feat: fine-tuning scripts and instructions

This commit is contained in:
11b 2022-12-17 21:46:32 -03:00
parent 6fbd660a67
commit 925f5767ec
6 changed files with 706 additions and 1 deletions

2
.gitignore vendored
View File

@ -7,3 +7,5 @@
/data/*
!/data/.keep
/training/data/*
!/training/data/.keep

View File

@ -80,4 +80,16 @@ Soldier: To the jail with you *hit court wizard*
## Fine-tuning a model
To-do. I haven't documented this yet.
Due to hardware limitations (read: lack of GPUs with massive amounts of VRAM), I need to make use of ColossalAI's optimizations to be able to fine-tune models. However, their example code for fine-tuning OPT lacks some important stuff. Notably: metric logging (so we can know what is going on) and checkpoint saving/loading.
I've gone ahead and, using [their example scripts](https://github.com/hpcaitech/ColossalAI/tree/main/examples/language/opt) as a starting point, made a slightly adjusted version that's actually usable for real-world scenarios. All that stuff is inside the [training folder](/training/).
If you don't want to mess with anything, all you need to do is put the built data file at `/training/data/train.json` and invoke [finetune.bash](/training/finetune.bash). To see metrics, you can use Tensorboard by visiting http://localhost:6006 after starting the server like this:
```bash
tensorboard serve --port 6006 --logdir training/checkpoints/runs`
```
## Running inference on the fine-tuned model
To-do: write this up.

View File

@ -0,0 +1,32 @@
import torch.distributed as dist
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
class barrier_context():
"""
This context manager is used to allow one process to execute while blocking all
other processes in the same process group. This is often useful when downloading is required
as we only want to download in one process to prevent file corruption.
Args:
executor_rank (int): the process rank to execute without blocking, all other processes will be blocked
parallel_mode (ParallelMode): the parallel mode corresponding to a process group
Usage:
with barrier_context():
dataset = CIFAR10(root='./data', download=True)
"""
def __init__(self, executor_rank: int = 0, parallel_mode: ParallelMode = ParallelMode.GLOBAL):
# the class name is lowercase by convention
current_rank = gpc.get_local_rank(parallel_mode=parallel_mode)
self.should_block = current_rank != executor_rank
self.group = gpc.get_group(parallel_mode=parallel_mode)
def __enter__(self):
if self.should_block:
dist.barrier(group=self.group)
def __exit__(self, exc_type, exc_value, exc_traceback):
if not self.should_block:
dist.barrier(group=self.group)

