refactor: archive the old repo
This commit is contained in:
parent
beec9ba31f
commit
50ae8816a1
.gitignore.tool-versionsLICENSE.mdREADME.mdROADMAP.md
data
extras/characterai-dumper
pdm.lockpyproject.tomltoolbox
|
@ -1,12 +0,0 @@
|
|||
# Cache files.
|
||||
/*.egg-info/
|
||||
**/__pycache__/
|
||||
/.mypy_cache/
|
||||
|
||||
# Machine-specific stuff.
|
||||
/.pdm.toml
|
||||
/.venv/
|
||||
|
||||
# Large/binary files.
|
||||
/data/*
|
||||
!/data/.keep
|
|
@ -1 +0,0 @@
|
|||
pdm 2.3.3
|
660
LICENSE.md
660
LICENSE.md
|
@ -1,660 +0,0 @@
|
|||
### GNU AFFERO GENERAL PUBLIC LICENSE
|
||||
|
||||
Version 3, 19 November 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc.
|
||||
<https://fsf.org/>
|
||||
|
||||
Everyone is permitted to copy and distribute verbatim copies of this
|
||||
license document, but changing it is not allowed.
|
||||
|
||||
### Preamble
|
||||
|
||||
The GNU Affero General Public License is a free, copyleft license for
|
||||
software and other kinds of works, specifically designed to ensure
|
||||
cooperation with the community in the case of network server software.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
our General Public Licenses are intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains
|
||||
free software for all its users.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
Developers that use our General Public Licenses protect your rights
|
||||
with two steps: (1) assert copyright on the software, and (2) offer
|
||||
you this License which gives you legal permission to copy, distribute
|
||||
and/or modify the software.
|
||||
|
||||
A secondary benefit of defending all users' freedom is that
|
||||
improvements made in alternate versions of the program, if they
|
||||
receive widespread use, become available for other developers to
|
||||
incorporate. Many developers of free software are heartened and
|
||||
encouraged by the resulting cooperation. However, in the case of
|
||||
software used on network servers, this result may fail to come about.
|
||||
The GNU General Public License permits making a modified version and
|
||||
letting the public access it on a server without ever releasing its
|
||||
source code to the public.
|
||||
|
||||
The GNU Affero General Public License is designed specifically to
|
||||
ensure that, in such cases, the modified source code becomes available
|
||||
to the community. It requires the operator of a network server to
|
||||
provide the source code of the modified version running there to the
|
||||
users of that server. Therefore, public use of a modified version, on
|
||||
a publicly accessible server, gives the public access to the source
|
||||
code of the modified version.
|
||||
|
||||
An older license, called the Affero General Public License and
|
||||
published by Affero, was designed to accomplish similar goals. This is
|
||||
a different license, not a version of the Affero GPL, but Affero has
|
||||
released a new version of the Affero GPL which permits relicensing
|
||||
under this license.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
### TERMS AND CONDITIONS
|
||||
|
||||
#### 0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU Affero General Public
|
||||
License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds
|
||||
of works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of
|
||||
an exact copy. The resulting work is called a "modified version" of
|
||||
the earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user
|
||||
through a computer network, with no transfer of a copy, is not
|
||||
conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices" to
|
||||
the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
#### 1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work for
|
||||
making modifications to it. "Object code" means any non-source form of
|
||||
a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users can
|
||||
regenerate automatically from other parts of the Corresponding Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that same
|
||||
work.
|
||||
|
||||
#### 2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not convey,
|
||||
without conditions so long as your license otherwise remains in force.
|
||||
You may convey covered works to others for the sole purpose of having
|
||||
them make modifications exclusively for you, or provide you with
|
||||
facilities for running those works, provided that you comply with the
|
||||
terms of this License in conveying all material for which you do not
|
||||
control copyright. Those thus making or running the covered works for
|
||||
you must do so exclusively on your behalf, under your direction and
|
||||
control, on terms that prohibit them from making any copies of your
|
||||
copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under the
|
||||
conditions stated below. Sublicensing is not allowed; section 10 makes
|
||||
it unnecessary.
|
||||
|
||||
#### 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such
|
||||
circumvention is effected by exercising rights under this License with
|
||||
respect to the covered work, and you disclaim any intention to limit
|
||||
operation or modification of the work as a means of enforcing, against
|
||||
the work's users, your or third parties' legal rights to forbid
|
||||
circumvention of technological measures.
|
||||
|
||||
#### 4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
#### 5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these
|
||||
conditions:
|
||||
|
||||
- a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
- b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under
|
||||
section 7. This requirement modifies the requirement in section 4
|
||||
to "keep intact all notices".
|
||||
- c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
- d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
#### 6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms of
|
||||
sections 4 and 5, provided that you also convey the machine-readable
|
||||
Corresponding Source under the terms of this License, in one of these
|
||||
ways:
|
||||
|
||||
- a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
- b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the Corresponding
|
||||
Source from a network server at no charge.
|
||||
- c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
- d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
- e) Convey the object code using peer-to-peer transmission,
|
||||
provided you inform other peers where the object code and
|
||||
Corresponding Source of the work are being offered to the general
|
||||
public at no charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal,
|
||||
family, or household purposes, or (2) anything designed or sold for
|
||||
incorporation into a dwelling. In determining whether a product is a
|
||||
consumer product, doubtful cases shall be resolved in favor of
|
||||
coverage. For a particular product received by a particular user,
|
||||
"normally used" refers to a typical or common use of that class of
|
||||
product, regardless of the status of the particular user or of the way
|
||||
in which the particular user actually uses, or expects or is expected
|
||||
to use, the product. A product is a consumer product regardless of
|
||||
whether the product has substantial commercial, industrial or
|
||||
non-consumer uses, unless such uses represent the only significant
|
||||
mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to
|
||||
install and execute modified versions of a covered work in that User
|
||||
Product from a modified version of its Corresponding Source. The
|
||||
information must suffice to ensure that the continued functioning of
|
||||
the modified object code is in no case prevented or interfered with
|
||||
solely because modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or
|
||||
updates for a work that has been modified or installed by the
|
||||
recipient, or for the User Product in which it has been modified or
|
||||
installed. Access to a network may be denied when the modification
|
||||
itself materially and adversely affects the operation of the network
|
||||
or violates the rules and protocols for communication across the
|
||||
network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
#### 7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders
|
||||
of that material) supplement the terms of this License with terms:
|
||||
|
||||
- a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
- b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
- c) Prohibiting misrepresentation of the origin of that material,
|
||||
or requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
- d) Limiting the use for publicity purposes of names of licensors
|
||||
or authors of the material; or
|
||||
- e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
- f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions
|
||||
of it) with contractual assumptions of liability to the recipient,
|
||||
for any liability that these contractual assumptions directly
|
||||
impose on those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions; the
|
||||
above requirements apply either way.
|
||||
|
||||
#### 8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your license
|
||||
from a particular copyright holder is reinstated (a) provisionally,
|
||||
unless and until the copyright holder explicitly and finally
|
||||
terminates your license, and (b) permanently, if the copyright holder
|
||||
fails to notify you of the violation by some reasonable means prior to
|
||||
60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
#### 9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or run
|
||||
a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
#### 10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
#### 11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims owned
|
||||
or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within the
|
||||
scope of its coverage, prohibits the exercise of, or is conditioned on
|
||||
the non-exercise of one or more of the rights that are specifically
|
||||
granted under this License. You may not convey a covered work if you
|
||||
are a party to an arrangement with a third party that is in the
|
||||
business of distributing software, under which you make payment to the
|
||||
third party based on the extent of your activity of conveying the
|
||||
work, and under which the third party grants, to any of the parties
|
||||
who would receive the covered work from you, a discriminatory patent
|
||||
license (a) in connection with copies of the covered work conveyed by
|
||||
you (or copies made from those copies), or (b) primarily for and in
|
||||
connection with specific products or compilations that contain the
|
||||
covered work, unless you entered into that arrangement, or that patent
|
||||
license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
#### 12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under
|
||||
this License and any other pertinent obligations, then as a
|
||||
consequence you may not convey it at all. For example, if you agree to
|
||||
terms that obligate you to collect a royalty for further conveying
|
||||
from those to whom you convey the Program, the only way you could
|
||||
satisfy both those terms and this License would be to refrain entirely
|
||||
from conveying the Program.
|
||||
|
||||
#### 13. Remote Network Interaction; Use with the GNU General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, if you modify the
|
||||
Program, your modified version must prominently offer all users
|
||||
interacting with it remotely through a computer network (if your
|
||||
version supports such interaction) an opportunity to receive the
|
||||
Corresponding Source of your version by providing access to the
|
||||
Corresponding Source from a network server at no charge, through some
|
||||
standard or customary means of facilitating copying of software. This
|
||||
Corresponding Source shall include the Corresponding Source for any
|
||||
work covered by version 3 of the GNU General Public License that is
|
||||
incorporated pursuant to the following paragraph.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the work with which it is combined will remain governed by version
|
||||
3 of the GNU General Public License.
|
||||
|
||||
#### 14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions
|
||||
of the GNU Affero General Public License from time to time. Such new
|
||||
versions will be similar in spirit to the present version, but may
|
||||
differ in detail to address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Program
|
||||
specifies that a certain numbered version of the GNU Affero General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU Affero General Public License, you may choose any version ever
|
||||
published by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future versions
|
||||
of the GNU Affero General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
#### 15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
|
||||
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
|
||||
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
|
||||
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
|
||||
CORRECTION.
|
||||
|
||||
#### 16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
|
||||
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
||||
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
|
||||
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
|
||||
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
|
||||
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
|
||||
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
|
||||
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
|
||||
|
||||
#### 17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
### How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these
|
||||
terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest to
|
||||
attach them to the start of each source file to most effectively state
|
||||
the exclusion of warranty; and each file should have at least the
|
||||
"copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Affero General Public License as
|
||||
published by the Free Software Foundation, either version 3 of the
|
||||
License, or (at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper
|
||||
mail.
|
||||
|
||||
If your software can interact with users remotely through a computer
|
||||
network, you should also make sure that it provides a way for users to
|
||||
get its source. For example, if your program is a web application, its
|
||||
interface could display a "Source" link that leads users to an archive
|
||||
of the code. There are many ways you could offer source, and different
|
||||
solutions will be better for different programs; see section 13 for
|
||||
the specific requirements.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or
|
||||
school, if any, to sign a "copyright disclaimer" for the program, if
|
||||
necessary. For more information on this, and how to apply and follow
|
||||
the GNU AGPL, see <https://www.gnu.org/licenses/>.
|
71
README.md
71
README.md
|
@ -1,70 +1,5 @@
|
|||
# data-toolbox
|
||||
# Archived repository
|
||||
|
||||
This repository contains the implementation of our data munging code.
|
||||
Hello! All the code that used to be here is now under the [PygmalionAI organization on GitHub](https://github.com/PygmalionAI).
|
||||
|
||||
**Note:** Not very well documented at the moment. Still need to implement automatic downloading of data files and document how to install the project with PDM.
|
||||
|
||||
## How does it work?
|
||||
|
||||
In short, it takes raw data from several different sources and parses it. From there, we can quickly experiment with different ways of formatting or augmenting the parsed data to generate a final representation, ready to be used as training data for our models.
|
||||
|
||||
The general data flow goes something like this:
|
||||
|
||||
- We start off with raw datasets (see [./toolbox/datasets/](./toolbox/datasets/))
|
||||
- These are basically classes reponsible for giving us raw data. They might, for example, download a `.zip` off the internet, unzip it, read a `.json` file from in there and then return its contents.
|
||||
- Modules then make use of these datasets ([./toolbox/modules/](./toolbox/modules/))
|
||||
- These are heavily inspired by the papers that introduced LaMDA and BlenderBot3 (and their relevant supporting papers)
|
||||
- In general, each module is responsible for using a dataset as an input, and processing that data down into episodes, which will then be formatted into a proper dataset to be used in the fine-tuning process.
|
||||
|
||||
## Building a training dataset
|
||||
|
||||
The final data file is created with the [build_dataset.py](./toolbox/scripts/build_dataset.py) script:
|
||||
|
||||
```
|
||||
$ ./toolbox/scripts/build_dataset.py --help
|
||||
usage: build_dataset.py [-h] [-o OUTPUT_NAME] [-m MODULES] [-p PRINT] [-v]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
-o OUTPUT_NAME, --output-name OUTPUT_NAME
|
||||
File to write the dataset to. Should not include a file extension.
|
||||
-m MODULES, --modules MODULES
|
||||
List of modules to use, comma-separated.
|
||||
-p PRINT, --print PRINT
|
||||
If given, print this many episodes instead of writing out to a file.
|
||||
-v, --verbose Enable verbose logging.
|
||||
```
|
||||
|
||||
The default behavior is to write a file called `rev-{GIT_REVISION_HASH}-args{HASH_OF_USED_ARGS}.jsonl` to the current directory, with all the modules enabled. Behavior can be customized via the flags shown above.
|
||||
|
||||
The script also has an option to print some examples instead of writing to a file, for debugging/dev purposes. Example usage:
|
||||
|
||||
```bash
|
||||
$ ./toolbox/scripts/build_dataset.py --print 1 --modules 'light_dialogue_pdm:LightDialoguePDM' # or -p 1 and -m ...
|
||||
```
|
||||
|
||||
Example output:
|
||||
|
||||
```
|
||||
--- new episode ---
|
||||
Scenario: You are in the Watchtower.
|
||||
The tower is the largest section of the castle. It contains an observatory for nighttime scouting, but is also used by the wise men to study the stars. Armed
|
||||
guardsmen are always to be found keeping watch.
|
||||
There's an alarm horn here.
|
||||
A soldier is here. You are carrying nothing.
|
||||
|
||||
Court Wizard: A quiet night this evening...
|
||||
Soldier: Yes it is
|
||||
Court Wizard: *ponder* Have any else come up this eve? I had hoped for a quiet night to examine the stars
|
||||
Soldier: *nod* Yes, a few came through, but it is a cold night for me, I am used to warmer weather
|
||||
Court Wizard: *sigh* Well, you are but a common soldier. No doubt you are used to such a lot. Thankfully I have my spells to keep me warm.
|
||||
Soldier: *grin* I am a soldier doing my job
|
||||
Court Wizard: Yes... Well... Very well then. See that you do! No slacking off while your betters are about.
|
||||
Soldier: No sir
|
||||
Court Wizard: When, for example, was this horn last tested? It looks dented. How can we be sure it will work?
|
||||
Soldier: A year ago, test it out or cause a need to use it
|
||||
Court Wizard: *frown* Mayhap I will speak to the king about such lackness. Or perhaps I can sell him a spell that will serve just as well.
|
||||
Soldier: Good idea, I agree, go do that *hug court wizard*
|
||||
Court Wizard: Get off of me, you fool! Who gave you permission to touch me! *hit soldier*
|
||||
Soldier: To the jail with you *hit court wizard*
|
||||
```
|
||||
If you're looking for the CharacterAI dumper userscript, that's [here under my personal GitHub account](https://github.com/0x000011b/characterai-dumper).
|
||||
|
|
38
ROADMAP.md
38
ROADMAP.md
|
@ -1,37 +1,3 @@
|
|||
# Project Roadmap
|
||||
# Archived repository
|
||||
|
||||
## An intro for dummies
|
||||
|
||||
If you're not familiar with all the theory/technology behind the project, here's a super simplified rundown:
|
||||
|
||||
- There are "text generation AIs" that are freely available for researchers. These are called open-source LMs (language models).
|
||||
- Modern chatbots are usually made by taking a language model and "fine-tuning" it, which basically just means feeding it data similar to what you want it to generate.
