piece_size); fs.set_num_pieces(int((fs.total_size() + piece_size - 1) / piece_size)); return fs; } std::shared_ptr make_torrent(const int file_sizes[] , int const num_files, int const piece_size) { using namespace lt; file_storage fs = make_file_storage(file_sizes, num_files, piece_size); lt::create_torrent ct(fs, piece_size, 0x4000 , lt::create_torrent::optimize_alignment); for (piece_index_t i(0); i < fs.end_piece(); ++i) { std::vector piece = generate_piece(i, fs.piece_size(i)); ct.set_hash(i, hasher(piece).final()); } std::vector buf; bencode(std::back_inserter(buf), ct.generate()); return std::make_shared(buf, from_span); } void create_random_files(std::string const& path, const int file_sizes[], int num_files , file_storage* fs) { error_code ec; aux::vector random_data(300000); for (int i = 0; i != num_files; ++i) { std::generate(random_data.begin(), random_data.end(), random_byte); char filename[200]; std::snprintf(filename, sizeof(filename), "test%d", i); char dirname[200]; std::snprintf(dirname, sizeof(dirname), "test_dir%d", i / 5); std::string full_path = combine_path(path, dirname); create_directory(full_path, ec); full_path = combine_path(full_path, filename); int to_write = file_sizes[i]; if (fs) fs->add_file(full_path, to_write); file f(full_path, open_mode::write_only, ec); if (ec) std::printf("failed to create file \"%s\": (%d) %s\n" , full_path.c_str(), ec.value(), ec.message().c_str()); std::int64_t offset = 0; while (to_write > 0) { int const s = std::min(to_write, static_cast(random_data.size())); iovec_t b = { random_data.data(), size_t(s)}; f.writev(offset, b, ec); if (ec) std::printf("failed to write file \"%s\": (%d) %s\n" , full_path.c_str(), ec.value(), ec.message().c_str()); offset += s; to_write -= s; } } } std::shared_ptr create_torrent(std::ostream* file , char const* name, int piece_size , int num_pieces, bool add_tracker, std::string ssl_certificate) { // exercise the path when encountering invalid urls char const* invalid_tracker_url = "http:"; char const* invalid_tracker_protocol = "foo://non/existent-name.com/announce"; file_storage fs; int total_size = piece_size * num_pieces; fs.add_file(name, total_size); lt::create_torrent t(fs, piece_size); if (add_tracker) { t.add_tracker(invalid_tracker_url); t.add_tracker(invalid_tracker_protocol); } if (!ssl_certificate.empty()) { std::vector file_buf; error_code ec; int res = load_file(ssl_certificate, file_buf, ec); if (ec || res < 0) { std::printf("failed to load SSL certificate: %s\n", ec.message().c_str()); } else { std::string pem; std::copy(file_buf.begin(), file_buf.end(), std::back_inserter(pem)); t.set_root_cert(pem); } } aux::vector piece(static_cast(piece_size)); for (int i = 0; i < int(piece.size()); ++i) piece[i] = (i % 26) + 'A'; // calculate the hash for all pieces sha1_hash ph = hasher(piece).final(); for (piece_index_t i(0); i < t.files().end_piece(); ++i) t.set_hash(i, ph); if (file) { while (total_size > 0) { file->write(&piece[0], std::min(piece.end_index(), total_size)); total_size -= piece.end_index(); } } std::vector tmp; std::back_insert_iterator> out(tmp); entry tor = t.generate(); bencode(out, tor); error_code ec; return std::make_shared(tmp, ec, from_span); } std::tuple setup_transfer(lt::session* ses1, lt::session* ses2, lt::session* ses3 , bool clear_files, bool use_metadata_transfer, bool connect_peers , std::string suffix, int piece_size , std::shared_ptr* torrent, bool super_seeding , add_torrent_params const* p, bool stop_lsd, bool use_ssl_ports , std::shared_ptr* torrent2) { TORRENT_ASSERT(ses1); TORRENT_ASSERT(ses2); if (stop_lsd) { settings_pack pack; pack.set_bool(settings_pack::enable_lsd, false); ses1->apply_settings(pack); ses2->apply_settings(pack); if (ses3) ses3->apply_settings(pack); } // This has the effect of applying the global // rule to all peers, regardless of if they're local or not ip_filter f; f.add_rule(address_v4::from_string("0.0.0.0") , address_v4::from_string("255.255.255.255") , 1 << static_cast(lt::session::global_peer_class_id)); ses1->set_peer_class_filter(f); ses2->set_peer_class_filter(f); if (ses3) ses3->set_peer_class_filter(f); settings_pack pack; pack.set_int(settings_pack::alert_mask , ~(alert::progress_notification | alert::stats_notification)); if (ses3) pack.set_bool(settings_pack::allow_multiple_connections_per_ip, true); pack.set_int(settings_pack::mixed_mode_algorithm, settings_pack::prefer_tcp); pack.set_int(settings_pack::max_failcount, 1); ses1->apply_settings(pack); ses2->apply_settings(pack); if (ses3) { ses3->apply_settings(pack); } std::shared_ptr t; if (torrent == nullptr) { error_code ec; create_directory("tmp1" + suffix, ec); std::ofstream file(combine_path("tmp1" + suffix, "temporary").c_str()); t = ::create_torrent(&file, "temporary", piece_size, 9, false); file.close(); if (clear_files) { remove_all(combine_path("tmp2" + suffix, "temporary"), ec); remove_all(combine_path("tmp3" + suffix, "temporary"), ec); } std::printf("generated torrent: %s tmp1%s/temporary\n", aux::to_hex(t->info_hash()).c_str(), suffix.c_str()); } else { t = *torrent; } // they should not use the same save dir, because the // file pool will complain if two torrents are trying to // use the same files add_torrent_params param; param.flags &= ~torrent_flags::paused; param.flags &= ~torrent_flags::auto_managed; if (p) param = *p; param.ti = clone_ptr(t); param.save_path = "tmp1" + suffix; param.flags |= torrent_flags::seed_mode; error_code ec; torrent_handle tor1 = ses1->add_torrent(param, ec); if (ec) { std::printf("ses1.add_torrent: %s\n", ec.message().c_str()); return std::make_tuple(torrent_handle(), torrent_handle(), torrent_handle()); } if (super_seeding) { tor1.set_flags(torrent_flags::super_seeding); } // the downloader cannot use seed_mode param.flags &= ~torrent_flags::seed_mode; TEST_CHECK(!ses1->get_torrents().empty()); torrent_handle tor2; torrent_handle tor3; if (ses3) { param.ti = clone_ptr(t); param.save_path = "tmp3" + suffix; tor3 = ses3->add_torrent(param, ec); TEST_CHECK(!ses3->get_torrents().empty()); } if (use_metadata_transfer) { param.ti.reset(); param.info_hash = t->info_hash(); } else if (torrent2) { param.ti = clone_ptr(*torrent2); } else { param.ti = clone_ptr(t); } param.save_path = "tmp2" + suffix; tor2 = ses2->add_torrent(param, ec); TEST_CHECK(!ses2->get_torrents().empty()); TORRENT_ASSERT(ses1->get_torrents().size() == 1); TORRENT_ASSERT(ses2->get_torrents().size() == 1); // std::this_thread::sleep_for(lt::milliseconds(100)); if (connect_peers) { wait_for_downloading(*ses2, "ses2"); int port = 0; if (use_ssl_ports) { port = ses2->ssl_listen_port(); std::printf("%s: ses2->ssl_listen_port(): %d\n", time_now_string(), port); } if (port == 0) { port = ses2->listen_port(); std::printf("%s: ses2->listen_port(): %d\n", time_now_string(), port); } std::printf("%s: ses1: connecting peer port: %d\n" , time_now_string(), port); tor1.connect_peer(tcp::endpoint(address::from_string("127.0.0.1", ec) , std::uint16_t(port))); if (ses3) { // give the other peers some time to get an initial // set of pieces before they start sharing with each-other wait_for_downloading(*ses3, "ses3"); port = 0; int port2 = 0; if (use_ssl_ports) { port = ses2->ssl_listen_port(); port2 = ses1->ssl_listen_port(); } if (port == 0) port = ses2->listen_port(); if (port2 == 0) port2 = ses1->listen_port(); std::printf("ses3: connecting peer port: %d\n", port); tor3.connect_peer(tcp::endpoint( address::from_string("127.0.0.1", ec), std::uint16_t(port))); std::printf("ses3: connecting peer port: %d\n", port2); tor3.connect_peer(tcp::endpoint( address::from_string("127.0.0.1", ec) , std::uint16_t(port2))); } } return std::make_tuple(tor1, tor2, tor3); } namespace { pid_type web_server_pid = 0; } int start_web_server(bool ssl, bool chunked_encoding, bool keepalive, int min_interval) { int port = 2000 + static_cast(lt::random(6000)); error_code ec; io_service ios; // make sure the port we pick is free do { ++port; tcp::socket s(ios); s.open(tcp::v4(), ec); if (ec) break; s.bind(tcp::endpoint(address::from_string("127.0.0.1") , std::uint16_t(port)), ec); } while (ec); char buf[200]; std::snprintf(buf, sizeof(buf), "python ../web_server.py %d %d %d %d %d" , port, chunked_encoding, ssl, keepalive, min_interval); std::printf("%s starting web_server on port %d...\n", time_now_string(), port); std::printf("%s\n", buf); pid_type r = async_run(buf); if (r == 0) abort(); web_server_pid = r; std::printf("%s launched\n", time_now_string()); std::this_thread::sleep_for(lt::milliseconds(500)); return port; } void stop_web_server() { if (web_server_pid == 0) return; std::printf("stopping web server\n"); stop_process(web_server_pid); web_server_pid = 0; } tcp::endpoint ep(char const* ip, int port) { error_code ec; tcp::endpoint ret(address::from_string(ip, ec), std::uint16_t(port)); TEST_CHECK(!ec); return ret; } udp::endpoint uep(char const* ip, int port) { error_code ec; udp::endpoint ret(address::from_string(ip, ec), std::uint16_t(port)); TEST_CHECK(!ec); return ret; } lt::address addr(char const* ip) { lt::error_code ec; auto ret = lt::address::from_string(ip, ec); TEST_CHECK(!ec); return ret; } lt::address_v4 addr4(char const* ip) { lt::error_code ec; auto ret = lt::address_v4::from_string(ip, ec); TEST_CHECK(!ec); return ret; } #if TORRENT_USE_IPV6 lt::address_v6 addr6(char const* ip) { lt::error_code ec; auto ret = lt::address_v6::from_string(ip, ec); TEST_CHECK(!ec); return ret; } #endif