feat: add supervised fine-tuning code based on haru's work
Warning: Absolutely atrocious code quality. I did just the bare minimum to make it run.
This commit is contained in:
parent
60e649f57a
commit
bcbf0910b4
|
@ -0,0 +1,733 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...)
|
||||||
|
on a text file or a dataset without using HuggingFace Trainer.
|
||||||
|
|
||||||
|
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
|
||||||
|
https://huggingface.co/models?filter=text-generation
|
||||||
|
"""
|
||||||
|
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
|
||||||
|
|
||||||
|
import datetime
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import signal
|
||||||
|
import time
|
||||||
|
from itertools import chain
|
||||||
|
|
||||||
|
import datasets
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
from accelerate.utils import set_seed
|
||||||
|
from context import barrier_context
|
||||||
|
from datasets import load_dataset
|
||||||
|
from packaging import version
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
|
||||||
|
import colossalai
|
||||||
|
import transformers
|
||||||
|
from colossalai.context import ParallelMode
|
||||||
|
from colossalai.core import global_context as gpc
|
||||||
|
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||||
|
from colossalai.nn.optimizer import HybridAdam
|
||||||
|
from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer
|
||||||
|
from colossalai.nn.parallel import ZeroDDP
|
||||||
|
from colossalai.tensor import ProcessGroup
|
||||||
|
from colossalai.utils import get_current_device, get_dataloader, save_checkpoint
|
||||||
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||||
|
from transformers import (
|
||||||
|
CONFIG_MAPPING,
|
||||||
|
MODEL_MAPPING,
|
||||||
|
AutoConfig,
|
||||||
|
AutoTokenizer,
|
||||||
|
GPT2Tokenizer,
|
||||||
|
AutoModelForCausalLM,
|
||||||
|
SchedulerType,
|
||||||
|
default_data_collator,
|
||||||
|
get_scheduler,
|
||||||
|
)
|
||||||
|
from transformers.utils.versions import require_version
|
||||||
|
|
||||||
|
# Explanation: "AutoModelForCausalLM" will instantiate the proper subclass after
|
||||||
|
# ColossalAI has attempted to do a bunch of meta-programming trickery, so it
|
||||||
|
# crashes due to missing attributes. To work around that, we need to import the
|
||||||
|
# subclass - even if we don't use it - so ColossalAI properly patches the inner
|
||||||
|
# modules.
|
||||||
|
from transformers import (
|
||||||
|
BloomForCausalLM,
|
||||||
|
OPTForCausalLM,
|
||||||
|
GPTNeoXForCausalLM,
|
||||||
|
)
|
||||||
|
|
||||||
|
import re
|
||||||
|
|
||||||
|
# haru SFT stuff
|
||||||
|
from harubaru_convogpt.dataset import SFTDataset
|
||||||
|
from harubaru_convogpt.sft import sft_forward
|
||||||
|
|
||||||
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||||
|
|
||||||
|
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
|
||||||
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
||||||
|
|
||||||
|
|
||||||
|
def get_time_stamp():
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
return time.time()
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
parser = colossalai.get_default_parser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--dataset_name",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="The name of the dataset to use (via the datasets library).",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--dataset_config_name",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="The configuration name of the dataset to use (via the datasets library).",
|
||||||
|
)
|
||||||
|
parser.add_argument("--train_file",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="A csv or a json file containing the training data.")
|
||||||
|
parser.add_argument("--validation_file",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="A csv or a json file containing the validation data.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--validation_split_percentage",
|
||||||
|
default=5,
|
||||||
|
help="The percentage of the train set used as validation set in case there's no validation split",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--model_name_or_path",
|
||||||
|
type=str,
|
||||||
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
||||||
|
required=True,
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--config_name",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Pretrained config name or path if not the same as model_name",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokenizer_name",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Pretrained tokenizer name or path if not the same as model_name",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_slow_tokenizer",
|
||||||
|
action="store_true",
|
||||||
|
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--per_device_train_batch_size",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="Batch size (per device) for the training dataloader.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--per_device_eval_batch_size",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="Batch size (per device) for the evaluation dataloader.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--learning_rate",
|
||||||
|
type=float,
|
||||||
|
default=5e-5,
|
||||||
|
help="Initial learning rate (after the potential warmup period) to use.",
|
||||||
|
)
|
||||||
|
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
|
||||||
|
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--max_train_steps",
|
||||||
|
type=int,
|
||||||
|
default=None,
|
||||||
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--gradient_accumulation_steps",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--lr_scheduler_type",
|
||||||
|
type=SchedulerType,
|
||||||
|
default="linear",
|
||||||
|
help="The scheduler type to use.",
|
||||||
|
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
|
||||||
|
)
|
||||||
|
parser.add_argument("--num_warmup_steps",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="Number of steps for the warmup in the lr scheduler.")
|
||||||
|
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
|
||||||
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--model_type",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Model type to use if training from scratch.",
|
||||||
|
choices=MODEL_TYPES,
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--block_size",
|
||||||
|
type=int,
|
||||||
|
default=None,
|
||||||
|
help=("Optional input sequence length after tokenization. The training dataset will be truncated in block of"
|
||||||
|
" this size for training. Default to the model max input length for single sentence inputs (take into"
|
||||||
|
" account special tokens)."),
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--preprocessing_num_workers",
|
||||||
|
type=int,
|
||||||
|
default=None,
|
||||||
|
help="The number of processes to use for the preprocessing.",
|
||||||
|
)
|
||||||
|
parser.add_argument("--overwrite_cache",
|
||||||
|
type=bool,
|
||||||
|
default=False,
|
||||||
|
help="Overwrite the cached training and evaluation sets")
|
||||||
|
parser.add_argument("--no_keep_linebreaks",
|
||||||
|
action="store_true",
|
||||||
|
help="Do not keep line breaks when using TXT files.")
|
||||||
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
||||||
|
parser.add_argument("--hub_model_id",
|
||||||
|
type=str,
|
||||||
|
help="The name of the repository to keep in sync with the local `output_dir`.")
|
||||||
|
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpointing_steps",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
|
||||||
|
)
|
||||||
|
parser.add_argument("-r",
|
||||||
|
"--resume_from_checkpoint",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="If the training should continue from a checkpoint folder.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--comment", type=str, help="Experiment comment for the Tensorboard writer."