|
||||
- In our case, this means fine-tuning it with conversation and roleplay data (research usually calls this "dialogue data", and they call models fine-tuned on dialogue data "dialogue models").
|
||||
- LMs can have different "sizes". For example, Meta's OPT language model is offered in 125m, 350m, 1.3B, 2.7B, 6.7B, 30B and 66B sizes (where "m" = million and "B" = billion parameters).
|
||||
- The bigger the model, the better its quality. However, the more hardware you need to fine-tune and use it. And when I say more, I don't mean a couple more gigabytes of system RAM, I mean going from a single 6GB GPU to hundreds of 80GB GPUs.
|
||||
|
||||
|
||||
So, knowing the above, our main "top-level"/medium-term objective at the moment is to get as much good quality data as we can, and fine-tune the biggest model we can. From there, we can play around with the models and see what the results are like, then debate and decide how to move forward.
|
||||
|
||||
---
|
||||
|
||||
For anyone who's interested in the actual details, here's a TL;DR version of the project's current roadmap at the task level:
|
||||
|
||||
## Current Status
|
||||
|
||||
- We have all the tooling to build a dataset from various sources, fine-tune a pre-trained LM on that dataset, and then run inference on checkpoints saved during the fine-tune process.
|
||||
- All of that tooling can be found within this repository.
|
||||
- We have taken a small model, Meta's OPT-350m, and fine-tuned it on a small dataset we've built with the tooling described above. We've released it as a tiny prototype.
|
||||
- The model checkpoint is hosted on HuggingFace under [Pygmalion-AI/pygmalion-350m](https://huggingface.co/Pygmalion-AI/pygmalion-350m).
|
||||
- **Note:** Inference should not be done on the regular HuggingFace web UI since we need to do some prompt trickery and response parsing. To play around with the model, [try out this notebook](https://colab.research.google.com/drive/1K55_MCagEDD9EmWhjCi3Bm66vJM88m6P?usp=sharing).
|
||||
- We have written a [userscript which can anonymize and dump your CharacterAI chats](./extras/characterai-dumper/), and made [a website where you can upload them](https://dump.nopanda.io/) to be used as training data for future models. If you're interested in contributing, please read through [this Rentry](https://rentry.org/f8peb) for more information.
|
||||
- We released a prototype 1.3B model fine-tuned on a new dataset, which includes the anonymized CharaterAI data.
|
||||
- It's hosted on HuggingFace under [Pygmalion-AI/pygmalion-1.3b](https://huggingface.co/Pygmalion-AI/pygmalion-1.3b).
|
||||
- We've already received feedback from several users (thank you everyone who took the time to test out the model and write to us!) and identified several shortcomings in it.
|
||||
|
||||
## Next Steps
|
||||
|
||||
- We're on the lookout for more high-quality data sources, and we still welcome [new CharacterAI dumps](https://dump.nopanda.io/).
|
||||
- We plan on training a new 1.3B model, but only after brainstorming and making changes to our data processing pipeline in an attempt to improve on the problems we've seen on the current 1.3B.
|
||||
- Feel free to join the Matrix server if you want to join in on the discussions.
|
||||
- Once we have a decently performing 1.3B model, we plan on setting up some sort of way for people to rate/rank bot responses and send that data to us, which will then be used to train a reward model to be used for a PPO fine-tune, similar to what OpenAI did for ChatGPT. We might join forces with other communities for this step, as well.
|
||||
Hello! We've moved to the [PygmalionAI organization on GitHub](https://github.com/PygmalionAI). Please go check that out for information about the project instead.
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
# Important Notice
|
||||
|
||||
Hello! We're migrating the CAI userscript over to a [repository under my personal GitHub account](https://github.com/0x000011b/characterai-dumper). If anyone sent you here, please let them know so they can update their links!
|
||||
|
||||
# CharacterAI Dumper Userscript
|
||||
|
||||
This userscript allows you to download your saved messages with any bot you've ever talked to, given you can reach their chat history page. If you're a bot creator, it also allows you to separately download your bot's definitions.
|
||||
|
|
761
pdm.lock
761
pdm.lock
|
@ -1,761 +0,0 @@
|
|||
[[package]]
|
||||
name = "astroid"
|
||||
version = "2.12.13"
|
||||
requires_python = ">=3.7.2"
|
||||
summary = "An abstract syntax tree for Python with inference support."
|
||||
dependencies = [
|
||||
"lazy-object-proxy>=1.4.0",
|
||||
"wrapt<2,>=1.11; python_version < \"3.11\"",
|
||||
"wrapt<2,>=1.14; python_version >= \"3.11\"",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "colorama"
|
||||
version = "0.4.6"
|
||||
requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
|
||||
summary = "Cross-platform colored terminal text."
|
||||
|
||||
[[package]]
|
||||
name = "dill"
|
||||
version = "0.3.6"
|
||||
requires_python = ">=3.7"
|
||||
summary = "serialize all of python"
|
||||
|
||||
[[package]]
|
||||
name = "fancycompleter"
|
||||
version = "0.9.1"
|
||||
summary = "colorful TAB completion for Python prompt"
|
||||
dependencies = [
|
||||
"pyreadline; platform_system == \"Windows\"",
|
||||
"pyrepl>=0.8.2",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "ijson"
|
||||
version = "3.1.4"
|
||||
summary = "Iterative JSON parser with standard Python iterator interfaces"
|
||||
|
||||
[[package]]
|
||||
name = "isort"
|
||||
version = "5.10.1"
|
||||
requires_python = ">=3.6.1,<4.0"
|
||||
summary = "A Python utility / library to sort Python imports."
|
||||
|
||||
[[package]]
|
||||
name = "joblib"
|
||||
version = "1.2.0"
|
||||
requires_python = ">=3.7"
|
||||
summary = "Lightweight pipelining with Python functions"
|
||||
|
||||
[[package]]
|
||||
name = "lazy-object-proxy"
|
||||
version = "1.8.0"
|
||||
requires_python = ">=3.7"
|
||||
summary = "A fast and thorough lazy object proxy."
|
||||
|
||||
[[package]]
|
||||
name = "mashumaro"
|
||||
version = "3.2"
|
||||
requires_python = ">=3.7"
|
||||
summary = "Fast serialization framework on top of dataclasses"
|
||||
dependencies = [
|
||||
"typing-extensions>=4.1.0",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "mccabe"
|
||||
version = "0.7.0"
|
||||
requires_python = ">=3.6"
|
||||
summary = "McCabe checker, plugin for flake8"
|
||||
|
||||
[[package]]
|
||||
name = "mypy"
|
||||
version = "0.991"
|
||||
requires_python = ">=3.7"
|
||||
summary = "Optional static typing for Python"
|
||||
dependencies = [
|
||||
"mypy-extensions>=0.4.3",
|
||||
"tomli>=1.1.0; python_version < \"3.11\"",
|
||||
"typing-extensions>=3.10",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "mypy-extensions"
|
||||
version = "0.4.3"
|
||||
summary = "Experimental type system extensions for programs checked with the mypy typechecker."
|
||||
|
||||
[[package]]
|
||||
name = "numpy"
|
||||
version = "1.24.1"
|
||||
requires_python = ">=3.8"
|
||||
summary = "Fundamental package for array computing in Python"
|
||||
|
||||
[[package]]
|
||||
name = "pandas"
|
||||
version = "1.5.2"
|
||||
requires_python = ">=3.8"
|
||||
summary = "Powerful data structures for data analysis, time series, and statistics"
|
||||
dependencies = [
|
||||
"numpy>=1.21.0; python_version >= \"3.10\"",
|
||||
"numpy>=1.23.2; python_version >= \"3.11\"",
|
||||
"python-dateutil>=2.8.1",
|
||||
"pytz>=2020.1",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pdbpp"
|
||||
version = "0.10.3"
|
||||
summary = "pdb++, a drop-in replacement for pdb"
|
||||
dependencies = [
|
||||
"fancycompleter>=0.8",
|
||||
"pygments",
|
||||
"wmctrl",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "platformdirs"
|
||||
version = "2.6.0"
|
||||
requires_python = ">=3.7"
|
||||
summary = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"."
|
||||
|
||||
[[package]]
|
||||
name = "pyarrow"
|
||||
version = "10.0.1"
|
||||
requires_python = ">=3.7"
|
||||
summary = "Python library for Apache Arrow"
|
||||
dependencies = [
|
||||
"numpy>=1.16.6",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pygments"
|
||||
version = "2.13.0"
|
||||
requires_python = ">=3.6"
|
||||
summary = "Pygments is a syntax highlighting package written in Python."
|
||||
|
||||
[[package]]
|
||||
name = "pylint"
|
||||
version = "2.15.8"
|
||||
requires_python = ">=3.7.2"
|
||||
summary = "python code static checker"
|
||||
dependencies = [
|
||||
"astroid<=2.14.0-dev0,>=2.12.13",
|
||||
"colorama>=0.4.5; sys_platform == \"win32\"",
|
||||
"dill>=0.2",
|
||||
"isort<6,>=4.2.5",
|
||||
"mccabe<0.8,>=0.6",
|
||||
"platformdirs>=2.2.0",
|
||||
"tomli>=1.1.0; python_version < \"3.11\"",
|
||||
"tomlkit>=0.10.1",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pyreadline"
|
||||
version = "2.1"
|
||||
summary = "A python implmementation of GNU readline."
|
||||
|
||||
[[package]]
|
||||
name = "pyrepl"
|
||||
version = "0.9.0"
|
||||
summary = "A library for building flexible command line interfaces"
|
||||
|
||||
[[package]]
|
||||
name = "python-dateutil"
|
||||
version = "2.8.2"
|
||||
requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
|
||||
summary = "Extensions to the standard Python datetime module"
|
||||
dependencies = [
|
||||
"six>=1.5",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pytz"
|
||||
version = "2022.7"
|
||||
summary = "World timezone definitions, modern and historical"
|
||||
|
||||
[[package]]
|
||||
name = "regex"
|
||||
version = "2022.10.31"
|
||||
requires_python = ">=3.6"
|
||||
summary = "Alternative regular expression module, to replace re."
|
||||
|
||||
[[package]]
|
||||
name = "scikit-learn"
|
||||
version = "1.2.0"
|
||||
requires_python = ">=3.8"
|
||||
summary = "A set of python modules for machine learning and data mining"
|
||||
dependencies = [
|
||||
"joblib>=1.1.1",
|
||||
"numpy>=1.17.3",
|
||||
"scipy>=1.3.2",
|
||||
"threadpoolctl>=2.0.0",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "scipy"
|
||||
version = "1.9.3"
|
||||
requires_python = ">=3.8"
|
||||
summary = "Fundamental algorithms for scientific computing in Python"
|
||||
dependencies = [
|
||||
"numpy<1.26.0,>=1.18.5",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "six"
|
||||
version = "1.16.0"
|
||||
requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
|
||||
summary = "Python 2 and 3 compatibility utilities"
|
||||
|
||||
[[package]]
|
||||
name = "threadpoolctl"
|
||||
version = "3.1.0"
|
||||
requires_python = ">=3.6"
|
||||
summary = "threadpoolctl"
|
||||
|
||||
[[package]]
|
||||
name = "toml"
|
||||
version = "0.10.2"
|
||||
requires_python = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*"
|
||||
summary = "Python Library for Tom's Obvious, Minimal Language"
|
||||
|
||||
[[package]]
|
||||
name = "tomli"
|
||||
version = "2.0.1"
|
||||
requires_python = ">=3.7"
|
||||
summary = "A lil' TOML parser"
|
||||
|
||||
[[package]]
|
||||
name = "tomlkit"
|
||||
version = "0.11.6"
|
||||
requires_python = ">=3.6"
|
||||
summary = "Style preserving TOML library"
|
||||
|
||||
[[package]]
|
||||
name = "typing-extensions"
|
||||
version = "4.4.0"
|
||||
requires_python = ">=3.7"
|
||||
summary = "Backported and Experimental Type Hints for Python 3.7+"
|
||||
|
||||
[[package]]
|
||||
name = "wmctrl"
|
||||
version = "0.4"
|
||||
summary = "A tool to programmatically control windows inside X"
|
||||
|
||||
[[package]]
|
||||
name = "wrapt"
|
||||
version = "1.14.1"
|
||||
requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7"
|
||||
summary = "Module for decorators, wrappers and monkey patching."
|
||||
|
||||
[[package]]
|
||||
name = "yapf"
|
||||
version = "0.32.0"
|
||||
summary = "A formatter for Python code."
