premiere-libtorrent/src/merkle.cpp

70 lines
2.2 KiB
C++
Raw Normal View History

/*
2015-06-03 07:18:48 +02:00
Copyright (c) 2003-2015, Arvid Norberg
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "libtorrent/aux_/merkle.hpp"
namespace libtorrent
{
int merkle_get_parent(int tree_node)
{
// node 0 doesn't have a parent
TORRENT_ASSERT(tree_node > 0);
return (tree_node - 1) / 2;
}
int merkle_get_sibling(int tree_node)
{
// node 0 doesn't have a sibling
TORRENT_ASSERT(tree_node > 0);
// even numbers have their sibling to the left
// odd numbers have their sibling to the right
return tree_node + (tree_node&1?1:-1);
}
int merkle_num_nodes(int leafs)
{
TORRENT_ASSERT(leafs > 0);
return (leafs << 1) - 1;
}
int merkle_num_leafs(int pieces)
{
TORRENT_ASSERT(pieces > 0);
// round up to nearest 2 exponent
int ret = 1;
while (pieces > ret) ret <<= 1;
return ret;
}
}