|
||||||
|
)
|
||||||
|
# NOTE(11b): These last two are useless.
|
||||||
|
parser.add_argument(
|
||||||
|
"--with_tracking",
|
||||||
|
action="store_true",
|
||||||
|
help="Whether to enable experiment trackers for logging.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--report_to",
|
||||||
|
type=str,
|
||||||
|
default="all",
|
||||||
|
help=('The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
|
||||||
|
' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
|
||||||
|
"Only applicable when `--with_tracking` is passed."),
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument("--mem_cap", type=int, default=0, help="use mem cap")
|
||||||
|
parser.add_argument("--init_in_cpu", action='store_true', default=False, help="init training model in cpu")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Sanity checks
|
||||||
|
if args.dataset_name is None and args.train_file is None and args.validation_file is None:
|
||||||
|
raise ValueError("Need either a dataset name or a training/validation file.")
|
||||||
|
else:
|
||||||
|
if args.train_file is not None:
|
||||||
|
extension = args.train_file.split(".")[-1]
|
||||||
|
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file."
|
||||||
|
if args.validation_file is not None:
|
||||||
|
extension = args.validation_file.split(".")[-1]
|
||||||
|
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file."
|
||||||
|
|
||||||
|
if args.push_to_hub:
|
||||||
|
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
|
||||||
|
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def colo_memory_cap(size_in_GB):
|
||||||
|
from colossalai.utils import colo_device_memory_capacity, colo_set_process_memory_fraction, get_current_device
|
||||||
|
cuda_capacity = colo_device_memory_capacity(get_current_device())
|
||||||
|
if size_in_GB * (1024**3) < cuda_capacity:
|
||||||
|
colo_set_process_memory_fraction(size_in_GB * (1024**3) / cuda_capacity)
|
||||||
|
print("Using {} GB of GPU memory".format(size_in_GB))
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = parse_args()
|
||||||
|
disable_existing_loggers()
|
||||||
|
colossalai.launch_from_torch(config=dict())
|
||||||
|
logger = get_dist_logger()
|
||||||
|
is_main_process = dist.get_rank() == 0
|
||||||
|
|
||||||
|
if is_main_process:
|
||||||
|
datasets.utils.logging.set_verbosity_warning()
|
||||||
|
transformers.utils.logging.set_verbosity_info()
|
||||||
|
else:
|
||||||
|
datasets.utils.logging.set_verbosity_error()
|
||||||
|
transformers.utils.logging.set_verbosity_error()
|
||||||
|
|
||||||
|
if args.mem_cap > 0:
|
||||||
|
colo_memory_cap(args.mem_cap)
|
||||||
|
|
||||||
|
# If passed along, set the training seed now.
|
||||||
|
if args.seed is not None:
|
||||||
|
set_seed(args.seed)
|
||||||
|
logger.info(f"Rank {dist.get_rank()}: random seed is set to {args.seed}")
|
||||||
|
|
||||||
|
# Handle the repository creation
|
||||||
|
with barrier_context():
|
||||||
|
if args.output_dir is not None:
|
||||||
|
os.makedirs(args.output_dir, exist_ok=True)
|
||||||
|
|
||||||
|
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
||||||
|
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
||||||
|
# (the dataset will be downloaded automatically from the datasets Hub).
|
||||||
|
#
|
||||||
|
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
||||||
|
# 'text' is found. You can easily tweak this behavior (see below).
|
||||||
|
#
|
||||||
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
||||||
|
# download the dataset.
|
||||||
|
'''
|
||||||
|
logger.info("Start preparing dataset", ranks=[0])
|
||||||
|
if args.dataset_name is not None:
|
||||||
|
# Downloading and loading a dataset from the hub.
|
||||||
|
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
|
||||||
|
if "validation" not in raw_datasets.keys():
|
||||||
|
raw_datasets["validation"] = load_dataset(
|
||||||
|
args.dataset_name,
|
||||||
|
args.dataset_config_name,
|
||||||
|
split=f"train[:{args.validation_split_percentage}%]",
|
||||||
|
)
|
||||||
|
raw_datasets["train"] = load_dataset(
|
||||||
|
args.dataset_name,
|
||||||
|
args.dataset_config_name,
|
||||||
|
split=f"train[{args.validation_split_percentage}%:]",
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
data_files = {}
|
||||||
|
dataset_args = {}
|
||||||
|
if args.train_file is not None:
|
||||||
|
data_files["train"] = args.train_file
|
||||||
|
if args.validation_file is not None:
|
||||||
|
data_files["validation"] = args.validation_file
|
||||||
|
extension = args.train_file.split(".")[-1]
|
||||||
|
if extension == "txt":
|
||||||
|
extension = "text"
|
||||||
|
dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks
|
||||||
|
raw_datasets = load_dataset(extension, data_files=data_files, **dataset_args)
|
||||||
|
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
|
||||||
|
if "validation" not in raw_datasets.keys():
|
||||||
|
raw_datasets["validation"] = load_dataset(
|
||||||
|
extension,
|
||||||
|
data_files=data_files,
|
||||||
|
split=f"train[:{args.validation_split_percentage}%]",
|
||||||
|
**dataset_args,
|
||||||
|
)
|
||||||
|
raw_datasets["train"] = load_dataset(
|
||||||
|
extension,
|
||||||
|
data_files=data_files,
|
||||||
|
split=f"train[{args.validation_split_percentage}%:]",
|
||||||
|
**dataset_args,
|
||||||
|
)
|
||||||
|
logger.info("Dataset is prepared", ranks=[0])
|
||||||
|
'''
|
||||||
|
|
||||||
|
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||||
|
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||||
|
|
||||||
|
# Load pretrained model and tokenizer
|
||||||
|
#
|
||||||
|
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
|
||||||
|
# download model & vocab.
|
||||||
|
if args.config_name:
|
||||||
|
config = AutoConfig.from_pretrained(args.config_name)
|
||||||
|
elif args.model_name_or_path:
|
||||||
|
config = AutoConfig.from_pretrained(args.model_name_or_path)
|
||||||
|
else:
|
||||||
|
config = CONFIG_MAPPING[args.model_type]()
|
||||||
|
logger.warning("You are instantiating a new config instance from scratch.")