|
||||
|
||||
[metadata]
|
||||
lock_version = "4.1"
|
||||
content_hash = "sha256:aa0b9b7cd9f3e3c7efc158026b644f929570a80393a02eda7d8e3a46181bfc07"
|
||||
|
||||
[metadata.files]
|
||||
"astroid 2.12.13" = [
|
||||
{url = "https://files.pythonhosted.org/packages/61/d0/e7cfca72ec7d6c5e0da725c003db99bb056e9b6c2f4ee6fae1145adf28a6/astroid-2.12.13.tar.gz", hash = "sha256:1493fe8bd3dfd73dc35bd53c9d5b6e49ead98497c47b2307662556a5692d29d7"},
|
||||
{url = "https://files.pythonhosted.org/packages/b1/61/42e075b7d29ed4d452d91cbaaca142710d50d04e68eb7161ce5807a00a30/astroid-2.12.13-py3-none-any.whl", hash = "sha256:10e0ad5f7b79c435179d0d0f0df69998c4eef4597534aae44910db060baeb907"},
|
||||
]
|
||||
"colorama 0.4.6" = [
|
||||
{url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"},
|
||||
{url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
|
||||
]
|
||||
"dill 0.3.6" = [
|
||||
{url = "https://files.pythonhosted.org/packages/7c/e7/364a09134e1062d4d5ff69b853a56cf61c223e0afcc6906b6832bcd51ea8/dill-0.3.6.tar.gz", hash = "sha256:e5db55f3687856d8fbdab002ed78544e1c4559a130302693d839dfe8f93f2373"},
|
||||
{url = "https://files.pythonhosted.org/packages/be/e3/a84bf2e561beed15813080d693b4b27573262433fced9c1d1fea59e60553/dill-0.3.6-py3-none-any.whl", hash = "sha256:a07ffd2351b8c678dfc4a856a3005f8067aea51d6ba6c700796a4d9e280f39f0"},
|
||||
]
|
||||
"fancycompleter 0.9.1" = [
|
||||
{url = "https://files.pythonhosted.org/packages/38/ef/c08926112034d017633f693d3afc8343393a035134a29dfc12dcd71b0375/fancycompleter-0.9.1-py3-none-any.whl", hash = "sha256:dd076bca7d9d524cc7f25ec8f35ef95388ffef9ef46def4d3d25e9b044ad7080"},
|
||||
{url = "https://files.pythonhosted.org/packages/a9/95/649d135442d8ecf8af5c7e235550c628056423c96c4bc6787348bdae9248/fancycompleter-0.9.1.tar.gz", hash = "sha256:09e0feb8ae242abdfd7ef2ba55069a46f011814a80fe5476be48f51b00247272"},
|
||||
]
|
||||
"ijson 3.1.4" = [
|
||||
{url = "https://files.pythonhosted.org/packages/14/7b/6d311267dde18bf3d85136640103401eb69e76e25da9ee191038fea1d0df/ijson-3.1.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:09c9d7913c88a6059cd054ff854958f34d757402b639cf212ffbec201a705a0d"},
|
||||
{url = "https://files.pythonhosted.org/packages/17/a3/818d6cd2e589fad41453fe75618b43baa09ddfeee611c7b1d208847a3e8a/ijson-3.1.4-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:fa10a1d88473303ec97aae23169d77c5b92657b7fb189f9c584974c00a79f383"},
|
||||
{url = "https://files.pythonhosted.org/packages/18/9c/0b810105154bf88e925f2f19b469a319b11741d61147be14962a60eb1a30/ijson-3.1.4-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:93455902fdc33ba9485c7fae63ac95d96e0ab8942224a357113174bbeaff92e9"},
|
||||
{url = "https://files.pythonhosted.org/packages/19/8d/1b513b2fe104252f17ca5ba8c13e00d5815ebd48a3d10ef8cd5ba5a5e355/ijson-3.1.4-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:297f26f27a04cd0d0a2f865d154090c48ea11b239cabe0a17a6c65f0314bd1ca"},
|
||||
{url = "https://files.pythonhosted.org/packages/1b/f0/19fba62b20d2601cf086b24525309a42fec96727dad9d9170a1bb2943de3/ijson-3.1.4-pp36-pypy36_pp73-win32.whl", hash = "sha256:6774ec0a39647eea70d35fb76accabe3d71002a8701c0545b9120230c182b75b"},
|
||||
{url = "https://files.pythonhosted.org/packages/1e/16/96cc42667bd2ef9146c3efc41a6f7a04839bf442dd9bb397bfaf10ce0f7e/ijson-3.1.4-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:5a2f40c053c837591636dc1afb79d85e90b9a9d65f3d9963aae31d1eb11bfed2"},
|
||||
{url = "https://files.pythonhosted.org/packages/20/8d/bf09bb894eaa5c62de061bdbd1bfe386c4b4635498dcd85af69b9782dd5f/ijson-3.1.4-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:6c1a777096be5f75ffebb335c6d2ebc0e489b231496b7f2ca903aa061fe7d381"},
|
||||
{url = "https://files.pythonhosted.org/packages/23/64/f78cee4c59d9a43b689bed9f6fbf177e41e4c0902b03edbaf873d058f2b0/ijson-3.1.4-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:9a5bf5b9d8f2ceaca131ee21fc7875d0f34b95762f4f32e4d65109ca46472147"},
|
||||
{url = "https://files.pythonhosted.org/packages/29/68/08f6b9a1f94e5d9f185cf01455b20419e9a3a6201a7431b2a32d1004bfbc/ijson-3.1.4-cp38-cp38-win_amd64.whl", hash = "sha256:a5965c315fbb2dc9769dfdf046eb07daf48ae20b637da95ec8d62b629be09df4"},
|
||||
{url = "https://files.pythonhosted.org/packages/30/a0/a9a4b3788a98d97914af7a18633ba5d50a23a9c1fd11d022be1e16a32f6d/ijson-3.1.4-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:15507de59d74d21501b2a076d9c49abf927eb58a51a01b8f28a0a0565db0a99f"},
|
||||
{url = "https://files.pythonhosted.org/packages/32/0c/db5b557842b0af75434202707559f8d6ffafdfed7228704aa655d02e47cc/ijson-3.1.4-cp38-cp38-manylinux1_i686.whl", hash = "sha256:702ba9a732116d659a5e950ee176be6a2e075998ef1bcde11cbf79a77ed0f717"},
|
||||
{url = "https://files.pythonhosted.org/packages/35/2a/823dc36948350bf333d09bf3bcda28bd7b844846a008ec0db14fa5b1a925/ijson-3.1.4-pp27-pypy_73-manylinux1_x86_64.whl", hash = "sha256:a72eb0359ebff94754f7a2f00a6efe4c57716f860fc040c606dedcb40f49f233"},
|
||||
{url = "https://files.pythonhosted.org/packages/37/be/640cfe9072c9abfa53e676eaa4674063fff8f7264735778734fcc00ad84c/ijson-3.1.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b8ee7dbb07cec9ba29d60cfe4954b3cc70adb5f85bba1f72225364b59c1cf82b"},
|
||||
{url = "https://files.pythonhosted.org/packages/39/15/a64545c687f9e23e5382591b12ddd036487b109c574f50e2c74cb4c04bd0/ijson-3.1.4-cp36-cp36m-win32.whl", hash = "sha256:4c53cc72f79a4c32d5fc22efb85aa22f248e8f4f992707a84bdc896cc0b1ecf9"},
|
||||
{url = "https://files.pythonhosted.org/packages/3e/38/6124b9c1bb3f77c1aaf4ab8958e3d376acce29365d088a51516c41c1fd14/ijson-3.1.4-pp36-pypy36_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2844d4a38d27583897ed73f7946e205b16926b4cab2525d1ce17e8b08064c706"},
|
||||
{url = "https://files.pythonhosted.org/packages/3f/82/8b47a05a1fd81165d99b0c4ed29613ae46aa14e9e2744b0e55999d4ad928/ijson-3.1.4-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:667841591521158770adc90793c2bdbb47c94fe28888cb802104b8bbd61f3d51"},
|
||||
{url = "https://files.pythonhosted.org/packages/4a/04/f78a68e2ac104f69bce6512e1c82b06f166cd49376caf22e9e4df1bb37eb/ijson-3.1.4-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:475fc25c3d2a86230b85777cae9580398b42eed422506bf0b6aacfa936f7bfcd"},
|
||||
{url = "https://files.pythonhosted.org/packages/4a/2c/16ca0f98ada413e1719ac94a0fe5c1b941fdafc5cd134b3cb4f9282b1d70/ijson-3.1.4-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:068c692efba9692406b86736dcc6803e4a0b6280d7f0b7534bff3faec677ff38"},
|
||||
{url = "https://files.pythonhosted.org/packages/4f/ce/83894833708a901c17145fb312df40f7f7bc537eda2fd62cbba038884023/ijson-3.1.4-cp35-cp35m-macosx_10_9_x86_64.whl", hash = "sha256:3b98861a4280cf09d267986cefa46c3bd80af887eae02aba07488d80eb798afa"},
|
||||
{url = "https://files.pythonhosted.org/packages/5c/39/b5fb82d14929a724d5e7e9476fb9dc09326ec0bb1ff1c6f1a41d56ba3bd6/ijson-3.1.4-pp36-pypy36_pp73-manylinux1_x86_64.whl", hash = "sha256:252defd1f139b5fb8c764d78d5e3a6df81543d9878c58992a89b261369ea97a7"},
|
||||
{url = "https://files.pythonhosted.org/packages/60/78/d48d78314ac955fd034422cf325242bb0470ee2f673ee31967638916dde1/ijson-3.1.4-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:179ed6fd42e121d252b43a18833df2de08378fac7bce380974ef6f5e522afefa"},
|
||||
{url = "https://files.pythonhosted.org/packages/66/3a/c4939bc66928b80f8a61f6907ab716b891638bd008442593f9ec357c0397/ijson-3.1.4-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:81cc8cee590c8a70cca3c9aefae06dd7cb8e9f75f3a7dc12b340c2e332d33a2a"},
|
||||
{url = "https://files.pythonhosted.org/packages/68/a4/bd5d2b8edb4c0e2d1c17cbd64ca038d3dc86fae9ed788879d83b93f601cb/ijson-3.1.4-cp36-cp36m-win_amd64.whl", hash = "sha256:ac9098470c1ff6e5c23ec0946818bc102bfeeeea474554c8d081dc934be20988"},
|
||||
{url = "https://files.pythonhosted.org/packages/73/a5/e9d34d5069acdc92881676d8224a9b4271bcc509da81e71c2fd9b0b8c010/ijson-3.1.4-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:86884ac06ac69cea6d89ab7b84683b3b4159c4013e4a20276d3fc630fe9b7588"},
|
||||
{url = "https://files.pythonhosted.org/packages/78/1a/c48ae8a129ea4b8fe6ed9def0416d19466f0584c386f0cfd1715e239c0ed/ijson-3.1.4-pp36-pypy36_pp73-manylinux2010_x86_64.whl", hash = "sha256:15d5356b4d090c699f382c8eb6a2bcd5992a8c8e8b88c88bc6e54f686018328a"},
|
||||
{url = "https://files.pythonhosted.org/packages/89/ff/5c908dbbdcb8387d11632904af0f9b60b8508a2655070a0baf511f0cec06/ijson-3.1.4-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:2e6bd6ad95ab40c858592b905e2bbb4fe79bbff415b69a4923dafe841ffadcb4"},
|
||||
{url = "https://files.pythonhosted.org/packages/8d/44/c30dd1a23b80efefe6cfd1942131faba7fa1a97d932d464afade148e0613/ijson-3.1.4-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:2a64c66a08f56ed45a805691c2fd2e1caef00edd6ccf4c4e5eff02cd94ad8364"},
|
||||
{url = "https://files.pythonhosted.org/packages/8d/f4/5b255d8e532be19c0d7e920083ce0f1cb921e16114a652e456914b81e971/ijson-3.1.4-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:454918f908abbed3c50a0a05c14b20658ab711b155e4f890900e6f60746dd7cc"},
|
||||
{url = "https://files.pythonhosted.org/packages/97/3d/a7a04cb7d69bc11944d429558dccef127799446a794498d8298c19db1876/ijson-3.1.4-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:41e5886ff6fade26f10b87edad723d2db14dcbb1178717790993fcbbb8ccd333"},
|
||||
{url = "https://files.pythonhosted.org/packages/99/04/1f261a4bc3643cd8de48e0c1ca03283b6f2f2a2511eed2a23033abdf379c/ijson-3.1.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f11da15ec04cc83ff0f817a65a3392e169be8d111ba81f24d6e09236597bb28c"},
|
||||
{url = "https://files.pythonhosted.org/packages/9b/8e/68485ba0f98b791476e179ba88d16d602d6833f343044a82703d41c43dd4/ijson-3.1.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dcd6f04df44b1945b859318010234651317db2c4232f75e3933f8bb41c4fa055"},
|
||||
{url = "https://files.pythonhosted.org/packages/9c/1b/c9e619809d8ea50657c8f75bec764fa58f62df550286d17d6a48596b1172/ijson-3.1.4-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:68e295bb12610d086990cedc89fb8b59b7c85740d66e9515aed062649605d0bf"},
|
||||
{url = "https://files.pythonhosted.org/packages/9e/db/9c662895c964968791f2894aee6fb4c2d3145dc7ff87a721bb9278c1f36b/ijson-3.1.4-pp37-pypy37_pp73-manylinux1_x86_64.whl", hash = "sha256:ee13ceeed9b6cf81b3b8197ef15595fc43fd54276842ed63840ddd49db0603da"},
|
||||
{url = "https://files.pythonhosted.org/packages/a0/7c/335ead3d5c74f3a4b8e3e4ff078f8d3a1467d7a5ca972f0db057ea2990f8/ijson-3.1.4-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:df641dd07b38c63eecd4f454db7b27aa5201193df160f06b48111ba97ab62504"},
|
||||
{url = "https://files.pythonhosted.org/packages/a6/78/dd78b32ac81a261ee4cf32d1e73844be3b60fbf86cc3f22f3be0da86bc4e/ijson-3.1.4-cp39-cp39-win_amd64.whl", hash = "sha256:6bf2b64304321705d03fa5e403ec3f36fa5bb27bf661849ad62e0a3a49bc23e3"},
|
||||
{url = "https://files.pythonhosted.org/packages/a6/b7/2bfba0fc44e54213e2edd222571cf54569423a3ac8f9e5c4d3aea1f53ea9/ijson-3.1.4-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:f91c75edd6cf1a66f02425bafc59a22ec29bc0adcbc06f4bfd694d92f424ceb3"},
|
||||
{url = "https://files.pythonhosted.org/packages/a7/ce/f392043cbed30a1f2cb4799bdfd7be4542f89a888f3e5bd6b4961c16e46b/ijson-3.1.4-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:339b2b4c7bbd64849dd69ef94ee21e29dcd92c831f47a281fdd48122bb2a715a"},
|
||||
{url = "https://files.pythonhosted.org/packages/a8/da/f4b5fda308b60c6c31aa4203f20133a3b5b472e41c0907bc14b7c555cde2/ijson-3.1.4.tar.gz", hash = "sha256:1d1003ae3c6115ec9b587d29dd136860a81a23c7626b682e2b5b12c9fd30e4ea"},
|
||||
{url = "https://files.pythonhosted.org/packages/aa/5e/46ce46d2b0386c42b02a640141bd9f2554137c880e1c6e0ff5abab4a2683/ijson-3.1.4-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d17fd199f0d0a4ab6e0d541b4eec1b68b5bd5bb5d8104521e22243015b51049b"},
|
||||
{url = "https://files.pythonhosted.org/packages/aa/b2/492cdeaebf0671c82e7db6935381ac84fd6171e58a131b46293e78e0af4e/ijson-3.1.4-cp37-cp37m-win32.whl", hash = "sha256:26a6a550b270df04e3f442e2bf0870c9362db4912f0e7bdfd300f30ea43115a2"},
|
||||
{url = "https://files.pythonhosted.org/packages/ab/ba/a965d0a771400e61c88a3b055be35c66556398cf2c01bded67802b33a6d1/ijson-3.1.4-cp35-cp35m-win32.whl", hash = "sha256:fa9a25d0bd32f9515e18a3611690f1de12cb7d1320bd93e9da835936b41ad3ff"},
|
||||
{url = "https://files.pythonhosted.org/packages/ac/fe/1958d71fc76efd507486cc88f92bf2accc0469207ad1971bf6a90efe7346/ijson-3.1.4-cp35-cp35m-manylinux2014_aarch64.whl", hash = "sha256:13f80aad0b84d100fb6a88ced24bade21dc6ddeaf2bba3294b58728463194f50"},