View File

@ -0,0 +1,625 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...)
on a text file or a dataset without using HuggingFace Trainer.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=text-generation
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
import math
import os
import time
from itertools import chain
import datasets
import torch
import torch.distributed as dist
from accelerate.utils import set_seed
from context import barrier_context
from datasets import load_dataset
from packaging import version
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import colossalai
import transformers
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer import HybridAdam
from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer
from colossalai.nn.parallel import ZeroDDP
from colossalai.tensor import ProcessGroup
from colossalai.utils import get_current_device, get_dataloader, save_checkpoint
from colossalai.utils.model.colo_init_context import ColoInitContext
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
AutoConfig,
AutoTokenizer,
GPT2Tokenizer,
OPTForCausalLM,
SchedulerType,
default_data_collator,
get_scheduler,
)
from transformers.utils.versions import require_version
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def get_time_stamp():
torch.cuda.synchronize()
return time.time()
def parse_args():
parser = colossalai.get_default_parser()
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help="The name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument("--train_file",
type=str,
default=None,
help="A csv or a json file containing the training data.")
parser.add_argument("--validation_file",
type=str,
default=None,
help="A csv or a json file containing the validation data.")
parser.add_argument(
"--validation_split_percentage",
default=5,
help="The percentage of the train set used as validation set in case there's no validation split",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--config_name",
type=str,
default=None,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument("--num_warmup_steps",
type=int,
default=0,
help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--model_type",
type=str,
default=None,
help="Model type to use if training from scratch.",
choices=MODEL_TYPES,
)
parser.add_argument(
"--block_size",
type=int,
default=None,
help=("Optional input sequence length after tokenization. The training dataset will be truncated in block of"
" this size for training. Default to the model max input length for single sentence inputs (take into"
" account special tokens)."),
)
parser.add_argument(
"--preprocessing_num_workers",
type=int,
default=None,
help="The number of processes to use for the preprocessing.",
)
parser.add_argument("--overwrite_cache",
type=bool,
default=False,
help="Overwrite the cached training and evaluation sets")
parser.add_argument("--no_keep_linebreaks",
action="store_true",
help="Do not keep line breaks when using TXT files.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_model_id",
type=str,
help="The name of the repository to keep in sync with the local `output_dir`.")
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--comment", type=str, help="Experiment comment for the Tensorboard writer."
)
# NOTE(11b): These last two are useless.
parser.add_argument(
"--with_tracking",
action="store_true",
help="Whether to enable experiment trackers for logging.",
)
parser.add_argument(
"--report_to",
type=str,
default="all",
help=('The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."),
)
parser.add_argument("--mem_cap", type=int, default=0, help="use mem cap")
parser.add_argument("--init_in_cpu", action='store_true', default=False, help="init training model in cpu")
args = parser.parse_args()
# Sanity checks
if args.dataset_name is None and args.train_file is None and args.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file."
if args.push_to_hub:
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
return args
def colo_memory_cap(size_in_GB):
from colossalai.utils import colo_device_memory_capacity, colo_set_process_memory_fraction, get_current_device
cuda_capacity = colo_device_memory_capacity(get_current_device())
if size_in_GB * (1024**3) < cuda_capacity:
colo_set_process_memory_fraction(size_in_GB * (1024**3) / cuda_capacity)
print("Using {} GB of GPU memory".format(size_in_GB))
def main():
args = parse_args()
disable_existing_loggers()
colossalai.launch_from_torch(config=dict())
logger = get_dist_logger()
is_main_process = dist.get_rank() == 0
if is_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
if args.mem_cap > 0:
colo_memory_cap(args.mem_cap)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
logger.info(f"Rank {dist.get_rank()}: random seed is set to {args.seed}")
# Handle the repository creation
with barrier_context():
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
logger.info("Start preparing dataset", ranks=[0])
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
args.dataset_name,
args.dataset_config_name,
split=f"train[:{args.validation_split_percentage}%]",
)
raw_datasets["train"] = load_dataset(
args.dataset_name,
args.dataset_config_name,
split=f"train[{args.validation_split_percentage}%:]",
)
else:
data_files = {}
dataset_args = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = args.train_file.split(".")[-1]
if extension == "txt":
extension = "text"
dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks
raw_datasets = load_dataset(extension, data_files=data_files, **dataset_args)
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
extension,
data_files=data_files,
split=f"train[:{args.validation_split_percentage}%]",
**dataset_args,
)
raw_datasets["train"] = load_dataset(
extension,
data_files=data_files,
split=f"train[{args.validation_split_percentage}%:]",
**dataset_args,
)
logger.info("Dataset is prepared", ranks=[0])
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if args.config_name:
config = AutoConfig.from_pretrained(args.config_name)
elif args.model_name_or_path:
config = AutoConfig.from_pretrained(args.model_name_or_path)
else:
config = CONFIG_MAPPING[args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
logger.info("Model config has been created", ranks=[0])
if args.model_name_or_path == 'facebook/opt-13b':
tokenizer = GPT2Tokenizer.from_pretrained(args.model_name_or_path)
else:
print(f'load model from {args.model_name_or_path}')
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
logger.info(f"{tokenizer.__class__.__name__} has been created", ranks=[0])
if args.init_in_cpu:
init_dev = torch.device('cpu')
else:
init_dev = get_current_device()
# build model
if args.model_name_or_path is None or args.model_name_or_path == 'facebook/opt-13b':
# currently, there has a bug in pretrained opt-13b
# we can not import it until huggingface fix it
logger.info("Train a new model from scratch", ranks=[0])