|
||||||
|
logger.info("Model config has been created", ranks=[0])
|
||||||
|
|
||||||
|
if args.model_name_or_path == 'facebook/opt-13b':
|
||||||
|
tokenizer = GPT2Tokenizer.from_pretrained(args.model_name_or_path)
|
||||||
|
else:
|
||||||
|
print(f'load model from {args.model_name_or_path}')
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
|
||||||
|
logger.info(f"{tokenizer.__class__.__name__} has been created", ranks=[0])
|
||||||
|
|
||||||
|
if args.init_in_cpu:
|
||||||
|
init_dev = torch.device('cpu')
|
||||||
|
else:
|
||||||
|
init_dev = get_current_device()
|
||||||
|
|
||||||
|
# build model
|
||||||
|
if args.model_name_or_path is None or args.model_name_or_path == 'facebook/opt-13b':
|
||||||
|
# currently, there has a bug in pretrained opt-13b
|
||||||
|
# we can not import it until huggingface fix it
|
||||||
|
logger.info("Train a new model from scratch", ranks=[0])
|
||||||
|
with ColoInitContext(device=init_dev):
|
||||||
|
model = AutoModelForCausalLM(config)
|
||||||
|
else:
|
||||||
|
logger.info("Finetune a pre-trained model", ranks=[0])
|
||||||
|
with ColoInitContext(device=init_dev):
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,
|
||||||
|
from_tf=bool(".ckpt" in args.model_name_or_path),
|
||||||
|
config=config,
|
||||||
|
local_files_only=False)
|
||||||
|
|
||||||
|
# enable graident checkpointing
|
||||||
|
model.gradient_checkpointing_enable()
|
||||||
|
|
||||||
|
PLACEMENT_POLICY = 'auto'
|
||||||
|
cai_version = colossalai.__version__
|
||||||
|
logger.info(f'using Colossal-AI version {cai_version}')
|
||||||
|
if version.parse(cai_version) > version.parse("0.1.10"):
|
||||||
|
from colossalai.nn.parallel import GeminiDDP
|
||||||
|
model = GeminiDDP(model, device=get_current_device(), placement_policy=PLACEMENT_POLICY, pin_memory=True)
|
||||||
|
elif version.parse(cai_version) <= version.parse("0.1.10") and version.parse(cai_version) >= version.parse("0.1.9"):
|
||||||
|
from colossalai.gemini import ChunkManager, GeminiManager
|
||||||
|
pg = ProcessGroup()
|
||||||
|
chunk_size = ChunkManager.search_chunk_size(model, 64 * 1024**2, 32)
|
||||||
|
chunk_manager = ChunkManager(chunk_size,
|
||||||
|
pg,
|
||||||
|
enable_distributed_storage=True,
|
||||||
|
init_device=GeminiManager.get_default_device(PLACEMENT_POLICY))
|
||||||
|
gemini_manager = GeminiManager(PLACEMENT_POLICY, chunk_manager)
|
||||||
|
model = ZeroDDP(model, gemini_manager)
|
||||||
|
|
||||||
|
logger.info(f'{model.__class__.__name__} has been created', ranks=[0])
|
||||||
|
|
||||||
|
'''
|
||||||
|
# Preprocessing the datasets.
|
||||||
|
# First we tokenize all the texts.
|
||||||
|
column_names = raw_datasets["train"].column_names
|
||||||
|
text_column_name = "text" if "text" in column_names else column_names[0]
|
||||||
|
|
||||||
|
def tokenize_function(examples):
|
||||||
|
return tokenizer(examples[text_column_name])
|
||||||
|
|
||||||
|
with barrier_context(executor_rank=0, parallel_mode=ParallelMode.DATA):
|
||||||
|
tokenized_datasets = raw_datasets.map(
|
||||||
|
tokenize_function,
|
||||||
|
batched=True,
|
||||||
|
num_proc=args.preprocessing_num_workers,
|
||||||
|
remove_columns=column_names,
|
||||||
|
load_from_cache_file=not args.overwrite_cache,
|
||||||
|
desc="Running tokenizer on dataset",
|
||||||
|
)
|
||||||
|
'''
|
||||||
|
|
||||||
|
if args.block_size is None:
|
||||||
|
block_size = tokenizer.model_max_length
|
||||||
|
if block_size > 1024:
|
||||||
|
logger.warning(
|
||||||
|
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
|
||||||
|
"Picking 1024 instead. You can change that default value by passing --block_size xxx.")
|
||||||
|
block_size = 1024
|
||||||
|
else:
|
||||||
|
if args.block_size > tokenizer.model_max_length:
|
||||||
|
logger.warning(f"The block_size passed ({args.block_size}) is larger than the maximum length for the model"
|
||||||
|
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}.")
|
||||||
|
block_size = min(args.block_size, tokenizer.model_max_length)
|
||||||
|
|
||||||
|
'''
|
||||||
|
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
|
||||||
|
def group_texts(examples):
|
||||||
|
# Concatenate all texts.
|
||||||
|
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
||||||
|
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
||||||
|
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
||||||
|
# customize this part to your needs.
|
||||||
|
if total_length >= block_size:
|
||||||
|
total_length = (total_length // block_size) * block_size
|
||||||
|
# Split by chunks of max_len.
|
||||||
|
result = {
|
||||||
|
k: [t[i:i + block_size] for i in range(0, total_length, block_size)
|
||||||
|
] for k, t in concatenated_examples.items()
|
||||||
|
}
|
||||||
|
result["labels"] = result["input_ids"].copy()
|
||||||
|
return result
|
||||||
|
|
||||||
|
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
|
||||||
|
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
|
||||||
|
# to preprocess.
|
||||||
|
#
|
||||||
|
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
|
||||||
|
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
|
||||||
|
|
||||||
|
with barrier_context(executor_rank=0, parallel_mode=ParallelMode.DATA):
|
||||||
|
lm_datasets = tokenized_datasets.map(
|
||||||
|
group_texts,
|
||||||
|
batched=True,
|
||||||
|
num_proc=args.preprocessing_num_workers,
|
||||||
|
load_from_cache_file=not args.overwrite_cache,
|
||||||
|
desc=f"Grouping texts in chunks of {block_size}",
|
||||||
|
)
|
||||||
|
'''
|
||||||
|
|
||||||
|
# train_dataset = lm_datasets["train"]
|
||||||
|
# eval_dataset = lm_datasets["validation"]
|
||||||
|
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
# tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
||||||
|
|
||||||
|
train_dataset = SFTDataset(args.train_file, tokenizer)
|
||||||
|
eval_dataset = SFTDataset(args.validation_file, tokenizer)
|
||||||
|
|
||||||
|
# Log a few random samples from the training set:
|
||||||
|
# for index in random.sample(range(len(train_dataset)), 3):
|
||||||
|
# logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
|
||||||
|
|
||||||
|
def collate_fn(batches):
|
||||||
|
input_ids = [
|
||||||
|
batch["input_ids"].squeeze(0) for batch in batches
|
||||||
|
]
|
||||||
|
# padded_tokens = {"input_ids": input_ids}
|
||||||
|
padded_tokens = tokenizer.pad(
|
||||||
|
{"input_ids": input_ids}, return_tensors="pt", padding=True
|
||||||
|
)
|
||||||
|
start_positions = torch.stack(
|
||||||
|
[batch["start_positions"] for batch in batches]
|
||||||
|
)
|
||||||
|
end_positions = torch.stack(
|
||||||
|
[batch["end_positions"] for batch in batches]
|
||||||
|
)
|
||||||
|
return {
|
||||||
|
"input_ids": padded_tokens["input_ids"],
|
||||||
|
"attention_mask": padded_tokens["attention_mask"],
|
||||||
|
"start_positions": start_positions,
|
||||||
|
"end_positions": end_positions,
|
||||||
|
}
|
||||||
|
|
||||||
|
# DataLoaders creation:
|
||||||
|
train_dataloader = get_dataloader(train_dataset,
|
||||||
|
shuffle=True,
|
||||||
|
add_sampler=True,
|
||||||
|
collate_fn=collate_fn,
|
||||||
|
batch_size=args.per_device_train_batch_size)
|
||||||
|
eval_dataloader = DataLoader(eval_dataset,
|
||||||
|
collate_fn=collate_fn,
|
||||||
|
batch_size=args.per_device_eval_batch_size)
|
||||||
|
logger.info("Dataloaders have been created", ranks=[0])