|
||||
{url = "https://files.pythonhosted.org/packages/ae/ed/894c8c2a53ea3b8d1e0dc44a5c1bd93a0bfc6742ac74e15098828e706b88/ijson-3.1.4-pp37-pypy37_pp73-manylinux2010_x86_64.whl", hash = "sha256:97e4df67235fae40d6195711223520d2c5bf1f7f5087c2963fcde44d72ebf448"},
|
||||
{url = "https://files.pythonhosted.org/packages/b2/1f/7014377e7e1b1af3c7dd3e4ccb2a91a90a647e93f0deccb51b5629b608d9/ijson-3.1.4-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4ea5fc50ba158f72943d5174fbc29ebefe72a2adac051c814c87438dc475cf78"},
|
||||
{url = "https://files.pythonhosted.org/packages/b3/0c/e3b7bf52e23345d5f9a6a3ff6de0cad419c96491893ab60cbbe9161644a8/ijson-3.1.4-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:387c2ec434cc1bc7dc9bd33ec0b70d95d443cc1e5934005f26addc2284a437ab"},
|
||||
{url = "https://files.pythonhosted.org/packages/be/f8/ca57db856f63d8a100532f29fe87e6eec6c79feb8bb31749f2a7e8bbbcc5/ijson-3.1.4-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:9348e7d507eb40b52b12eecff3d50934fcc3d2a15a2f54ec1127a36063b9ba8f"},
|
||||
{url = "https://files.pythonhosted.org/packages/c4/cd/a271745e66983d5d660ebad355dafc188fa00244e7ce3eaea725c9d5d004/ijson-3.1.4-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:f50337e3b8e72ec68441b573c2848f108a8976a57465c859b227ebd2a2342901"},
|
||||
{url = "https://files.pythonhosted.org/packages/cb/71/a3b3e9c31675b5fb806b61d1af45abb71cb0f03d581511b2f3fd03e53f7c/ijson-3.1.4-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:9239973100338a4138d09d7a4602bd289861e553d597cd67390c33bfc452253e"},
|
||||
{url = "https://files.pythonhosted.org/packages/d3/fc/ea957e287a07340c3e5c7c56bb32832def3e811ac5ae0399c7d4cbcaa458/ijson-3.1.4-cp39-cp39-manylinux1_i686.whl", hash = "sha256:d9e01c55d501e9c3d686b6ee3af351c9c0c8c3e45c5576bd5601bee3e1300b09"},
|
||||
{url = "https://files.pythonhosted.org/packages/d6/51/5733fe6cca98ac8be44283a8afa3679260528e24683b63bf4845d05d2fe5/ijson-3.1.4-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:f587699b5a759e30accf733e37950cc06c4118b72e3e146edcea77dded467426"},
|
||||
{url = "https://files.pythonhosted.org/packages/d6/59/9b3f841597002c13e95ea011ba52381814ec57bbebe65454a8895e2a7779/ijson-3.1.4-pp27-pypy_73-manylinux2010_x86_64.whl", hash = "sha256:28fc168f5faf5759fdfa2a63f85f1f7a148bbae98f34404a6ba19f3d08e89e87"},
|
||||
{url = "https://files.pythonhosted.org/packages/d9/48/f36948b4b6b708385cbc434ab70329f5b6eef7f91b0995b42192e3e5bda4/ijson-3.1.4-pp37-pypy37_pp73-win32.whl", hash = "sha256:3d10eee52428f43f7da28763bb79f3d90bbbeea1accb15de01e40a00885b6e89"},
|
||||
{url = "https://files.pythonhosted.org/packages/dc/93/849cf95be7d3cf5bc91e2dad2a00ade074a55de5b72534f5592afb4d884c/ijson-3.1.4-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:3997a2fdb28bc04b9ab0555db5f3b33ed28d91e9d42a3bf2c1842d4990beb158"},
|
||||
{url = "https://files.pythonhosted.org/packages/dd/76/e73b17044e099c3a620db111f167009136e7a52760669d92f9884d7e0917/ijson-3.1.4-cp37-cp37m-win_amd64.whl", hash = "sha256:ff8cf7507d9d8939264068c2cff0a23f99703fa2f31eb3cb45a9a52798843586"},
|
||||
{url = "https://files.pythonhosted.org/packages/dd/eb/81bd5aec3797b9d88a03938db42bda810f433b97449f6ef8524d4c91b394/ijson-3.1.4-cp39-cp39-win32.whl", hash = "sha256:70ee3c8fa0eba18c80c5911639c01a8de4089a4361bad2862a9949e25ec9b1c8"},
|
||||
{url = "https://files.pythonhosted.org/packages/df/52/9f63f4a4de8d8238f4fc6e862563ad18517a87da4df35cb180b13b0942d0/ijson-3.1.4-pp27-pypy_73-macosx_10_9_x86_64.whl", hash = "sha256:5d7e3fcc3b6de76a9dba1e9fc6ca23dad18f0fa6b4e6499415e16b684b2e9af1"},
|
||||
{url = "https://files.pythonhosted.org/packages/e3/35/7b0c374b55c94a2ae4b2cdbf56915d2eca57d8d982d5395f9c311b7b0d22/ijson-3.1.4-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:24b58933bf777d03dc1caa3006112ec7f9e6f6db6ffe1f5f5bd233cb1281f719"},
|
||||
{url = "https://files.pythonhosted.org/packages/e3/e0/2f1ff2ff6d8b556d370f66ae3f19a1468c0f2bb1f079a6909d91eed9d8e6/ijson-3.1.4-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:f0f2a87c423e8767368aa055310024fa28727f4454463714fef22230c9717f64"},
|
||||
{url = "https://files.pythonhosted.org/packages/e6/9e/be876654c61be71a88e71e8d9207bb78f9134fe4d25d3c66c061c9b08a62/ijson-3.1.4-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:446ef8980504da0af8d20d3cb6452c4dc3d8aa5fd788098985e899b913191fe6"},
|
||||
{url = "https://files.pythonhosted.org/packages/ec/68/82803c001c92d54e1ac63193dacd3fc01bb7f9f28767147b3b1ce30f8f95/ijson-3.1.4-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:3bb461352c0f0f2ec460a4b19400a665b8a5a3a2da663a32093df1699642ee3f"},
|
||||
{url = "https://files.pythonhosted.org/packages/f0/c3/298ac7fd901537c2dfe2db444da3a127ab49f697e6da7e4ba6c4a465962d/ijson-3.1.4-cp35-cp35m-win_amd64.whl", hash = "sha256:c4c1bf98aaab4c8f60d238edf9bcd07c896cfcc51c2ca84d03da22aad88957c5"},
|
||||
{url = "https://files.pythonhosted.org/packages/fd/2c/773bf37ae1ba7a22774c716c60a37384ee666973a3e42119de54cf5bd390/ijson-3.1.4-cp38-cp38-win32.whl", hash = "sha256:5b725f2e984ce70d464b195f206fa44bebbd744da24139b61fec72de77c03a16"},
|
||||
]
|
||||
"isort 5.10.1" = [
|
||||
{url = "https://files.pythonhosted.org/packages/ab/e9/964cb0b2eedd80c92f5172f1f8ae0443781a9d461c1372a3ce5762489593/isort-5.10.1.tar.gz", hash = "sha256:e8443a5e7a020e9d7f97f1d7d9cd17c88bcb3bc7e218bf9cf5095fe550be2951"},
|
||||
{url = "https://files.pythonhosted.org/packages/b8/5b/f18e227df38b94b4ee30d2502fd531bebac23946a2497e5595067a561274/isort-5.10.1-py3-none-any.whl", hash = "sha256:6f62d78e2f89b4500b080fe3a81690850cd254227f27f75c3a0c491a1f351ba7"},
|
||||
]
|
||||
"joblib 1.2.0" = [
|
||||
{url = "https://files.pythonhosted.org/packages/45/dd/a5435a6902d6315241c48a5343e6e6675b007e05d3738ed97a7a47864e53/joblib-1.2.0.tar.gz", hash = "sha256:e1cee4a79e4af22881164f218d4311f60074197fb707e082e803b61f6d137018"},
|
||||
{url = "https://files.pythonhosted.org/packages/91/d4/3b4c8e5a30604df4c7518c562d4bf0502f2fa29221459226e140cf846512/joblib-1.2.0-py3-none-any.whl", hash = "sha256:091138ed78f800342968c523bdde947e7a305b8594b910a0fea2ab83c3c6d385"},
|
||||
]
|
||||
"lazy-object-proxy 1.8.0" = [
|
||||
{url = "https://files.pythonhosted.org/packages/0a/68/5839136508651d813c1adce568e2f7417bb66083dc8d604a69d465ee53c0/lazy_object_proxy-1.8.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6850e4aeca6d0df35bb06e05c8b934ff7c533734eb51d0ceb2d63696f1e6030c"},
|
||||
{url = "https://files.pythonhosted.org/packages/30/c3/81c176ce53d9107947d355b273f9661a4f4cad6d56d1daf1c9d6969902e8/lazy_object_proxy-1.8.0-cp310-cp310-win32.whl", hash = "sha256:b70d6e7a332eb0217e7872a73926ad4fdc14f846e85ad6749ad111084e76df25"},
|
||||
{url = "https://files.pythonhosted.org/packages/34/c5/1ef17ab530068f7a5549ab376726f83fe2221db592dbdfd4f8fd4662e45d/lazy_object_proxy-1.8.0-cp311-cp311-win32.whl", hash = "sha256:e20bfa6db17a39c706d24f82df8352488d2943a3b7ce7d4c22579cb89ca8896e"},
|
||||
{url = "https://files.pythonhosted.org/packages/46/35/55c3650f29858869596871b7fedf4a6b211b61dcc4dd8e8d5702eb85370e/lazy_object_proxy-1.8.0-cp39-cp39-win32.whl", hash = "sha256:8f6ce2118a90efa7f62dd38c7dbfffd42f468b180287b748626293bf12ed468f"},
|
||||
{url = "https://files.pythonhosted.org/packages/60/c1/bf324cf9a0577b0e3781b1a38696405235ac784c4a6d889f97a36dcedc70/lazy_object_proxy-1.8.0-cp37-cp37m-win32.whl", hash = "sha256:5b51d6f3bfeb289dfd4e95de2ecd464cd51982fe6f00e2be1d0bf94864d58acd"},
|
||||
{url = "https://files.pythonhosted.org/packages/64/ed/ad47931e7780a5c39f7439de9124438794137840ffdb5f3ffd2995228071/lazy_object_proxy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:eb329f8d8145379bf5dbe722182410fe8863d186e51bf034d2075eb8d85ee25b"},
|
||||
{url = "https://files.pythonhosted.org/packages/65/08/836c9e4e6edf3a267e5b1d0c03923a70ee1a233baf6eb00bfab88d795c51/lazy_object_proxy-1.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4e2d9f764f1befd8bdc97673261b8bb888764dfdbd7a4d8f55e4fbcabb8c3fb7"},
|
||||
{url = "https://files.pythonhosted.org/packages/74/37/591f89e8a09ae4574391bdf8a5eecd34a3dbe545917333e625c9de9a66b0/lazy-object-proxy-1.8.0.tar.gz", hash = "sha256:c219a00245af0f6fa4e95901ed28044544f50152840c5b6a3e7b2568db34d156"},
|
||||
{url = "https://files.pythonhosted.org/packages/7c/0f/60db0efe9a1d61fc830cfd2806d54c5fb64761e8009b9d163bf0ede5b12d/lazy_object_proxy-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4fd031589121ad46e293629b39604031d354043bb5cdf83da4e93c2d7f3389fe"},
|
||||
{url = "https://files.pythonhosted.org/packages/80/aa/71f82fd17211767419d6b1fc3dc00ba4641c11f9c9358f7acc5222e693b9/lazy_object_proxy-1.8.0-cp38-cp38-win32.whl", hash = "sha256:d176f392dbbdaacccf15919c77f526edf11a34aece58b55ab58539807b85436f"},
|
||||
{url = "https://files.pythonhosted.org/packages/95/97/44ee4e0247754bcb878886baf2e06856ff268b0d67e86f1d750f251e3c87/lazy_object_proxy-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c1c7c0433154bb7c54185714c6929acc0ba04ee1b167314a779b9025517eada"},
|
||||
{url = "https://files.pythonhosted.org/packages/9d/23/7e78292a5b72121a8bdfff128fcfb8d3630af74336855d3e527f73eaa4c0/lazy_object_proxy-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:71d9ae8a82203511a6f60ca5a1b9f8ad201cac0fc75038b2dc5fa519589c9288"},
|
||||
{url = "https://files.pythonhosted.org/packages/9d/d1/6dd90b049748d02d9120a496c3649220ac4f6803dd74c9ae48f2bb001239/lazy_object_proxy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:eac3a9a5ef13b332c059772fd40b4b1c3d45a3a2b05e33a361dee48e54a4dad0"},
|
||||
{url = "https://files.pythonhosted.org/packages/b9/a2/e6b92d1ce6da768a1570d436616f4c565420fcf1c4b2b5246cf77624fe36/lazy_object_proxy-1.8.0-pp37-pypy37_pp73-any.whl", hash = "sha256:ae032743794fba4d171b5b67310d69176287b5bf82a21f588282406a79498891"},
|
||||
{url = "https://files.pythonhosted.org/packages/d7/8a/7bf9154dd7e6e9bda733a105e3baca3636abe72091cd1dcbf636979b667f/lazy_object_proxy-1.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:14010b49a2f56ec4943b6cf925f597b534ee2fe1f0738c84b3bce0c1a11ff10d"},
|
||||
{url = "https://files.pythonhosted.org/packages/e0/d3/0cdabfa685eb152a9f4d179fa95f121b3810171f246e8e51f45d100b345c/lazy_object_proxy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:afcaa24e48bb23b3be31e329deb3f1858f1f1df86aea3d70cb5c8578bfe5261c"},
|
||||
{url = "https://files.pythonhosted.org/packages/e3/90/4c8d2ce638791874f48894761e305afa2bf6f85f315f1d51946eb1e2b18f/lazy_object_proxy-1.8.0-pp38-pypy38_pp73-any.whl", hash = "sha256:7e1561626c49cb394268edd00501b289053a652ed762c58e1081224c8d881cec"},
|
||||
{url = "https://files.pythonhosted.org/packages/f5/dc/11168f6697ed68ec29a4f0887308c0d7836d96148a81eb0abb7b8e77b8e8/lazy_object_proxy-1.8.0-pp39-pypy39_pp73-any.whl", hash = "sha256:ce58b2b3734c73e68f0e30e4e725264d4d6be95818ec0a0be4bb6bf9a7e79aa8"},
|
||||
{url = "https://files.pythonhosted.org/packages/f6/71/e0dbe4172135aca4b4f657cf15fefd34247b5392ae42cf2ca2583dfa332f/lazy_object_proxy-1.8.0-cp37-cp37m-win_amd64.whl", hash = "sha256:6f593f26c470a379cf7f5bc6db6b5f1722353e7bf937b8d0d0b3fba911998858"},
|
||||
]
|
||||
"mashumaro 3.2" = [
|
||||
{url = "https://files.pythonhosted.org/packages/46/37/45d7871fa7d5dba5e84e1b852b71cf2298361fa1524bc7bb7d39122deca2/mashumaro-3.2-py3-none-any.whl", hash = "sha256:1e0bb20277151e1d3e39ce5df26fb734be76e177f5bfc291c3c5c0efd1bd32f0"},
|
||||
{url = "https://files.pythonhosted.org/packages/de/4c/9c5a03ec5e1d862ea1099ecdf1f510615c05a38fcf6b144fc592a0207318/mashumaro-3.2.tar.gz", hash = "sha256:5b12b56556373d2a907d54b3d61f59f5a1f3670a98040721aff19b8c476fd994"},
|
||||
]
|
||||
"mccabe 0.7.0" = [
|
||||
{url = "https://files.pythonhosted.org/packages/27/1a/1f68f9ba0c207934b35b86a8ca3aad8395a3d6dd7921c0686e23853ff5a9/mccabe-0.7.0-py2.py3-none-any.whl", hash = "sha256:6c2d30ab6be0e4a46919781807b4f0d834ebdd6c6e3dca0bda5a15f863427b6e"},
|
||||
{url = "https://files.pythonhosted.org/packages/e7/ff/0ffefdcac38932a54d2b5eed4e0ba8a408f215002cd178ad1df0f2806ff8/mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"},
|
||||
]
|
||||
"mypy 0.991" = [
|
||||
{url = "https://files.pythonhosted.org/packages/0e/5c/fbe112ca73d4c6a9e65336f48099c60800514d8949b4129c093a84a28dc8/mypy-0.991.tar.gz", hash = "sha256:3c0165ba8f354a6d9881809ef29f1a9318a236a6d81c690094c5df32107bde06"},
|
||||
{url = "https://files.pythonhosted.org/packages/14/05/5a4206e269268f4aecb1096bf2375a231c959987ccf3e31313221b8bc153/mypy-0.991-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37bd02ebf9d10e05b00d71302d2c2e6ca333e6c2a8584a98c00e038db8121f05"},