with ColoInitContext(device=init_dev):
model = OPTForCausalLM(config)
else:
logger.info("Finetune a pre-trained model", ranks=[0])
with ColoInitContext(device=init_dev):
model = OPTForCausalLM.from_pretrained(args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
local_files_only=False)
# enable graident checkpointing
model.gradient_checkpointing_enable()
PLACEMENT_POLICY = 'auto'
cai_version = colossalai.__version__
logger.info(f'using Colossal-AI version {cai_version}')
if version.parse(cai_version) > version.parse("0.1.10"):
from colossalai.nn.parallel import GeminiDDP
model = GeminiDDP(model, device=get_current_device(), placement_policy=PLACEMENT_POLICY, pin_memory=True)
elif version.parse(cai_version) <= version.parse("0.1.10") and version.parse(cai_version) >= version.parse("0.1.9"):
from colossalai.gemini import ChunkManager, GeminiManager
pg = ProcessGroup()
chunk_size = ChunkManager.search_chunk_size(model, 64 * 1024**2, 32)
chunk_manager = ChunkManager(chunk_size,
pg,
enable_distributed_storage=True,
init_device=GeminiManager.get_default_device(PLACEMENT_POLICY))
gemini_manager = GeminiManager(PLACEMENT_POLICY, chunk_manager)
model = ZeroDDP(model, gemini_manager)
logger.info(f'{model.__class__.__name__} has been created', ranks=[0])
if args.resume_from_checkpoint is not None:
logger.info(f"Resuming from checkpoint {args.resume_from_checkpoint}", ranks=[0])
colossalai.utils.load_checkpoint(args.resume_from_checkpoint, model)
# Preprocessing the datasets.
# First we tokenize all the texts.
column_names = raw_datasets["train"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
def tokenize_function(examples):
return tokenizer(examples[text_column_name])
with barrier_context(executor_rank=0, parallel_mode=ParallelMode.DATA):
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on dataset",
)
if args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > 1024:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --block_size xxx.")
block_size = 1024
else:
if args.block_size > tokenizer.model_max_length:
logger.warning(f"The block_size passed ({args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}.")
block_size = min(args.block_size, tokenizer.model_max_length)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i:i + block_size] for i in range(0, total_length, block_size)
] for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
# to preprocess.
#
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
with barrier_context(executor_rank=0, parallel_mode=ParallelMode.DATA):
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
desc=f"Grouping texts in chunks of {block_size}",
)
train_dataset = lm_datasets["train"]
eval_dataset = lm_datasets["validation"]
# Log a few random samples from the training set:
# for index in random.sample(range(len(train_dataset)), 3):
# logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
train_dataloader = get_dataloader(train_dataset,
shuffle=True,
add_sampler=True,
collate_fn=default_data_collator,
batch_size=args.per_device_train_batch_size)
eval_dataloader = DataLoader(eval_dataset,
collate_fn=default_data_collator,
batch_size=args.per_device_eval_batch_size)
logger.info("Dataloaders have been created", ranks=[0])
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = HybridAdam(optimizer_grouped_parameters, lr=args.learning_rate)
optimizer = ZeroOptimizer(optimizer, model, initial_scale=2**14)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Train!
total_batch_size = args.per_device_train_batch_size * gpc.get_world_size(ParallelMode.DATA)
logger.info("***** Running training *****", ranks=[0])
logger.info(f" Num examples = {len(train_dataset)}", ranks=[0])
logger.info(f" Num Epochs = {args.num_train_epochs}", ranks=[0])
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}", ranks=[0])
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}", ranks=[0])
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}", ranks=[0])
logger.info(f" Total optimization steps = {args.max_train_steps}", ranks=[0])
# Only show the progress bar once on each machine.
writer = torch.utils.tensorboard.SummaryWriter(log_dir=f"{args.output_dir}/runs", comment=args.comment)
progress_bar = tqdm(range(args.max_train_steps), disable=not is_main_process)
completed_steps = 0
starting_epoch = 0
global_step = 0
for epoch in range(starting_epoch, args.num_train_epochs):
if completed_steps >= args.max_train_steps:
break
model.train()
for step, batch in enumerate(train_dataloader):
batch = {k: v.cuda() for k, v in batch.items()}
outputs = model(use_cache=False, **batch) # Caching is incompatible with gradient checkpointing.
loss = outputs['loss']
optimizer.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
global_step += 1
logger.info("Global step {} finished".format(global_step + 1), ranks=[0])
try:
train_perplexity = math.exp(loss)
except OverflowError:
train_perplexity = float("inf")
writer.add_scalar("Train/Perplexity (Step)", train_perplexity, step)
writer.add_scalar("Train/Loss (Step)", loss, step)
if args.output_dir is not None and args.checkpointing_steps is not None:
if args.checkpointing_steps != "epoch" and completed_steps % int(args.checkpointing_steps) == 0:
checkpoint_path = f'{args.output_dir}/epoch_{epoch}_step_{completed_steps}.pt'
logger.info(f" Saving iter checkpoint...", ranks=[0])
save_checkpoint(checkpoint_path, epoch, model)
logger.info(f" Saved checkpoint to {checkpoint_path}!", ranks=[0])
if completed_steps >= args.max_train_steps:
break
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
batch = {k: v.cuda() for k, v in batch.items()}
outputs = model(**batch)
loss = outputs['loss'].unsqueeze(0)
losses.append(loss)
losses = torch.cat(losses)
losses = losses[:len(eval_dataset)]
try:
eval_loss = torch.mean(losses)
perplexity = math.exp(eval_loss)
except OverflowError:
perplexity = float("inf")
logger.info(f"Epoch {epoch}: perplexity: {perplexity} eval_loss: {eval_loss}", ranks=[0])
writer.add_scalar("Eval/Loss (Epoch)", eval_loss, epoch)
writer.add_scalar("Eval/Perplexity (Epoch)", perplexity, epoch)
if args.output_dir is not None and args.checkpointing_steps == "epoch":
checkpoint_path = f'{args.output_dir}/epoch_{epoch}_step_{completed_steps}.pt'
logger.info(f" Saving epoch checkpoint...", ranks=[0])
save_checkpoint(checkpoint_path, epoch, model)
logger.info(f" Saved checkpoint to {checkpoint_path}!", ranks=[0])
if args.output_dir is not None:
checkpoint_path = f'{args.output_dir}/epoch_{epoch}_step_{completed_steps}.pt'
logger.info(f" Saving final checkpoint...", ranks=[0])
save_checkpoint(checkpoint_path, epoch, model)
logger.info(f" Saved checkpoint to {checkpoint_path}!", ranks=[0])
logger.info("Training finished", ranks=[0])
if __name__ == "__main__":
main()