|
||||||
|
|
||||||
|
# Optimizer
|
||||||
|
# Split weights in two groups, one with weight decay and the other not.
|
||||||
|
no_decay = ["bias", "LayerNorm.weight"]
|
||||||
|
optimizer_grouped_parameters = [
|
||||||
|
{
|
||||||
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
||||||
|
"weight_decay": args.weight_decay,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
||||||
|
"weight_decay": 0.0,
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
optimizer = HybridAdam(optimizer_grouped_parameters, lr=args.learning_rate)
|
||||||
|
optimizer = ZeroOptimizer(optimizer, model, initial_scale=2**14)
|
||||||
|
|
||||||
|
# Scheduler and math around the number of training steps.
|
||||||
|
overrode_max_train_steps = False
|
||||||
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||||
|
if args.max_train_steps is None:
|
||||||
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
||||||
|
overrode_max_train_steps = True
|
||||||
|
|
||||||
|
lr_scheduler = get_scheduler(
|
||||||
|
name=args.lr_scheduler_type,
|
||||||
|
optimizer=optimizer,
|
||||||
|
num_warmup_steps=args.num_warmup_steps,
|
||||||
|
num_training_steps=args.max_train_steps,
|
||||||
|
)
|
||||||
|
|
||||||
|
if args.resume_from_checkpoint is not None:
|
||||||
|
# FIXME(11b): Implement this properly. Need to save/restore all the other
|
||||||
|
# state as well (optimizer, LR scheduler, dataloader position via step counter...)
|
||||||
|
logger.info(f"Resuming from checkpoint {args.resume_from_checkpoint}", ranks=[0])
|
||||||
|
colossalai.utils.load_checkpoint(args.resume_from_checkpoint, model, optimizer, lr_scheduler)
|
||||||
|
|
||||||
|
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
||||||
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||||
|
if overrode_max_train_steps:
|
||||||
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
||||||
|
# Afterwards we recalculate our number of training epochs
|
||||||
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||||||
|
|
||||||
|
# Train!
|
||||||
|
total_batch_size = args.per_device_train_batch_size * gpc.get_world_size(ParallelMode.DATA)
|
||||||
|
|
||||||
|
logger.info("***** Running training *****", ranks=[0])
|
||||||
|
logger.info(f" Num examples = {len(train_dataset)}", ranks=[0])
|
||||||
|
logger.info(f" Num Epochs = {args.num_train_epochs}", ranks=[0])
|
||||||
|
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}", ranks=[0])
|
||||||
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}", ranks=[0])
|
||||||
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}", ranks=[0])
|
||||||
|
logger.info(f" Total optimization steps = {args.max_train_steps}", ranks=[0])
|
||||||
|
|
||||||
|
now = datetime.datetime.now()
|
||||||
|
run_name = now.strftime("%Y-%m-%dT_%H-%M-%S%z")
|
||||||
|
writer = torch.utils.tensorboard.SummaryWriter(log_dir=f"{args.output_dir}/runs/{run_name}", comment=args.comment)
|
||||||
|
|
||||||
|
# Only show the progress bar once on each machine.
|
||||||
|
progress_bar = tqdm(range(args.max_train_steps), disable=not is_main_process)
|
||||||
|
completed_steps = 0
|
||||||
|
starting_epoch = 0
|
||||||
|
global_step = 0
|
||||||
|
|
||||||
|
step_from_checkpoint = 0
|
||||||
|
if args.resume_from_checkpoint is not None:
|
||||||
|
step_from_checkpoint = int(re.findall(r"epoch_\d+_step_(\d+).pt", args.resume_from_checkpoint)[0])
|
||||||
|
|
||||||
|
# Add supervised finetuning forward method to model
|
||||||
|
model.sft_forward = sft_forward.__get__(model)
|
||||||
|
|
||||||
|
for epoch in range(starting_epoch, args.num_train_epochs):
|
||||||
|
|
||||||
|
if completed_steps >= args.max_train_steps:
|
||||||
|
break
|
||||||
|
|
||||||
|
model.train()
|
||||||
|
for step, batch in enumerate(train_dataloader):
|
||||||
|
if step < step_from_checkpoint:
|
||||||
|
completed_steps += 1
|
||||||
|
global_step += 1
|
||||||
|
progress_bar.update(1)
|
||||||
|
|
||||||
|
# Apparently ColossalAI's checkpoint utilities don't work
|
||||||
|
# correctly for saving/restore the LR scheduler? So we "step" it
|
||||||
|
# manually here.
|
||||||
|
lr_scheduler.step()