|
||||
{url = "https://files.pythonhosted.org/packages/28/9c/e1805f2fea93a92671f33b00dd577119f37e4a8b859d6f6ea62d3e9129fa/mypy-0.991-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1c8cd4fb70e8584ca1ed5805cbc7c017a3d1a29fb450621089ffed3e99d1857f"},
|
||||
{url = "https://files.pythonhosted.org/packages/33/20/c4c15c9e9b7929ef44e35e83c0bcc254c8bf5998bbef0954ae658288e8c6/mypy-0.991-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b86ce2c1866a748c0f6faca5232059f881cda6dda2a893b9a8373353cfe3715a"},
|
||||
{url = "https://files.pythonhosted.org/packages/39/05/7a7d58afc7d00e819e553ad2485a29141e14575e3b0c43b9da6f869ede4c/mypy-0.991-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc9ec663ed6c8f15f4ae9d3c04c989b744436c16d26580eaa760ae9dd5d662eb"},
|
||||
{url = "https://files.pythonhosted.org/packages/44/d0/81d47bffc80d0cff84174aab266adc3401e735e13c5613418e825c146986/mypy-0.991-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7d17e0a9707d0772f4a7b878f04b4fd11f6f5bcb9b3813975a9b13c9332153ab"},
|
||||
{url = "https://files.pythonhosted.org/packages/49/83/34d682a10604845d77a0e7dbde1d0e70f3784d0f67b0df11d2eaf7bb8360/mypy-0.991-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a12c56bf73cdab116df96e4ff39610b92a348cc99a1307e1da3c3768bbb5b135"},
|
||||
{url = "https://files.pythonhosted.org/packages/4b/98/125e5d14222de8e92f44314f8df21a9c351b531b37c551526acd67486a7d/mypy-0.991-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:26efb2fcc6b67e4d5a55561f39176821d2adf88f2745ddc72751b7890f3194ad"},
|
||||
{url = "https://files.pythonhosted.org/packages/5d/c8/fc9b7cd600330e8c9dbd52b499a76eeaf4b48969a605fb50415a9d361d5b/mypy-0.991-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:652b651d42f155033a1967739788c436491b577b6a44e4c39fb340d0ee7f0d70"},
|
||||
{url = "https://files.pythonhosted.org/packages/6b/22/5e19d1a6f8e029296e7b2fa462d8753fb4365126684c2f840dcb1447e6e8/mypy-0.991-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6d7464bac72a85cb3491c7e92b5b62f3dcccb8af26826257760a552a5e244aa5"},
|
||||
{url = "https://files.pythonhosted.org/packages/80/23/76e56e004acca691b4da4086a8c38bd67b7ae73536848dcab76cfed5c188/mypy-0.991-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4307270436fd7694b41f913eb09210faff27ea4979ecbcd849e57d2da2f65305"},
|
||||
{url = "https://files.pythonhosted.org/packages/87/ec/62fd00fa5d8ead3ecafed3eb99ee805911f41b11536c5940df1bcb2c845d/mypy-0.991-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0c8f3be99e8a8bd403caa8c03be619544bc2c77a7093685dcf308c6b109426c6"},
|
||||
{url = "https://files.pythonhosted.org/packages/89/76/7159258fdbf26a5ceef100b80a82d2f79b9066725a5daeb6383a8f773910/mypy-0.991-cp311-cp311-win_amd64.whl", hash = "sha256:3a700330b567114b673cf8ee7388e949f843b356a73b5ab22dd7cff4742a5297"},
|
||||
{url = "https://files.pythonhosted.org/packages/90/a5/3a2c0c02e99a845318cc25556097d96eb8eb85fe53619ac8ff37b44acc46/mypy-0.991-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:3d80e36b7d7a9259b740be6d8d906221789b0d836201af4234093cae89ced0cd"},
|
||||
{url = "https://files.pythonhosted.org/packages/91/27/716b1cfce990cb58dc92f6601852141bc25e1524c06b3f3a39b0de6d9210/mypy-0.991-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c9166b3f81a10cdf9b49f2d594b21b31adadb3d5e9db9b834866c3258b695be3"},
|
||||
{url = "https://files.pythonhosted.org/packages/97/e3/1da0f08c60f555c04b93eff4016611fa1858ea53111dbdc757a37c234042/mypy-0.991-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:641411733b127c3e0dab94c45af15fea99e4468f99ac88b39efb1ad677da5711"},
|
||||
{url = "https://files.pythonhosted.org/packages/9b/b1/0d5f1549c2894fd9af744e886156870d98ea0b1784952989f10e51eb0030/mypy-0.991-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1f7d1a520373e2272b10796c3ff721ea1a0712288cafaa95931e66aa15798813"},
|
||||
{url = "https://files.pythonhosted.org/packages/ac/a6/e4d6dca539c637735d0d93f1eee3ac35cedfd9c047da7386b3a59e93f35b/mypy-0.991-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5e80e758243b97b618cdf22004beb09e8a2de1af481382e4d84bc52152d1c476"},
|
||||
{url = "https://files.pythonhosted.org/packages/af/9a/ee3b76f36e90ecb5e44dd2827bf5992d02c127192366a4c7864cfeab95b6/mypy-0.991-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0cca5adf694af539aeaa6ac633a7afe9bbd760df9d31be55ab780b77ab5ae8bf"},
|
||||
{url = "https://files.pythonhosted.org/packages/b1/30/24a92552a7c3df25db5a2e56ae359b4aa9bba6aebc8f0e25523a94e5c1e7/mypy-0.991-cp37-cp37m-win_amd64.whl", hash = "sha256:e62ebaad93be3ad1a828a11e90f0e76f15449371ffeecca4a0a0b9adc99abcef"},
|
||||
{url = "https://files.pythonhosted.org/packages/b8/ab/aa2e02fce8ee8885fe98ee2a0549290e9de5caa28febc0cf243bfab020e7/mypy-0.991-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d13674f3fb73805ba0c45eb6c0c3053d218aa1f7abead6e446d474529aafc372"},
|
||||
{url = "https://files.pythonhosted.org/packages/bc/b2/6e71e47b259992dcd99d257ce452c0de3f711be713d048fe8f0fda9a9996/mypy-0.991-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:98e781cd35c0acf33eb0295e8b9c55cdbef64fcb35f6d3aa2186f289bed6e80d"},
|
||||
{url = "https://files.pythonhosted.org/packages/ca/0d/da98f81e7c13a60111dc10a16cbf1b48dc8500df90a1fc959878a5981f49/mypy-0.991-cp39-cp39-win_amd64.whl", hash = "sha256:74e259b5c19f70d35fcc1ad3d56499065c601dfe94ff67ae48b85596b9ec1461"},
|
||||
{url = "https://files.pythonhosted.org/packages/d7/f4/dcab9f3c5ed410caca1b9374dbb2b2caa778d225e32f174e266e20291edf/mypy-0.991-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0714258640194d75677e86c786e80ccf294972cc76885d3ebbb560f11db0003d"},
|
||||
{url = "https://files.pythonhosted.org/packages/df/bb/3cf400e05e30939a0fc58b34e0662d8abe8e206464665065b56cf2ca9a62/mypy-0.991-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:209ee89fbb0deed518605edddd234af80506aec932ad28d73c08f1400ef80a33"},
|
||||
{url = "https://files.pythonhosted.org/packages/e3/84/188ddeaebfc8b5bbdcc3c7f05c09b61758540b2df84aad0146263d66960a/mypy-0.991-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ac6e503823143464538efda0e8e356d871557ef60ccd38f8824a4257acc18d93"},
|
||||
{url = "https://files.pythonhosted.org/packages/e7/a1/c503a15ad69ff133a76c159b8287f0eadc1f521d9796bf81f935886c98f6/mypy-0.991-py3-none-any.whl", hash = "sha256:de32edc9b0a7e67c2775e574cb061a537660e51210fbf6006b0b36ea695ae9bb"},
|
||||
{url = "https://files.pythonhosted.org/packages/e9/7e/cc2de45afb46fee694bf285f91df3e227a3b0c671f775524814549c26556/mypy-0.991-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8472f736a5bfb159a5e36740847808f6f5b659960115ff29c7cecec1741c648"},
|
||||
{url = "https://files.pythonhosted.org/packages/f3/1d/cc67a674f1cd7f1c10619487a4245185f6f8f14cbd685b60709318e9ac27/mypy-0.991-cp310-cp310-win_amd64.whl", hash = "sha256:901c2c269c616e6cb0998b33d4adbb4a6af0ac4ce5cd078afd7bc95830e62c1c"},
|
||||
{url = "https://files.pythonhosted.org/packages/f7/3a/19c01d59d24f1f36fabdeb61a286b4fc5e0456bf6211f5159ad5ebb5f735/mypy-0.991-cp38-cp38-win_amd64.whl", hash = "sha256:4175593dc25d9da12f7de8de873a33f9b2b8bdb4e827a7cae952e5b1a342e243"},
|
||||
]
|
||||
"mypy-extensions 0.4.3" = [
|
||||
{url = "https://files.pythonhosted.org/packages/5c/eb/975c7c080f3223a5cdaff09612f3a5221e4ba534f7039db34c35d95fa6a5/mypy_extensions-0.4.3-py2.py3-none-any.whl", hash = "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d"},
|
||||
{url = "https://files.pythonhosted.org/packages/63/60/0582ce2eaced55f65a4406fc97beba256de4b7a95a0034c6576458c6519f/mypy_extensions-0.4.3.tar.gz", hash = "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8"},
|
||||
]
|
||||
"numpy 1.24.1" = [
|
||||
{url = "https://files.pythonhosted.org/packages/01/a8/de4f84ccbbe0b616b4c36bd74dd21ddcac9f0d69466b91a60e3b8647d5ca/numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ed5fb71d79e771ec930566fae9c02626b939e37271ec285e9efaf1b5d4370e7d"},
|
||||
{url = "https://files.pythonhosted.org/packages/06/5c/d43e4b9eefc95bed55128cc08c535dfb0047cbeac5b7b3cd835a7a531974/numpy-1.24.1-cp39-cp39-win32.whl", hash = "sha256:87a118968fba001b248aac90e502c0b13606721b1343cdaddbc6e552e8dfb56f"},
|
||||
{url = "https://files.pythonhosted.org/packages/0b/73/7db81acb8b9b2dfa24ca51de6b84db878fd216865b7acb75f27e79105680/numpy-1.24.1-cp38-cp38-win_amd64.whl", hash = "sha256:6ec0c021cd9fe732e5bab6401adea5a409214ca5592cd92a114f7067febcba0c"},
|
||||
{url = "https://files.pythonhosted.org/packages/14/1f/935ce638d37f8762aafb3962c8b14bf715c3db21a9b30f0cec4b228e7387/numpy-1.24.1-cp38-cp38-win32.whl", hash = "sha256:dae46bed2cb79a58d6496ff6d8da1e3b95ba09afeca2e277628171ca99b99db1"},
|
||||
{url = "https://files.pythonhosted.org/packages/14/5d/df640c8bc151c742d5166aecfc394134bf92bba432472bfa7d606badd0fc/numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:26089487086f2648944f17adaa1a97ca6aee57f513ba5f1c0b7ebdabbe2b9954"},
|
||||
{url = "https://files.pythonhosted.org/packages/24/c1/44f013eba432b5f18a044b587f96aa76964ea4eacbf512bd6c947a9f78c9/numpy-1.24.1-cp310-cp310-win32.whl", hash = "sha256:b31da69ed0c18be8b77bfce48d234e55d040793cebb25398e2a7d84199fbc7e2"},
|
||||
{url = "https://files.pythonhosted.org/packages/37/15/5667b269bf2c3473133823733fc0cd8fa44850e4c1d61b45bccc798a3e5a/numpy-1.24.1-cp39-cp39-win_amd64.whl", hash = "sha256:ddc7ab52b322eb1e40521eb422c4e0a20716c271a306860979d450decbb51b8e"},
|
||||
{url = "https://files.pythonhosted.org/packages/39/5d/21ea2da2aa6f419a7e48a582b7f5c99ba62822dcd173a6e5a58b22748a36/numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b09804ff570b907da323b3d762e74432fb07955701b17b08ff1b5ebaa8cfe6a9"},
|
||||
{url = "https://files.pythonhosted.org/packages/3b/2b/75d7ed116b17202a89e6cf1eba7e91ba83abb79ece7924d5b2c820f59025/numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b0677a52f5d896e84414761531947c7a330d1adc07c3a4372262f25d84af7bf7"},
|
||||
{url = "https://files.pythonhosted.org/packages/3d/17/2cc40e1ed44f37b0bab7d62e0c6ba88362da23f48e52833ffdd1b9dfc220/numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e3463e6ac25313462e04aea3fb8a0a30fb906d5d300f58b3bc2c23da6a15398"},
|
||||
{url = "https://files.pythonhosted.org/packages/43/55/fea3342371187dea4044521c0ba82b90fb5a42fb92446be019b316dd3320/numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef85cf1f693c88c1fd229ccd1055570cb41cdf4875873b7728b6301f12cd05bf"},
|
||||
{url = "https://files.pythonhosted.org/packages/49/47/12ef5c22217e16afdf1ba1e7cbf6bc36b5df2e0ddee3f5557bc1e41c9e41/numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad2925567f43643f51255220424c23d204024ed428afc5aad0f86f3ffc080086"},
|
||||
{url = "https://files.pythonhosted.org/packages/6e/77/7b69133bf0f3a6b0000cdb6133ff5292734182ca0cd107ad7ff4c46e7bc1/numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:179a7ef0889ab769cc03573b6217f54c8bd8e16cef80aad369e1e8185f994cd7"},
|
||||
{url = "https://files.pythonhosted.org/packages/73/39/f104eb30cc3da44d1e10622418c5e6eb5ac224f0f20c97dba44cf2de2af9/numpy-1.24.1-cp311-cp311-win_amd64.whl", hash = "sha256:de92efa737875329b052982e37bd4371d52cabf469f83e7b8be9bb7752d67e51"},
|
||||
{url = "https://files.pythonhosted.org/packages/81/3a/faa8aa531ec3001ff3b215892de791142e01516105da4c5e40a5686edca2/numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:28bc9750ae1f75264ee0f10561709b1462d450a4808cd97c013046073ae64ab6"},
|
||||
{url = "https://files.pythonhosted.org/packages/85/92/4a280c9d31ec4950b0de759722b9feb9cc9d680726da3578f6b993ae6236/numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e274f0f6c7efd0d577744f52032fdd24344f11c5ae668fe8d01aac0422611df1"},
|
||||
{url = "https://files.pythonhosted.org/packages/a0/a6/44d97c9d6ec619f0ff3a5a8471e5a1283a0ff492348214d512a79f32e9e4/numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f1b739841821968798947d3afcefd386fa56da0caf97722a5de53e07c4ccedc7"},
|
||||
{url = "https://files.pythonhosted.org/packages/ad/9a/98490aee9ca665cd04291658dd76e19c9b9d17680404aa9a122d5ef6ff79/numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e669fbdcdd1e945691079c2cae335f3e3a56554e06bbd45d7609a6cf568c700"},
|
||||
{url = "https://files.pythonhosted.org/packages/af/74/070f80c41427f41a48bd4c873768f4989aacac7b8c0a3060566402339ce9/numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:84e789a085aabef2f36c0515f45e459f02f570c4b4c4c108ac1179c34d475ed7"},
|
||||
{url = "https://files.pythonhosted.org/packages/b8/a9/993477a7d6a3fdb1b7bb2287333d027303b9af7643d90088a4c74a15dc1d/numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:28e418681372520c992805bb723e29d69d6b7aa411065f48216d8329d02ba032"},