0
training/data/.keep Normal file
View File

34
training/finetune.bash Executable file
View File

@ -0,0 +1,34 @@
#!/usr/bin/env bash
set -x
export BATCH_SIZE=4
export MODEL="facebook/opt-350m"
export NUMBER_OF_GPUS=1
export OUTPUT_DIR="checkpoints"
LOG_NAME=$(date "+%Y-%m-%d_%H-%M-%S")
# Set HuggingFace Datasets to offline mode by default: since we're using local
# JSON files, hitting their servers means something went wrong. If you're doing
# something else, adjust this accordingly.
export HF_DATASETS_OFFLINE=1
# HuggingFace transformers should be allowed to hit their servers though, to
# download pre-trained models during the first execution for example.
# export TRANSFORMERS_OFFLINE=1
mkdir -p "$OUTPUT_DIR/logs"
mkdir -p "$OUTPUT_DIR/runs"
torchrun \
--nproc_per_node ${NUMBER_OF_GPUS} \
--master_port 19198 \
./colossalai/run_clm.py \
--train_file "./data/train.json" \
--learning_rate "2e-5" \
--checkpointing_steps 64 \
--mem_cap 0 \
--model_name_or_path "$MODEL" \
--output_dir "$OUTPUT_DIR" \
--per_device_eval_batch_size "$BATCH_SIZE" \
--per_device_train_batch_size "$BATCH_SIZE" "$@" \
2>&1 | tee "$OUTPUT_DIR/logs/$LOG_NAME.log"