|
||||||
|
continue
|
||||||
|
|
||||||
|
batch = {k: v.cuda() for k, v in batch.items()}
|
||||||
|
# outputs = model.sft_forward(use_cache=False, **batch) # Caching is incompatible with gradient checkpointing.
|
||||||
|
outputs = model.sft_forward(
|
||||||
|
input_ids=batch["input_ids"],
|
||||||
|
attention_mask=batch["attention_mask"],
|
||||||
|
start_positions=batch["start_positions"],
|
||||||
|
end_positions=batch["end_positions"],
|
||||||
|
)
|
||||||
|
loss = outputs['loss']
|
||||||
|
optimizer.backward(loss)
|
||||||
|
|
||||||
|
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
|
||||||
|
optimizer.step()
|
||||||
|
lr_scheduler.step()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
progress_bar.update(1)
|
||||||
|
completed_steps += 1
|
||||||
|
|
||||||
|
global_step += 1
|
||||||
|
logger.info("Global step {} finished".format(global_step + 1), ranks=[0])
|
||||||
|
|
||||||
|
try:
|
||||||
|
train_perplexity = math.exp(loss)
|
||||||
|
except OverflowError:
|
||||||
|
train_perplexity = float("inf")
|
||||||
|
writer.add_scalar("Train/Perplexity (Step)", train_perplexity, global_step)
|
||||||
|
writer.add_scalar("Train/Loss (Step)", loss, global_step)
|
||||||
|
writer.add_scalar("Train/Learning Rate (Step)", lr_scheduler.get_last_lr()[-1], global_step)
|
||||||
|
|
||||||
|
if args.output_dir is not None and args.checkpointing_steps is not None:
|
||||||
|
if args.checkpointing_steps != "epoch" and completed_steps % int(args.checkpointing_steps) == 0:
|
||||||
|
checkpoint_path = f'{args.output_dir}/epoch_{epoch}_step_{completed_steps}.pt'
|
||||||
|
logger.info(f" Saving iter checkpoint...", ranks=[0])
|
||||||
|
save_checkpoint(checkpoint_path, epoch, model, optimizer, lr_scheduler)
|
||||||
|
logger.info(f" Saved checkpoint to {checkpoint_path}!", ranks=[0])
|
||||||
|
|
||||||
|
if True and completed_steps % (int(args.checkpointing_steps) * 8) == 0:
|
||||||
|
# Evaluate every X checkpoints.
|
||||||
|
model.eval()
|
||||||
|
losses = []
|
||||||
|
for step, batch in enumerate(eval_dataloader):
|
||||||
|
with torch.no_grad():
|
||||||
|
batch = {k: v.cuda() for k, v in batch.items()}
|
||||||
|
outputs = model.sft_forward(**batch)
|
||||||
|
|
||||||
|
loss = outputs['loss'].unsqueeze(0)
|
||||||
|
losses.append(loss)
|
||||||
|
|
||||||
|
losses = torch.cat(losses)
|
||||||
|
losses = losses[:len(eval_dataset)]
|
||||||
|
try:
|
||||||
|
eval_loss = torch.mean(losses)
|
||||||
|
perplexity = math.exp(eval_loss)
|
||||||
|
except OverflowError:
|
||||||
|
perplexity = float("inf")
|
||||||
|
logger.info(f"Step {global_step}: perplexity: {perplexity} eval_loss: {eval_loss}", ranks=[0])
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
if completed_steps >= args.max_train_steps:
|
||||||
|
break
|
||||||
|
|
||||||
|
# Evaluate per epoch.
|
||||||
|
if False:
|
||||||
|
model.eval()
|
||||||
|
losses = []
|
||||||
|
for step, batch in enumerate(eval_dataloader):
|
||||||
|
with torch.no_grad():
|
||||||
|
batch = {k: v.cuda() for k, v in batch.items()}
|
||||||
|
outputs = model(**batch)
|
||||||
|
|
||||||
|
loss = outputs['loss'].unsqueeze(0)
|
||||||
|
losses.append(loss)
|
||||||
|
|
||||||
|
losses = torch.cat(losses)
|
||||||
|
losses = losses[:len(eval_dataset)]
|
||||||
|
try:
|
||||||
|
eval_loss = torch.mean(losses)
|
||||||
|
perplexity = math.exp(eval_loss)
|
||||||
|
except OverflowError:
|
||||||
|
perplexity = float("inf")
|
||||||
|
|
||||||
|
logger.info(f"Epoch {epoch}: perplexity: {perplexity} eval_loss: {eval_loss}", ranks=[0])
|
||||||
|
# TODO(11b): This messes up the intra-epoch graphs. Apparently I need to
|
||||||
|
# read up on the Tensorboard docs to do this properly. Ignoring for now.
|
||||||
|
# writer.add_scalar("Eval/Loss (Global Step)", eval_loss, completed_steps)
|
||||||
|
# writer.add_scalar("Eval/Perplexity (Global Step)", perplexity, completed_steps)
|
||||||
|
|
||||||
|
if args.output_dir is not None and args.checkpointing_steps == "epoch":
|
||||||
|
checkpoint_path = f'{args.output_dir}/epoch_{epoch}_step_{completed_steps}.pt'
|
||||||
|
logger.info(f" Saving epoch checkpoint...", ranks=[0])
|
||||||
|
save_checkpoint(checkpoint_path, epoch, model, optimizer, lr_scheduler)
|
||||||
|
logger.info(f" Saved checkpoint to {checkpoint_path}!", ranks=[0])
|
||||||
|
|
||||||
|
if args.output_dir is not None:
|
||||||
|
checkpoint_path = f'{args.output_dir}/epoch_{epoch}_step_{completed_steps}.pt'
|
||||||
|
logger.info(f" Saving final checkpoint...", ranks=[0])
|
||||||
|
save_checkpoint(checkpoint_path, epoch, model, optimizer, lr_scheduler)
|
||||||
|
logger.info(f" Saved checkpoint to {checkpoint_path}!", ranks=[0])
|
||||||
|
|
||||||
|
logger.info("Training finished", ranks=[0])
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
|
@ -0,0 +1,137 @@
|
||||||
|
import os
|
||||||
|
import struct
|
||||||
|
import torch
|
||||||
|
import argparse
|
||||||
|
import numpy as np
|
||||||
|
import transformers
|
||||||
|
import json
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
def decode(in_file: str, out_file: str, tokenizer: transformers.AutoTokenizer) -> int:
|
||||||
|
mem = np.memmap(in_file, mode="r", dtype="uint16")
|
||||||
|
tokens = len(mem)
|
||||||
|
with open(out_file, "a") as f:
|
||||||