|
||||
{url = "https://files.pythonhosted.org/packages/c5/f7/df97e91bf7f4125ce7fa24296f4dfb6f1fc172c08413146b456f5b1299f1/numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:caf65a396c0d1f9809596be2e444e3bd4190d86d5c1ce21f5fc4be60a3bc5b36"},
|
||||
{url = "https://files.pythonhosted.org/packages/cd/9b/0398b0638ccdda7167d407f50494406560d6e4b7f4e23c33588704e2928b/numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7094891dcf79ccc6bc2a1f30428fa5edb1e6fb955411ffff3401fb4ea93780a8"},
|
||||
{url = "https://files.pythonhosted.org/packages/ce/b8/c170db50ec49d5845bd771bc5549fe734ee73083c5c52791915f95d8e2bc/numpy-1.24.1.tar.gz", hash = "sha256:2386da9a471cc00a1f47845e27d916d5ec5346ae9696e01a8a34760858fe9dd2"},
|
||||
{url = "https://files.pythonhosted.org/packages/d7/18/4491cefc090909c3615315722fd09864b791c34a1f174845d41716278d23/numpy-1.24.1-cp311-cp311-win32.whl", hash = "sha256:442feb5e5bada8408e8fcd43f3360b78683ff12a4444670a7d9e9824c1817d36"},
|
||||
{url = "https://files.pythonhosted.org/packages/db/24/5343241cabd04224e4fc4f2cf12b35146a90a83f53bef9b541c439a7dada/numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0044f7d944ee882400890f9ae955220d29b33d809a038923d88e4e01d652acd9"},
|
||||
{url = "https://files.pythonhosted.org/packages/ee/70/c9055fe381e9e5103222e2f5efeb0cfb4524ab3c7d75b4eedc330380f9f5/numpy-1.24.1-cp310-cp310-win_amd64.whl", hash = "sha256:b07b40f5fb4fa034120a5796288f24c1fe0e0580bbfff99897ba6267af42def2"},
|
||||
{url = "https://files.pythonhosted.org/packages/f9/03/94ee2d37561d77538e9f2c933a8b22ff234f15404420517b3f51cc3a0749/numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:cfa1161c6ac8f92dea03d625c2d0c05e084668f4a06568b77a25a89111621566"},
|
||||
{url = "https://files.pythonhosted.org/packages/fa/c2/00bed438bc58fd80429b7ea2b28382f99156659ebc6dfa750d1520df59d6/numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b162ac10ca38850510caf8ea33f89edcb7b0bb0dfa5592d59909419986b72407"},
|
||||
]
|
||||
"pandas 1.5.2" = [
|
||||
{url = "https://files.pythonhosted.org/packages/0c/13/a1b217a8665099b9a069f726178e86bd4c01aee37576f19936793b436f85/pandas-1.5.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2552bffc808641c6eb471e55aa6899fa002ac94e4eebfa9ec058649122db5824"},
|
||||
{url = "https://files.pythonhosted.org/packages/16/ca/83e8a97e1a66f2bcc09e24ddec32755ddfe5d2a162c1eb493ee02a0f77a3/pandas-1.5.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e9dbacd22555c2d47f262ef96bb4e30880e5956169741400af8b306bbb24a273"},
|
||||
{url = "https://files.pythonhosted.org/packages/24/c3/8182eb4e261e9fd24a992f78a6895b4b60b6a353ff03b83da748b8c7c03c/pandas-1.5.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9608000a5a45f663be6af5c70c3cbe634fa19243e720eb380c0d378666bc7702"},
|
||||
{url = "https://files.pythonhosted.org/packages/24/fa/7786bedc2d2b2c84787553800c85d7d2b165c51f03922b441594d1b67f8d/pandas-1.5.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b4f5a82afa4f1ff482ab8ded2ae8a453a2cdfde2001567b3ca24a4c5c5ca0db3"},
|
||||
{url = "https://files.pythonhosted.org/packages/36/bd/3e73defb8b643d9dacde5d875319287d960a86e62e721140961773f22910/pandas-1.5.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c009a92e81ce836212ce7aa98b219db7961a8b95999b97af566b8dc8c33e9519"},
|
||||
{url = "https://files.pythonhosted.org/packages/44/d3/e9df2f568692647fe5c3b02506610829d004a00b3ba5c7fd92d382f8d511/pandas-1.5.2-cp39-cp39-win32.whl", hash = "sha256:e7469271497960b6a781eaa930cba8af400dd59b62ec9ca2f4d31a19f2f91090"},
|
||||
{url = "https://files.pythonhosted.org/packages/4d/07/c4d69e1acb7723ca49d24fc60a89aa07a914dfb8e7a07fdbb9d8646630cd/pandas-1.5.2.tar.gz", hash = "sha256:220b98d15cee0b2cd839a6358bd1f273d0356bf964c1a1aeb32d47db0215488b"},
|
||||
{url = "https://files.pythonhosted.org/packages/51/e3/7627c324661db1c891a6814c343be6c6a238d13868dd8f01a6d4f388dab0/pandas-1.5.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:375262829c8c700c3e7cbb336810b94367b9c4889818bbd910d0ecb4e45dc261"},
|
||||
{url = "https://files.pythonhosted.org/packages/5b/7c/afc4ed0a1d289bfbdb728fa51b418d8600ddfa84a4bdfda17fff38924b6c/pandas-1.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a40dd1e9f22e01e66ed534d6a965eb99546b41d4d52dbdb66565608fde48203f"},
|
||||
{url = "https://files.pythonhosted.org/packages/5e/ed/5c9cdaa5d48c7194bef4335eab3cdc2f8afa868a5546027e018ea9deb4c3/pandas-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:344021ed3e639e017b452aa8f5f6bf38a8806f5852e217a7594417fb9bbfa00e"},
|
||||
{url = "https://files.pythonhosted.org/packages/60/e3/d90929366de6562529cd98f81b5735bd71230c99764e19dd26bfd99c0e33/pandas-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0d8fd58df5d17ddb8c72a5075d87cd80d71b542571b5f78178fb067fa4e9c72"},
|
||||
{url = "https://files.pythonhosted.org/packages/67/16/5b7621255df6c0851b1f03052d48fd9f229c414dd366f6fda51da47cb96c/pandas-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0183cb04a057cc38fde5244909fca9826d5d57c4a5b7390c0cc3fa7acd9fa883"},
|
||||
{url = "https://files.pythonhosted.org/packages/67/a3/903393efaae5be8c11cd01ea5b950bc9950096574ef9ca79466779840b63/pandas-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e2b83abd292194f350bb04e188f9379d36b8dfac24dd445d5c87575f3beaf789"},
|
||||
{url = "https://files.pythonhosted.org/packages/76/4f/a59a029fd3000e2a5e5075eca9d6a8022aec23f60088df79f0a989d00702/pandas-1.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:c218796d59d5abd8780170c937b812c9637e84c32f8271bbf9845970f8c1351f"},
|
||||
{url = "https://files.pythonhosted.org/packages/7f/73/8ac702651edb2282ba059575ad73e3eba0f129df72c7c2d417af8b528896/pandas-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:315e19a3e5c2ab47a67467fc0362cb36c7c60a93b6457f675d7d9615edad2ebe"},
|
||||
{url = "https://files.pythonhosted.org/packages/82/d9/f550aa2c6ceb89c6b1b2cc5491b605568624cbc53c86a05f350be9f0d583/pandas-1.5.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:457d8c3d42314ff47cc2d6c54f8fc0d23954b47977b2caed09cd9635cb75388b"},
|
||||
{url = "https://files.pythonhosted.org/packages/94/c1/a1f4662c585a820dc85c6c8251af89b80d1326bcfd3b341a878ed009e997/pandas-1.5.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e18bc3764cbb5e118be139b3b611bc3fbc5d3be42a7e827d1096f46087b395eb"},
|
||||
{url = "https://files.pythonhosted.org/packages/99/98/52103c91ee1a483ba3403afb38c5e506ef2873192f7cf727a3511cf1dd5f/pandas-1.5.2-cp38-cp38-win32.whl", hash = "sha256:530948945e7b6c95e6fa7aa4be2be25764af53fba93fe76d912e35d1c9ee46f5"},
|
||||
{url = "https://files.pythonhosted.org/packages/9c/6c/3bfce7f343360c1b537fb59ecbf6865e21d5c8d9e07a632bc6725744e919/pandas-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ae7e989f12628f41e804847a8cc2943d362440132919a69429d4dea1f164da0"},
|
||||
{url = "https://files.pythonhosted.org/packages/af/25/4cbf835f48366ac1007ca959781d1ac770caa36cd27af148dacdde18d397/pandas-1.5.2-cp311-cp311-win_amd64.whl", hash = "sha256:82ae615826da838a8e5d4d630eb70c993ab8636f0eff13cb28aafc4291b632b5"},
|
||||
{url = "https://files.pythonhosted.org/packages/b3/e9/177dae31a2e3c75a3bfdb63136b72bb036d9de0817d8fbbd7c33c37ce07e/pandas-1.5.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:71f510b0efe1629bf2f7c0eadb1ff0b9cf611e87b73cd017e6b7d6adb40e2b3a"},
|
||||
{url = "https://files.pythonhosted.org/packages/b6/ba/a5ed09e4044c683fab1dec7a18fb139db0afde61def7a4d8fa2848a2d9c8/pandas-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6257b314fc14958f8122779e5a1557517b0f8e500cfb2bd53fa1f75a8ad0af2"},
|
||||
{url = "https://files.pythonhosted.org/packages/b7/a4/f40c5a989c2b9381ebe3a19be28a15469a9233c83a82ca86f8abe455f41b/pandas-1.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fc87eac0541a7d24648a001d553406f4256e744d92df1df8ebe41829a915028"},
|
||||
{url = "https://files.pythonhosted.org/packages/b8/cb/9fd77ef44900d29993d0a51ae7c552fb4e4953358fcbb1a676c64d05ce04/pandas-1.5.2-cp38-cp38-win_amd64.whl", hash = "sha256:73f219fdc1777cf3c45fde7f0708732ec6950dfc598afc50588d0d285fddaefc"},
|
||||
{url = "https://files.pythonhosted.org/packages/bc/3a/4ee3bd4daac874ae484161802f3c8ecdafa68b3b97685e93ef1ef9e3814d/pandas-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc3cd122bea268998b79adebbb8343b735a5511ec14efb70a39e7acbc11ccbdc"},
|
||||
{url = "https://files.pythonhosted.org/packages/f3/a5/6ef3a6ccf1f0962fa378b3d0842060ba6288ddc036b230c190849dcdad08/pandas-1.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8092a368d3eb7116e270525329a3e5c15ae796ccdf7ccb17839a73b4f5084a39"},
|
||||
{url = "https://files.pythonhosted.org/packages/ff/2f/f7a9deb154eabd2e99cf1bcccefb3c7529d126cb2b551070dc8226a96282/pandas-1.5.2-cp310-cp310-win_amd64.whl", hash = "sha256:4aed257c7484d01c9a194d9a94758b37d3d751849c05a0050c087a358c41ad1f"},
|
||||
]
|
||||
"pdbpp 0.10.3" = [
|
||||
{url = "https://files.pythonhosted.org/packages/1f/a3/c4bd048256fd4b7d28767ca669c505e156f24d16355505c62e6fce3314df/pdbpp-0.10.3.tar.gz", hash = "sha256:d9e43f4fda388eeb365f2887f4e7b66ac09dce9b6236b76f63616530e2f669f5"},
|
||||
{url = "https://files.pythonhosted.org/packages/93/ee/491e63a57fffa78b9de1c337b06c97d0cd0753e88c00571c7b011680332a/pdbpp-0.10.3-py2.py3-none-any.whl", hash = "sha256:79580568e33eb3d6f6b462b1187f53e10cd8e4538f7d31495c9181e2cf9665d1"},
|
||||
]
|
||||
"platformdirs 2.6.0" = [
|
||||
{url = "https://files.pythonhosted.org/packages/87/69/cd019a9473bcdfb38983e2d550ccb239264fc4c2fc32c42ac1b1cc2506b6/platformdirs-2.6.0-py3-none-any.whl", hash = "sha256:1a89a12377800c81983db6be069ec068eee989748799b946cce2a6e80dcc54ca"},
|
||||
{url = "https://files.pythonhosted.org/packages/ec/4c/9af851448e55c57b30a13a72580306e628c3b431d97fdae9e0b8d4fa3685/platformdirs-2.6.0.tar.gz", hash = "sha256:b46ffafa316e6b83b47489d240ce17173f123a9b9c83282141c3daf26ad9ac2e"},
|
||||
]
|
||||
"pyarrow 10.0.1" = [
|
||||
{url = "https://files.pythonhosted.org/packages/11/71/dd884e86aa92b2d602ee2064a485106ce5b447f8cae644f1a6f6a2e72016/pyarrow-10.0.1.tar.gz", hash = "sha256:1a14f57a5f472ce8234f2964cd5184cccaa8df7e04568c64edc33b23eb285dd5"},
|
||||
{url = "https://files.pythonhosted.org/packages/12/30/7e924599750474544ad2b01cf8d13edf80d8444a51b68c03761f6486d05e/pyarrow-10.0.1-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:61f4c37d82fe00d855d0ab522c685262bdeafd3fbcb5fe596fe15025fbc7341b"},
|
||||
{url = "https://files.pythonhosted.org/packages/1e/6e/915b7dfb7cfd2efd092b9b4d6579cb5848ba1dced3543bdd963df59ee2b5/pyarrow-10.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:254017ca43c45c5098b7f2a00e995e1f8346b0fb0be225f042838323bb55283c"},
|
||||
{url = "https://files.pythonhosted.org/packages/26/02/62c918edc87e91bf07fd003f7ed8468d45130471b415754b27cf4db95896/pyarrow-10.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6f7a7dbe2f7f65ac1d0bd3163f756deb478a9e9afc2269557ed75b1b25ab3610"},
|
||||
{url = "https://files.pythonhosted.org/packages/33/15/b62e72b04f48de27cc97a874c0f466cda8731444e380b75c58272a9fc649/pyarrow-10.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:7b4ede715c004b6fc535de63ef79fa29740b4080639a5ff1ea9ca84e9282f349"},
|
||||
{url = "https://files.pythonhosted.org/packages/61/a7/c6b4ce8fefda1a89083dc25bbd8da0200194779640e146b18abe742551d7/pyarrow-10.0.1-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:f2d00aa481becf57098e85d99e34a25dba5a9ade2f44eb0b7d80c80f2984fc03"},
|
||||
{url = "https://files.pythonhosted.org/packages/6a/d3/cdaa61af13c323d33d2950126ecab641524174d71474a2b8450ab6f15ef6/pyarrow-10.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:efa59933b20183c1c13efc34bd91efc6b2997377c4c6ad9272da92d224e3beb1"},
|
||||
{url = "https://files.pythonhosted.org/packages/6b/7d/dfde28d33a2dd22c95529d361203b6dc0cbdf87d82988f7d03224de35fcf/pyarrow-10.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:0ec7587d759153f452d5263dbc8b1af318c4609b607be2bd5127dcda6708cdb1"},
|
||||
{url = "https://files.pythonhosted.org/packages/6d/fa/470b9d156eba452c67d681059f0876fb7bad74e387a37fe1d146aeac6bcd/pyarrow-10.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:d1bc6e4d5d6f69e0861d5d7f6cf4d061cf1069cb9d490040129877acf16d4c2a"},
|
||||
{url = "https://files.pythonhosted.org/packages/7d/75/e799c76223b446b461a76420766ead8a2483e21272d4de9a5b5d260851ff/pyarrow-10.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:443eb9409b0cf78df10ced326490e1a300205a458fbeb0767b6b31ab3ebae6b2"},
|
||||
{url = "https://files.pythonhosted.org/packages/81/53/385279a985567a8a909bf9365cd15fc87c26ebe7db60a7220e4eeb407c87/pyarrow-10.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abb57334f2c57979a49b7be2792c31c23430ca02d24becd0b511cbe7b6b08649"},