|
for token in mem:
|
||||||
|
f.write(tokenizer.decode([token]))
|
||||||
|
return tokens
|
||||||
|
|
||||||
|
def encode(in_file: str, out_file: str, tokenizer: transformers.AutoTokenizer) -> int:
|
||||||
|
with open(in_file, "r", encoding="utf-8") as f:
|
||||||
|
text = f.read()
|
||||||
|
tokens = tokenizer.encode(text)
|
||||||
|
with open(out_file, "wb") as f:
|
||||||
|
for token in tokens:
|
||||||
|
f.write(np.uint16(token))
|
||||||
|
return len(tokens)
|
||||||
|
|
||||||
|
class TokenizedDataset(torch.utils.data.Dataset):
|
||||||
|
"""
|
||||||
|
Consumes a flat binary file containing 16-bit token serialization, aligned
|
||||||
|
along `context_length` chunks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, path: str, context_length: int = 2048):
|
||||||
|
file_stat = os.stat(path)
|
||||||
|
self.file = open(path, 'rb')
|
||||||
|
self.length = int(file_stat.st_size / 2 / context_length)
|
||||||
|
self.formatstr = '%sH' % context_length
|
||||||
|
self.context_length = context_length
|
||||||
|
length_mb = os.stat(path).st_size / 1024.0 / 1024.0
|
||||||
|
num_tokens = self.length * context_length
|
||||||
|
print(f"DATASET: {path}")
|
||||||
|
print(f"DATASET SIZE: {length_mb:,.2f}mb, {num_tokens:,} tokens, "
|
||||||
|
f"{self.length:,} contexts")
|
||||||
|
|
||||||
|
def __len__(self) -> int:
|
||||||
|
return self.length
|
||||||
|
|
||||||
|
def load(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
self.seek(idx)
|
||||||
|
input_ids = torch.tensor(
|
||||||
|
struct.unpack(self.formatstr,
|
||||||
|
self.file.read(self.context_length * 2)))
|
||||||
|
mask = torch.zeros(self.context_length)
|
||||||
|
return input_ids, mask
|
||||||
|
|
||||||
|
def seek(self, idx):
|
||||||
|
self.file.seek(self.context_length * idx * 2)
|
||||||
|
|
||||||
|
def __getitem__(self, idx) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
return self.load(idx)
|
||||||
|
|
||||||
|
class FeedbackDataset(torch.utils.data.Dataset):
|
||||||
|
def __init__(self, feedback_file: str, tokenizer: transformers.AutoTokenizer, max_length: int = 512):
|
||||||
|
self.tokenizer = tokenizer
|
||||||
|
self.max_length = max_length
|
||||||
|
self.feedback_file = feedback_file
|
||||||
|
|
||||||
|
with open(feedback_file) as f:
|
||||||
|
self.feedback = [json.loads(line) for line in f]
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.feedback)
|
||||||
|
|
||||||
|
def __getitem__(self, idx):
|
||||||
|
feedback = self.feedback[idx]
|
||||||
|
feedback_input = '\n'.join(feedback["input"].split("\n")[-2:])
|
||||||
|
feedback_str = f'{feedback_input} {feedback["output"].lstrip().rstrip()}'
|
||||||
|
seq = self.tokenizer(
|
||||||
|
feedback_str,
|
||||||
|
padding="max_length",
|
||||||
|
truncation=True,
|
||||||
|
return_tensors="pt"
|
||||||
|
)
|
||||||
|
reward = torch.tensor([feedback["reward"]]).unsqueeze(0)
|
||||||
|
return seq, reward
|
||||||
|
|
||||||
|
# sft file example
|
||||||
|
# {
|
||||||
|
# "input": "Anonymous: Hi, how are you?\nGPT:",
|
||||||
|
# "output": " I'm good, how are you?\n",
|
||||||
|
# "reward": 0.0
|
||||||
|
# }
|
||||||
|
import tqdm
|
||||||
|
class SFTDataset(torch.utils.data.Dataset):
|
||||||
|
def __init__(self, sft_file: str, tokenizer: transformers.AutoTokenizer, max_length: int = 2048):
|
||||||
|
self.tokenizer = tokenizer
|
||||||
|
self.max_length = max_length
|
||||||
|
self.sft_file = sft_file
|
||||||
|
|
||||||
|
with open(sft_file) as f:
|
||||||
|
self.sft = [json.loads(line) for line in f]
|
||||||
|
|
||||||
|
# iterate over sft, removing any that have a reward of 0
|
||||||
|
self.sft = [sft for sft in self.sft if sft["reward"] != 0.0]
|
||||||
|
|
||||||
|
# iterate over sft, removing any that have too many tokens
|
||||||
|
for feedback in tqdm.tqdm(self.sft, desc="Validating SFT"):
|
||||||
|
inputs = feedback["input"] + f' {feedback["output"].lstrip().rstrip()}\n'
|
||||||
|
if len(self.tokenizer(inputs).input_ids) > self.max_length:
|
||||||
|
self.sft.remove(feedback)
|
||||||
|
print(f"Removed {feedback['output']} due to length")
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.sft)
|
||||||
|
|
||||||
|
def __getitem__(self, idx):
|
||||||
|
sft = self.sft[idx]
|
||||||
|
sft_input_tokens = self.tokenizer(sft["input"], return_tensors="pt").input_ids
|
||||||
|
sft_output_tokens = self.tokenizer(f' {sft["output"].lstrip().rstrip()}\n', return_tensors="pt").input_ids
|
||||||
|
input_ids = torch.cat([sft_input_tokens, sft_output_tokens], dim=-1)
|
||||||
|
start_positions = torch.tensor([len(sft_input_tokens[0])])
|
||||||
|
end_positions = torch.tensor([len(sft_input_tokens[0]) + len(sft_output_tokens[0]) - 1])
|
||||||
|
return {
|
||||||
|
"input_ids": input_ids,
|
||||||
|
"start_positions": start_positions,
|
||||||
|
"end_positions": end_positions,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Dataset Creator')
|
||||||
|
parser.add_argument('--in_file', type=str, help='input file to use', required=True)
|
||||||
|
parser.add_argument('--out_file', type=str, help='output file to use', required=True)
|
||||||
|
parser.add_argument('--model', type=str, help='model tokenizer to use', required=True)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
encode(args.in_file, args.out_file, transformers.AutoTokenizer.from_pretrained(args.model))
|
|
@ -0,0 +1,276 @@
|
||||||
|
import os
|
||||||
|
import torch
|
||||||
|
import accelerate
|
||||||
|
import tqdm
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
import wandb
|
||||||
|
|
||||||
|
from dataset import TokenizedDataset, FeedbackDataset, SFTDataset
|
||||||
|
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
from transformers.modeling_outputs import CausalLMOutput
|
||||||
|
|
||||||
|
from typing import Union, Optional
|
||||||
|
|
||||||
|
# Supervised Finetuning: Compute loss between model output and target using start_positions and end_positions
|
||||||
|
def sft_forward(
|
||||||
|
self,
|
||||||
|
input_ids: Optional[torch.LongTensor] = None,
|
||||||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
start_positions: Optional[torch.LongTensor] = None,
|
||||||
|
end_positions: Optional[torch.LongTensor] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
) -> Union[torch.Tensor, CausalLMOutput]:
|
||||||
|
try:
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
except AttributeError:
|
||||||
|
return_dict = True
|
||||||
|
|
||||||
|
outputs = self.transformer(
|
||||||
|
input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
token_type_ids=token_type_ids,
|
||||||
|
position_ids=position_ids,
|
||||||
|
head_mask=head_mask,
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=output_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
sequence_output = outputs[0]
|
||||||
|
|
||||||
|
logits = self.lm_head(sequence_output)
|
||||||
|
|
||||||
|
answer_logits = logits[:, start_positions[0]:end_positions[0]+1]
|
||||||
|
answer_input_ids = input_ids[:, start_positions[0]:end_positions[0]+1]
|
||||||
|
|
||||||
|
# compute loss for prompt and answer
|
||||||
|
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-1)
|
||||||
|
shift_answer_logits = answer_logits[..., :-1, :].contiguous()
|
||||||
|
shift_answer_labels = answer_input_ids[..., 1:].contiguous()
|
||||||
|
answer_loss = loss_fct(shift_answer_logits.view(-1, answer_logits.size(-1)), shift_answer_labels.view(-1))
|
||||||
|
|
||||||
|
loss = answer_loss
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
output = (loss,) + outputs[2:]
|
||||||
|
return ((loss,) + outputs[2:]) if return_dict else output
|
||||||
|
|
||||||
|
return CausalLMOutput(
|
||||||
|
loss=loss,
|
||||||
|
logits=logits,
|
||||||
|
hidden_states=outputs.hidden_states,
|
||||||
|
attentions=outputs.attentions,
|
||||||
|
)
|
||||||
|
|
||||||
|
class SFT_Trainer:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
accelerator: accelerate.Accelerator,
|
||||||
|
model: AutoModelForCausalLM,
|
||||||
|
tokenizer: AutoTokenizer,
|
||||||
|
train_dataloader: torch.utils.data.DataLoader,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
weight_dtype: torch.dtype,
|
||||||
|
args: argparse.Namespace,
|
||||||
|
) -> None:
|
||||||
|
self.accelerator = accelerator
|
||||||
|
self.model = model
|
||||||
|
self.tokenizer = tokenizer
|
||||||
|
self.train_dataloader = train_dataloader
|
||||||
|
self.optimizer = optimizer
|
||||||
|
self.weight_dtype = weight_dtype
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
if accelerator.is_main_process:
|
||||||
|
self.progress_bar = tqdm.tqdm(
|
||||||
|
total=self.args.epochs*len(train_dataloader),
|
||||||
|
desc="Total Steps",
|
||||||
|
leave=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.run = wandb.init(
|
||||||
|
project="convogpt-sftlm",
|
||||||
|
name=f'{self.args.model}-{self.args.epochs}-{self.args.batch_size}-{self.args.learning_rate}--{int(time.time())}',
|
||||||
|
config=self.args,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.global_step = 0
|
||||||
|
|
||||||
|
def save_model(self) -> None:
|
||||||
|
self.accelerator.wait_for_everyone()
|
||||||
|
if self.accelerator.is_main_process:
|
||||||
|
path = f'{self.args.output_dir}/{self.run.name}'
|
||||||
|
os.makedirs(path, exist_ok=True)
|
||||||
|
unwrapped_model = self.accelerator.unwrap_model(self.model)
|
||||||
|
unwrapped_model.save_pretrained(path, save_function=self.accelerator.save)
|
||||||
|
|
||||||
|
def step(self, batch: dict) -> None:
|
||||||
|
with self.accelerator.accumulate(self.model):
|
||||||
|
input_ids = batch['input_ids']
|
||||||
|
attention_mask = batch['attention_mask']
|
||||||
|
start_positions = batch['start_positions']
|
||||||
|
end_positions = batch['end_positions']
|
||||||
|
|
||||||
|
try:
|
||||||
|
outputs = sft_forward(
|
||||||
|
self.model,
|
||||||
|
input_ids=input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
start_positions=start_positions,
|
||||||
|
end_positions=end_positions,
|
||||||
|
)
|
||||||
|
|
||||||
|
loss = outputs.loss
|
||||||
|
self.accelerator.backward(loss)
|
||||||
|
if self.accelerator.sync_gradients:
|
||||||
|
self.accelerator.clip_grad_norm_(self.model.parameters(), 1.0)
|
||||||
|
self.optimizer.step()
|
||||||
|
self.optimizer.zero_grad()
|
||||||
|
except RuntimeError as e:
|
||||||
|
print(f"RuntimeError: {e}")
|
||||||
|
print(f"input_ids: {input_ids}")
|
||||||
|
print(f"attention_mask: {attention_mask}")
|
||||||
|
print(f"start_positions: {start_positions}")
|
||||||
|
print(f"end_positions: {end_positions}")
|
||||||
|
print('Skipping batch...')