|
||||
{url = "https://files.pythonhosted.org/packages/85/37/c66886e2b479018d1a5ed11c77913325f5482f60e5217c2f4182b15a5d25/pyarrow-10.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b1fc226d28c7783b52a84d03a66573d5a22e63f8a24b841d5fc68caeed6784d4"},
|
||||
{url = "https://files.pythonhosted.org/packages/86/7a/299b7b966be9c61e7337ddbff4e9e530093ef2ad935e52944b8ce19ba92f/pyarrow-10.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf26f809926a9d74e02d76593026f0aaeac48a65b64f1bb17eed9964bfe7ae1a"},
|
||||
{url = "https://files.pythonhosted.org/packages/89/b4/04ae9d39130d0dc40803eb6fbe84873c247f9c8e8111ac9b2cb30c35b515/pyarrow-10.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:668e00e3b19f183394388a687d29c443eb000fb3fe25599c9b4762a0afd37775"},
|
||||
{url = "https://files.pythonhosted.org/packages/90/69/9e0ea39bed0d281e84cc3cd4a693ebc86266b705d910af9cc939e66c5d03/pyarrow-10.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:1765a18205eb1e02ccdedb66049b0ec148c2a0cb52ed1fb3aac322dfc086a6ee"},
|
||||
{url = "https://files.pythonhosted.org/packages/a4/48/19c8b4892d2d574dfbefa7065600aa4d7d8e8b864f7be5f58105c3fc0448/pyarrow-10.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94fb4a0c12a2ac1ed8e7e2aa52aade833772cf2d3de9dde685401b22cec30002"},
|
||||
{url = "https://files.pythonhosted.org/packages/b2/d2/77f002c442ed75f0cd19b744e34894544d25fc34bbdc8efeb33bd52d8de0/pyarrow-10.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db0c5986bf0808927f49640582d2032a07aa49828f14e51f362075f03747d198"},
|
||||
{url = "https://files.pythonhosted.org/packages/b6/14/208f66e1c2f213ffc053e3d37b10ba41d0580654501dcd620ad5d32d056e/pyarrow-10.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b069602eb1fc09f1adec0a7bdd7897f4d25575611dfa43543c8b8a75d99d6874"},
|
||||
{url = "https://files.pythonhosted.org/packages/b9/46/0050ff96706f27b766497d63ad60f8bace6a4e61565594bd8079b33e81af/pyarrow-10.0.1-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:42ba7c5347ce665338f2bc64685d74855900200dac81a972d49fe127e8132f75"},
|
||||
{url = "https://files.pythonhosted.org/packages/da/8a/9fa72ef41bd47816f11e6c3c5b68c0a913d2005a3e1aa327dfaa936debb9/pyarrow-10.0.1-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:e00174764a8b4e9d8d5909b6d19ee0c217a6cf0232c5682e31fdfbd5a9f0ae52"},
|
||||
{url = "https://files.pythonhosted.org/packages/db/9f/ef33d4f60089bbe32a5620e599cb485cfd9306bd1663bc603354759c28eb/pyarrow-10.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba71e6fc348c92477586424566110d332f60d9a35cb85278f42e3473bc1373da"},
|
||||
{url = "https://files.pythonhosted.org/packages/ef/87/a0849cd20c75dd832683fdad0b321e6428281f3f3053e01c588269ae5b89/pyarrow-10.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70acca1ece4322705652f48db65145b5028f2c01c7e426c5d16a30ba5d739c24"},
|
||||
{url = "https://files.pythonhosted.org/packages/f3/95/34b43f8b12f8366daba56ba46de354fd93e33b7535558d18173be2df60d2/pyarrow-10.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e141a65705ac98fa52a9113fe574fdaf87fe0316cde2dffe6b94841d3c61544c"},
|
||||
{url = "https://files.pythonhosted.org/packages/f8/fe/4e2d2cd7e0d544018d7c7fee3dcee80303e16111605716592dd5333a2212/pyarrow-10.0.1-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:e3fe5049d2e9ca661d8e43fab6ad5a4c571af12d20a57dffc392a014caebef65"},
|
||||
{url = "https://files.pythonhosted.org/packages/fd/3e/9f538cc3e048ae2de171ae4bb326c5482ba2bd63978c56bd29110e65ba09/pyarrow-10.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb627673cb98708ef00864e2e243f51ba7b4c1b9f07a1d821f98043eccd3f585"},
|
||||
]
|
||||
"pygments 2.13.0" = [
|
||||
{url = "https://files.pythonhosted.org/packages/4f/82/672cd382e5b39ab1cd422a672382f08a1fb3d08d9e0c0f3707f33a52063b/Pygments-2.13.0-py3-none-any.whl", hash = "sha256:f643f331ab57ba3c9d89212ee4a2dabc6e94f117cf4eefde99a0574720d14c42"},
|
||||
{url = "https://files.pythonhosted.org/packages/e0/ef/5905cd3642f2337d44143529c941cc3a02e5af16f0f65f81cbef7af452bb/Pygments-2.13.0.tar.gz", hash = "sha256:56a8508ae95f98e2b9bdf93a6be5ae3f7d8af858b43e02c5a2ff083726be40c1"},
|
||||
]
|
||||
"pylint 2.15.8" = [
|
||||
{url = "https://files.pythonhosted.org/packages/0d/03/3a96bda38c4b3c77394d9769bda4a35411103849d66f9db790d30a00f258/pylint-2.15.8-py3-none-any.whl", hash = "sha256:ea82cd6a1e11062dc86d555d07c021b0fb65afe39becbe6fe692efd6c4a67443"},
|
||||
{url = "https://files.pythonhosted.org/packages/1e/fa/690c4dcf3ade9ae0497413c788267eafa36228394099708bb0fd0b8a6949/pylint-2.15.8.tar.gz", hash = "sha256:ec4a87c33da054ab86a6c79afa6771dc8765cb5631620053e727fcf3ef8cbed7"},
|
||||
]
|
||||
"pyreadline 2.1" = [
|
||||
{url = "https://files.pythonhosted.org/packages/bc/7c/d724ef1ec3ab2125f38a1d53285745445ec4a8f19b9bb0761b4064316679/pyreadline-2.1.zip", hash = "sha256:4530592fc2e85b25b1a9f79664433da09237c1a270e4d78ea5aa3a2c7229e2d1"},
|
||||
]
|
||||
"pyrepl 0.9.0" = [
|
||||
{url = "https://files.pythonhosted.org/packages/05/1b/ea40363be0056080454cdbabe880773c3c5bd66d7b13f0c8b8b8c8da1e0c/pyrepl-0.9.0.tar.gz", hash = "sha256:292570f34b5502e871bbb966d639474f2b57fbfcd3373c2d6a2f3d56e681a775"},
|
||||
]
|
||||
"python-dateutil 2.8.2" = [
|
||||
{url = "https://files.pythonhosted.org/packages/36/7a/87837f39d0296e723bb9b62bbb257d0355c7f6128853c78955f57342a56d/python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"},
|
||||
{url = "https://files.pythonhosted.org/packages/4c/c4/13b4776ea2d76c115c1d1b84579f3764ee6d57204f6be27119f13a61d0a9/python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"},
|
||||
]
|
||||
"pytz 2022.7" = [
|
||||
{url = "https://files.pythonhosted.org/packages/3d/19/4de17f0d5cf5a0d87aa67532d4c2fa75e6e7d8df13c27635ff40fa6f4b76/pytz-2022.7-py2.py3-none-any.whl", hash = "sha256:93007def75ae22f7cd991c84e02d434876818661f8df9ad5df9e950ff4e52cfd"},
|
||||
{url = "https://files.pythonhosted.org/packages/6d/37/54f2d7c147e42dc85ffbc6910862bb4f141fb3fc14d9a88efaa1a76c7df2/pytz-2022.7.tar.gz", hash = "sha256:7ccfae7b4b2c067464a6733c6261673fdb8fd1be905460396b97a073e9fa683a"},
|
||||
]
|
||||
"regex 2022.10.31" = [
|
||||
{url = "https://files.pythonhosted.org/packages/00/7e/ab5a54f60e36f4de0610850866b848839a7b02ad4f05755bce429fbc1a5a/regex-2022.10.31-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:763b64853b0a8f4f9cfb41a76a4a85a9bcda7fdda5cb057016e7706fde928e66"},
|
||||
{url = "https://files.pythonhosted.org/packages/00/92/25b0b709d591ecd27e1bfb48c64d813a4ed4be0feb0321ea0b55db012099/regex-2022.10.31-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ae1e96785696b543394a4e3f15f3f225d44f3c55dafe3f206493031419fedf95"},
|
||||
{url = "https://files.pythonhosted.org/packages/01/b3/a01602507224e611caa3c0f2a4aa96f4c03fdce482fa4527de61678a3018/regex-2022.10.31-cp37-cp37m-win_amd64.whl", hash = "sha256:8e0caeff18b96ea90fc0eb6e3bdb2b10ab5b01a95128dfeccb64a7238decf5f0"},
|
||||
{url = "https://files.pythonhosted.org/packages/04/de/e8ed731b334e5f962ef035a32f151fffb2f839eccfba40c3ebdac9b26e03/regex-2022.10.31-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a5f9505efd574d1e5b4a76ac9dd92a12acb2b309551e9aa874c13c11caefbe4f"},
|
||||
{url = "https://files.pythonhosted.org/packages/07/ba/7021c60d02f7fe7c3e4ee9636d8a2d93bd894a5063c2b5f35e2e31b1f3ad/regex-2022.10.31-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:44a6c2f6374e0033873e9ed577a54a3602b4f609867794c1a3ebba65e4c93ee7"},
|
||||
{url = "https://files.pythonhosted.org/packages/08/28/f038ff3c5cfd30760bccefbe0b98d51cf61192ec8d3d55dd51564bf6c6b8/regex-2022.10.31-cp311-cp311-win32.whl", hash = "sha256:d8716f82502997b3d0895d1c64c3b834181b1eaca28f3f6336a71777e437c2af"},
|
||||
{url = "https://files.pythonhosted.org/packages/08/cb/0445a970e755eb806945a166729210861391f645223187aa11fcbbb606ce/regex-2022.10.31-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:50921c140561d3db2ab9f5b11c5184846cde686bb5a9dc64cae442926e86f3af"},
|
||||
{url = "https://files.pythonhosted.org/packages/08/e2/94af654d5fdfdad3a05991e104df66c42945650d31713fe290cd446178f1/regex-2022.10.31-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4bdd56ee719a8f751cf5a593476a441c4e56c9b64dc1f0f30902858c4ef8771d"},
|
||||
{url = "https://files.pythonhosted.org/packages/08/ef/96ef949ee331d39489799b44f2d5aa8a252a2d7aa4a96edbb05425d344f6/regex-2022.10.31-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6a9a19bea8495bb419dc5d38c4519567781cd8d571c72efc6aa959473d10221a"},
|
||||
{url = "https://files.pythonhosted.org/packages/09/d3/70714b99c25bac40f81eaf3fe06eb016c5b9b9ac88815145dc6aa7d06b68/regex-2022.10.31-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8ca88da1bd78990b536c4a7765f719803eb4f8f9971cc22d6ca965c10a7f2c4c"},
|
||||
{url = "https://files.pythonhosted.org/packages/0a/cd/4dfdfddca4478ad0ebb6053b2c2923eef1a8660ceb9f495e7a6abb62da15/regex-2022.10.31-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:659175b2144d199560d99a8d13b2228b85e6019b6e09e556209dfb8c37b78a11"},
|
||||
{url = "https://files.pythonhosted.org/packages/0b/cc/4f2cacc95e20cdef6421072b896bfea9cb9c54a78c4ea1253eb25a699782/regex-2022.10.31-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:0653d012b3bf45f194e5e6a41df9258811ac8fc395579fa82958a8b76286bea4"},
|
||||
{url = "https://files.pythonhosted.org/packages/10/13/95d658ca010507b5a179d7fe8376d37d20c22f9be5abdd301832618463a8/regex-2022.10.31-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:4919899577ba37f505aaebdf6e7dc812d55e8f097331312db7f1aab18767cce8"},
|
||||
{url = "https://files.pythonhosted.org/packages/10/1c/9b6827dd3be88b39d0ecce25abb27ad2a8104b1816da262c3ffd38311ea3/regex-2022.10.31-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b30bddd61d2a3261f025ad0f9ee2586988c6a00c780a2fb0a92cea2aa702c54"},
|
||||
{url = "https://files.pythonhosted.org/packages/18/9c/b52170b2dc8d65a69f3369d0bd1a3102df295edfccfef1b41e82b6aef796/regex-2022.10.31-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:5ff525698de226c0ca743bfa71fc6b378cda2ddcf0d22d7c37b1cc925c9650a5"},
|
||||
{url = "https://files.pythonhosted.org/packages/1a/1a/e7ae9a041d3e103f98c9a79d8abb235cca738b7bd6da3fb5e4066d30e4d7/regex-2022.10.31-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4b4b1fe58cd102d75ef0552cf17242705ce0759f9695334a56644ad2d83903fe"},
|
||||
{url = "https://files.pythonhosted.org/packages/1d/d9/a70219b39be741af8a831b98dee154091115bc0e3770e28e006d86511619/regex-2022.10.31-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:22e7ebc231d28393dfdc19b185d97e14a0f178bedd78e85aad660e93b646604e"},
|
||||
{url = "https://files.pythonhosted.org/packages/1f/f3/895ba11bc0243becd38f8b7560d2e329c465ead247cfb815611c347d7fc1/regex-2022.10.31-cp38-cp38-win_amd64.whl", hash = "sha256:5e6a5567078b3eaed93558842346c9d678e116ab0135e22eb72db8325e90b453"},
|
||||
{url = "https://files.pythonhosted.org/packages/21/1f/f54c156ac95a89d33113d78a18c03db8c00600392d6d6c5a18249c563c58/regex-2022.10.31-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20f61c9944f0be2dc2b75689ba409938c14876c19d02f7585af4460b6a21403e"},
|
||||
{url = "https://files.pythonhosted.org/packages/23/8d/1df5d30ce1e5ae3edfb775b892c93882d13ba93991314871fec569f16829/regex-2022.10.31-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:7db345956ecce0c99b97b042b4ca7326feeec6b75facd8390af73b18e2650ffc"},
|
||||
{url = "https://files.pythonhosted.org/packages/27/b5/92d404279fd5f4f0a17235211bb0f5ae7a0d9afb7f439086ec247441ed28/regex-2022.10.31.tar.gz", hash = "sha256:a3a98921da9a1bf8457aeee6a551948a83601689e5ecdd736894ea9bbec77e83"},
|
||||
{url = "https://files.pythonhosted.org/packages/28/9c/e392e9aac4d4c10d81e0991e31e50755bd5f15a924284de4fac1d728b145/regex-2022.10.31-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:370f6e97d02bf2dd20d7468ce4f38e173a124e769762d00beadec3bc2f4b3bc4"},
|
||||
{url = "https://files.pythonhosted.org/packages/2d/db/45ca83007d69cc594c32d7feae20b1b6067f829b2b0d27bb769d7188dfa1/regex-2022.10.31-cp310-cp310-win32.whl", hash = "sha256:44136355e2f5e06bf6b23d337a75386371ba742ffa771440b85bed367c1318d1"},
|
||||
{url = "https://files.pythonhosted.org/packages/2f/38/1947b056840f27eb6f9cbb28ca70135f75fee117fe4fa546528a8962d275/regex-2022.10.31-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d26166acf62f731f50bdd885b04b38828436d74e8e362bfcb8df221d868b5d9b"},
|
||||
{url = "https://files.pythonhosted.org/packages/30/eb/a28fad5b882d3e711c75414b3c99fb2954f78fa450deeed9fe9ad3bf2534/regex-2022.10.31-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0e5af9a9effb88535a472e19169e09ce750c3d442fb222254a276d77808620b"},