|
||||||
|
loss = torch.tensor(float('nan'), device=self.accelerator.device)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"train/loss": loss.detach().item(),
|
||||||
|
}
|
||||||
|
|
||||||
|
def train(self) -> None:
|
||||||
|
self.model.train()
|
||||||
|
for epoch in range(self.args.epochs):
|
||||||
|
for _, batch in enumerate(self.train_dataloader):
|
||||||
|
step_start = time.perf_counter()
|
||||||
|
|
||||||
|
#print(f"####\n{self.tokenizer.decode(batch['input_ids'][0])}\n#{batch['start_positions'][0]}:{batch['end_positions'][0]}\n####")
|
||||||
|
|
||||||
|
metrics = self.step(batch)
|
||||||
|
|
||||||
|
step_end = time.perf_counter()
|
||||||
|
|
||||||
|
if self.accelerator.is_main_process:
|
||||||
|
rank_samples_per_second = self.args.batch_size / (step_end - step_start)
|
||||||
|
world_samples_per_second = rank_samples_per_second * self.accelerator.num_processes
|
||||||
|
|
||||||
|
metrics.update({
|
||||||
|
"perf/rank_samples_per_second": rank_samples_per_second,
|
||||||
|
"perf/world_samples_per_second": world_samples_per_second,
|
||||||
|
"train/epoch": epoch,
|
||||||
|
"train/step": self.global_step,
|
||||||
|
"train/samples_seen": self.global_step * self.args.batch_size,
|
||||||
|
})
|
||||||
|
|
||||||
|
self.global_step += 1
|
||||||
|
|
||||||
|
self.progress_bar.update(1)
|
||||||
|
self.progress_bar.set_postfix(**metrics)
|
||||||
|
|
||||||
|
self.run.log(metrics, step=self.global_step)
|
||||||
|
|
||||||
|
if self.global_step % self.args.save_steps == 0:
|
||||||
|
self.save_model()
|
||||||
|
self.accelerator.wait_for_everyone()
|
||||||
|
self.save_model()
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="Supervised GPT finetuning")
|
||||||
|
parser.add_argument("--model", type=str, default="hakurei/gpt-j-random-tinier", help="Model name")
|
||||||
|
parser.add_argument("--dataset", type=str, default="train.jsonl", help="Training file")
|
||||||
|
parser.add_argument("--output_dir", type=str, default="output", help="Output directory")
|
||||||
|
parser.add_argument("--epochs", type=int, default=1, help="Number of epochs")
|
||||||
|
parser.add_argument("--batch_size", type=int, default=1, help="Batch size")
|
||||||
|
parser.add_argument("--save_steps", type=int, default=1000, help="Save model every x steps")
|
||||||
|
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
accelerator = accelerate.Accelerator()
|
||||||
|
accelerate.utils.set_seed(42)
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
|
||||||
|
def collate_fn(batches):
|
||||||
|
input_ids = [
|
||||||
|
batch["input_ids"].squeeze(0) for batch in batches
|
||||||
|
]
|
||||||
|
padded_tokens = tokenizer.pad(
|
||||||
|
{"input_ids": input_ids}, return_tensors="pt", padding=True
|
||||||
|
)
|
||||||
|
start_positions = torch.stack(
|
||||||
|
[batch["start_positions"] for batch in batches]
|
||||||
|
)
|
||||||
|
end_positions = torch.stack(
|
||||||
|
[batch["end_positions"] for batch in batches]
|
||||||
|
)
|
||||||
|
return {
|
||||||
|
"input_ids": padded_tokens["input_ids"],
|
||||||
|
"attention_mask": padded_tokens["attention_mask"],
|
||||||
|
"start_positions": start_positions,
|
||||||
|
"end_positions": end_positions,
|
||||||
|
}
|
||||||
|
|
||||||
|
train_dataset = SFTDataset(args.dataset, tokenizer)
|
||||||
|
|
||||||
|
train_dataloader = torch.utils.data.DataLoader(
|
||||||
|
train_dataset,
|
||||||
|
batch_size=args.batch_size,
|
||||||
|
shuffle=True,
|
||||||
|
collate_fn=collate_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(args.model)
|
||||||
|
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate)
|
||||||
|
|
||||||
|
model, optimizer, train_dataloader = accelerator.prepare(
|
||||||
|
model, optimizer, train_dataloader
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer = SFT_Trainer(
|
||||||
|
accelerator=accelerator,
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
train_dataloader=train_dataloader,
|
||||||
|
optimizer=optimizer,
|
||||||
|
weight_dtype=None,
|
||||||
|
args=args,
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
"""
|
||||||
|
# Load model and tokenizer
|
||||||
|
model = AutoModelForCausalLM.from_pretrained('distilgpt2')
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained('distilgpt2')
|
||||||
|
|
||||||
|
# Add supervised finetuning forward method to model
|
||||||
|
model.forward = sft_forward.__get__(model)
|
||||||
|
|
||||||
|
# Create input tensors
|
||||||
|
question = 'What is the capital of France?'
|
||||||
|
answer = 'The capital of France is Paris.'
|
||||||
|
question_tokens = tokenizer.encode(question, return_tensors='pt')
|
||||||
|
answer_tokens = tokenizer.encode(answer, return_tensors='pt')
|
||||||
|
input_ids = torch.cat([question_tokens, answer_tokens], dim=-1)
|
||||||
|
|
||||||
|
start_positions = torch.tensor([len(question_tokens[0])])
|
||||||
|
end_positions = torch.tensor([len(question_tokens[0]) + len(answer_tokens[0]) - 1])
|
||||||
|
|
||||||
|
# Compute loss
|
||||||
|
loss = model(input_ids, start_positions=start_positions, end_positions=end_positions).loss
|
||||||
|
print(loss)
|
||||||
|
"""
|
||||||
|
main()
|
|
@ -0,0 +1,39 @@
|
||||||
|
#!/usr/bin/env bash
|
||||||
|
set -x
|
||||||
|
|
||||||
|
export BATCH_SIZE=2
|
||||||
|
export MODEL="EleutherAI/pythia-1.3b-deduped"
|
||||||
|
export NUMBER_OF_GPUS=1
|
||||||
|
export OUTPUT_DIR="checkpoints"
|
||||||
|
LOG_NAME=$(date "+%Y-%m-%d_%H-%M-%S")
|
||||||
|
|
||||||
|
# Set HuggingFace Datasets to offline mode by default: since we're using local
|
||||||
|
# JSON files, hitting their servers means something went wrong. If you're doing
|
||||||
|
# something else, adjust this accordingly.
|
||||||
|
export HF_DATASETS_OFFLINE=1
|
||||||
|
|
||||||
|
# HuggingFace transformers should be allowed to hit their servers though, to
|
||||||
|
# download pre-trained models during the first execution for example.
|
||||||
|
# export TRANSFORMERS_OFFLINE=1
|
||||||
|
|
||||||
|
mkdir -p "$OUTPUT_DIR/logs"
|
||||||
|
mkdir -p "$OUTPUT_DIR/runs"
|
||||||
|
|
||||||
|
torchrun \
|
||||||
|
--nproc_per_node ${NUMBER_OF_GPUS} \
|
||||||
|
--master_port 19198 \
|
||||||
|
./colossalai/run_sft.py \
|
||||||
|
--train_file "./data/train.json" \
|
||||||
|
--validation_file "./data/eval.json" \
|
||||||
|
--learning_rate "5.0e-5" \
|
||||||
|
--checkpointing_steps 64 \
|
||||||
|
--block_size 1024 \
|
||||||
|
--mem_cap 0 \
|
||||||
|
--lr_scheduler_type "cosine" \
|
||||||
|
--num_warmup_steps 100 \
|
||||||
|
--model_name_or_path "$MODEL" \
|
||||||
|
--output_dir "$OUTPUT_DIR" \
|
||||||
|
--num_train_epochs 1 \
|
||||||
|
--per_device_eval_batch_size "$BATCH_SIZE" \
|
||||||
|
--per_device_train_batch_size "$BATCH_SIZE" "$@" \
|
||||||
|
2>&1 | tee "$OUTPUT_DIR/logs/$LOG_NAME.log"
|
Loading…
Reference in New Issue