|
||||
{url = "https://files.pythonhosted.org/packages/3c/4f/33b5cbd85fb0272e5c1dc00e3cfc89874b37705613455d7ab1c1f3ff7906/regex-2022.10.31-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:74bcab50a13960f2a610cdcd066e25f1fd59e23b69637c92ad470784a51b1347"},
|
||||
{url = "https://files.pythonhosted.org/packages/3c/d1/49b9a2cb289c20888b23bb7f8f29e3ad7982785b10041477fd56ed5783c5/regex-2022.10.31-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:a3c1ebd4ed8e76e886507c9eddb1a891673686c813adf889b864a17fafcf6d66"},
|
||||
{url = "https://files.pythonhosted.org/packages/3e/cf/97a89e2b798988118beed6620dbfbc9b4bd72d8177b3b4ed47d80da26df9/regex-2022.10.31-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c28d3309ebd6d6b2cf82969b5179bed5fefe6142c70f354ece94324fa11bf6a1"},
|
||||
{url = "https://files.pythonhosted.org/packages/40/54/c6f42a3bb78172493eaab818f62ac2062ab310ead0ae7ecd7f0de5ca9084/regex-2022.10.31-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef4163770525257876f10e8ece1cf25b71468316f61451ded1a6f44273eedeb5"},
|
||||
{url = "https://files.pythonhosted.org/packages/42/d8/8a7131e7d0bf237f7bcd3191541a4bf21863c253fe6bee0796900a1a9a29/regex-2022.10.31-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce6910b56b700bea7be82c54ddf2e0ed792a577dfaa4a76b9af07d550af435c6"},
|
||||
{url = "https://files.pythonhosted.org/packages/43/5b/6ba9b08ea991993ad61e4098d88069c86f6d6cc0e52a26fa35f6a66d90ee/regex-2022.10.31-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b683e5fd7f74fb66e89a1ed16076dbab3f8e9f34c18b1979ded614fe10cdc4d9"},
|
||||
{url = "https://files.pythonhosted.org/packages/48/1e/829551abceba73e7e9b1f94a311a53e9c0f60c7deec8821633fc3b343a58/regex-2022.10.31-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9d0b68ac1743964755ae2d89772c7e6fb0118acd4d0b7464eaf3921c6b49dd4"},
|
||||
{url = "https://files.pythonhosted.org/packages/48/4e/4c1e7dfab3255f4476faa11a9fcc867e03d2c4abb2e101505deb7ef790e0/regex-2022.10.31-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:7ef6b5942e6bfc5706301a18a62300c60db9af7f6368042227ccb7eeb22d0892"},
|
||||
{url = "https://files.pythonhosted.org/packages/48/ea/a404ca530fd783d0b427e07451fdf847303ff3eccf851bdcb787872ab2d3/regex-2022.10.31-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7b280948d00bd3973c1998f92e22aa3ecb76682e3a4255f33e1020bd32adf443"},
|
||||
{url = "https://files.pythonhosted.org/packages/4e/fa/efe2c65d2555a01c61a6522b63f98dd7f77dbfeea810e96d8f7e1d9552a3/regex-2022.10.31-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:597f899f4ed42a38df7b0e46714880fb4e19a25c2f66e5c908805466721760f5"},
|
||||
{url = "https://files.pythonhosted.org/packages/54/b2/eb79f7674559f2dbb5bbba5ce5ca3e8539200c96e576ca9e0e619c2690d3/regex-2022.10.31-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:8ad241da7fac963d7573cc67a064c57c58766b62a9a20c452ca1f21050868dfa"},
|
||||
{url = "https://files.pythonhosted.org/packages/55/73/f71734c0357e41673b00bff0a8675ffb67328ba18f24614ec5af2073b56f/regex-2022.10.31-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8e38472739028e5f2c3a4aded0ab7eadc447f0d84f310c7a8bb697ec417229e"},
|
||||
{url = "https://files.pythonhosted.org/packages/55/c6/7235609772ee24e7f74342f7d0f7c40f043098421cc9fe9358fa98a66c79/regex-2022.10.31-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:0a069c8483466806ab94ea9068c34b200b8bfc66b6762f45a831c4baaa9e8cdd"},
|
||||
{url = "https://files.pythonhosted.org/packages/56/4b/22c965c2f6847b0581a8d4407b265c04f989cb6df09ddfd7205744b14cbc/regex-2022.10.31-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5352bea8a8f84b89d45ccc503f390a6be77917932b1c98c4cdc3565137acc714"},
|
||||
{url = "https://files.pythonhosted.org/packages/56/e3/351029c41f42e29d9c6ae3d217ad332761945b41dfbddb64adc31d434c6b/regex-2022.10.31-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23cbb932cc53a86ebde0fb72e7e645f9a5eec1a5af7aa9ce333e46286caef783"},
|
||||
{url = "https://files.pythonhosted.org/packages/58/4e/0f0a7b674d6164809db80eac36a3a70bbd3bcf6dc8fb6f89f70f0893b85b/regex-2022.10.31-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cf0da36a212978be2c2e2e2d04bdff46f850108fccc1851332bcae51c8907cc"},
|
||||
{url = "https://files.pythonhosted.org/packages/59/68/5d77731c6cb3cfcf8aece4c650cc4a601795387292e2bd61826ed75310eb/regex-2022.10.31-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d403d781b0e06d2922435ce3b8d2376579f0c217ae491e273bab8d092727d244"},
|
||||
{url = "https://files.pythonhosted.org/packages/5f/7e/23ddf7d405aad0d0a8fa478ba60fc1c46f661403fe4a49e04d48ea1095b4/regex-2022.10.31-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4bf41b8b0a80708f7e0384519795e80dcb44d7199a35d52c15cc674d10b3081b"},
|
||||
{url = "https://files.pythonhosted.org/packages/63/89/7035055b960428a3af1fb1bfdf805cada83a81f88459350dad82a260a08d/regex-2022.10.31-cp38-cp38-win32.whl", hash = "sha256:5a260758454580f11dd8743fa98319bb046037dfab4f7828008909d0aa5292bc"},
|
||||
{url = "https://files.pythonhosted.org/packages/65/38/a5e1f46f32c453ec162eddac315d5e0d3a0f26ccd638c6f9d078e802d2aa/regex-2022.10.31-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:d0213671691e341f6849bf33cd9fad21f7b1cb88b89e024f33370733fec58742"},
|
||||
{url = "https://files.pythonhosted.org/packages/69/a4/d8cb52db0a918f8a1cad766c4bc5cf968b2a00a06183aa9b5f71ff6094e3/regex-2022.10.31-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d243b36fbf3d73c25e48014961e83c19c9cc92530516ce3c43050ea6276a2ab7"},
|
||||
{url = "https://files.pythonhosted.org/packages/72/cf/da36a722626572ea66ab799e7019eb9a367fa563d43e3b1ec65a934d12d3/regex-2022.10.31-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b7a8b43ee64ca8f4befa2bea4083f7c52c92864d8518244bfa6e88c751fa8fff"},
|
||||
{url = "https://files.pythonhosted.org/packages/78/74/c8659c8e1b6745299df62099d162002deeb32a9a933bc7632836a3c22374/regex-2022.10.31-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e613a98ead2005c4ce037c7b061f2409a1a4e45099edb0ef3200ee26ed2a69a8"},
|
||||
{url = "https://files.pythonhosted.org/packages/7c/cf/50844f62052bb858987fe3970315134e3be6167fc76e11d328e7fcf876ff/regex-2022.10.31-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5aefb84a301327ad115e9d346c8e2760009131d9d4b4c6b213648d02e2abe144"},
|
||||
{url = "https://files.pythonhosted.org/packages/83/ad/defd48762ff8fb2d06667b1e8bef471c2cc71a1b3d6ead26b841bfd9da99/regex-2022.10.31-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:76c598ca73ec73a2f568e2a72ba46c3b6c8690ad9a07092b18e48ceb936e9f0c"},
|
||||
{url = "https://files.pythonhosted.org/packages/84/93/67595e62890fa944da394795f0425140917340d35d9cfd49672a8dc48c1a/regex-2022.10.31-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a8ff454ef0bb061e37df03557afda9d785c905dab15584860f982e88be73015f"},
|
||||
{url = "https://files.pythonhosted.org/packages/87/50/e237090e90a0b0c8eab40af7d6f2faaf1432c4dca232de9a9c789faf3154/regex-2022.10.31-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:2cdc55ca07b4e70dda898d2ab7150ecf17c990076d3acd7a5f3b25cb23a69f1c"},
|
||||
{url = "https://files.pythonhosted.org/packages/88/e0/d4251593cde041f3a9b249744da5b6e53d1ac4fa2542dfe251fe8070793b/regex-2022.10.31-cp36-cp36m-win_amd64.whl", hash = "sha256:c14b63c9d7bab795d17392c7c1f9aaabbffd4cf4387725a0ac69109fb3b550c6"},
|
||||
{url = "https://files.pythonhosted.org/packages/8d/50/7dd264adf08bf3ca588562bac344a825174e8e57c75ad3e5ed169aba5718/regex-2022.10.31-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1eba476b1b242620c266edf6325b443a2e22b633217a9835a52d8da2b5c051f9"},
|
||||
{url = "https://files.pythonhosted.org/packages/91/4e/fb78efdac24862ef6ea8009b0b9cdb5f25968d1b262cc32abd9d483f50b1/regex-2022.10.31-cp311-cp311-win_amd64.whl", hash = "sha256:61edbca89aa3f5ef7ecac8c23d975fe7261c12665f1d90a6b1af527bba86ce61"},
|
||||
{url = "https://files.pythonhosted.org/packages/92/3c/17432c77b7d3929adb73077584606b236be4ed832243d426f51f5a0f72f9/regex-2022.10.31-cp39-cp39-win_amd64.whl", hash = "sha256:957403a978e10fb3ca42572a23e6f7badff39aa1ce2f4ade68ee452dc6807692"},
|
||||
{url = "https://files.pythonhosted.org/packages/9c/1a/63bcd0f28f74619190c4f6f3cf90e3fdccb4b1437aac7e19598e18b51901/regex-2022.10.31-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:543883e3496c8b6d58bd036c99486c3c8387c2fc01f7a342b760c1ea3158a318"},
|
||||
{url = "https://files.pythonhosted.org/packages/a3/60/6084d08f56d424f46ecbfedebd11b2c2d7eb2f9bc36ccd8801821024262c/regex-2022.10.31-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2bde29cc44fa81c0a0c8686992c3080b37c488df167a371500b2a43ce9f026d1"},
|
||||
{url = "https://files.pythonhosted.org/packages/a6/9b/b6819a467182e94e7648120cedcb6019751ceff9f5f3ef9c340e14ea7992/regex-2022.10.31-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:9c94f7cc91ab16b36ba5ce476f1904c91d6c92441f01cd61a8e2729442d6fcf5"},
|
||||
{url = "https://files.pythonhosted.org/packages/ad/29/4efb589803fa476e649fcc256886837b74931c4ca1878e69cd5018f77e03/regex-2022.10.31-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:131d4be09bea7ce2577f9623e415cab287a3c8e0624f778c1d955ec7c281bd4d"},
|
||||
{url = "https://files.pythonhosted.org/packages/ad/56/c6344d2f3e170229fbd9e7928f85969084905e52ea06446f4d1763c712ce/regex-2022.10.31-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a37d51fa9a00d265cf73f3de3930fa9c41548177ba4f0faf76e61d512c774690"},
|
||||
{url = "https://files.pythonhosted.org/packages/b3/60/38ea6f8808bf58852b3e08faa2d7418b8887144f891284bc2a1afb7b6967/regex-2022.10.31-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:29c04741b9ae13d1e94cf93fca257730b97ce6ea64cfe1eba11cf9ac4e85afb6"},
|
||||
{url = "https://files.pythonhosted.org/packages/b3/a2/1c165d7759f501184214e788dccfc0bbca068eb70d6bc4fd7999712a2674/regex-2022.10.31-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7dbdce0c534bbf52274b94768b3498abdf675a691fec5f751b6057b3030f34c1"},
|
||||
{url = "https://files.pythonhosted.org/packages/b4/04/daeb6806a2b2e10e548c95b136aefb12818ef81a0aa5f865705bf19e7cd7/regex-2022.10.31-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa62a07ac93b7cb6b7d0389d8ef57ffc321d78f60c037b19dfa78d6b17c928ee"},
|
||||
{url = "https://files.pythonhosted.org/packages/b5/3d/6ac9300e7b55979ad4040a4317cd14daf7689be0c09f2c49ca3070e2387a/regex-2022.10.31-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac741bf78b9bb432e2d314439275235f41656e189856b11fb4e774d9f7246d81"},
|
||||
{url = "https://files.pythonhosted.org/packages/b7/0a/c865345e6ece671f16ac1fe79bf4ba771c528c2e4a56607898cdf065c285/regex-2022.10.31-cp310-cp310-win_amd64.whl", hash = "sha256:bfff48c7bd23c6e2aec6454aaf6edc44444b229e94743b34bdcdda2e35126cf5"},
|
||||
{url = "https://files.pythonhosted.org/packages/bb/ba/92096d78cbdd34dce674962392a0e57ce748a9e5f737f12b0001723d959a/regex-2022.10.31-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d03fe67b2325cb3f09be029fd5da8df9e6974f0cde2c2ac6a79d2634e791dd57"},
|
||||
{url = "https://files.pythonhosted.org/packages/be/d3/7e334b8bc597dea6200f7bb969fc693d4c71c4a395750e28d09c8e5a8104/regex-2022.10.31-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8a45b6514861916c429e6059a55cf7db74670eaed2052a648e3e4d04f070e001"},
|
||||
{url = "https://files.pythonhosted.org/packages/c1/65/3ee862c7a78ce1f9bd748d460e379317464c2658e645a1a7c1304d36e819/regex-2022.10.31-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c27cc1e4b197092e50ddbf0118c788d9977f3f8f35bfbbd3e76c1846a3443df7"},
|
||||
{url = "https://files.pythonhosted.org/packages/c1/7e/18651b654689c7e318e3e09c7f5ed56a48d7648c882ebe69ce8954d3941a/regex-2022.10.31-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75f591b2055523fc02a4bbe598aa867df9e953255f0b7f7715d2a36a9c30065c"},
|
||||
{url = "https://files.pythonhosted.org/packages/c2/52/b71ff1a281f37016cab322e176e3c63fe1b5c27d68cdacdec769708e49b7/regex-2022.10.31-cp37-cp37m-win32.whl", hash = "sha256:c670f4773f2f6f1957ff8a3962c7dd12e4be54d05839b216cb7fd70b5a1df394"},
|
||||
{url = "https://files.pythonhosted.org/packages/c7/6a/386254696e2ab59ccce2eeee1e014f95538004e3c840606ef817192dbf8a/regex-2022.10.31-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5217c25229b6a85049416a5c1e6451e9060a1edcf988641e309dbe3ab26d3e49"},
|
||||
{url = "https://files.pythonhosted.org/packages/cc/45/1ecb7ee4f479da2bc23e16a0266a90a5ecd918e1410d9188a1ae457f7c3e/regex-2022.10.31-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:7f5a3ffc731494f1a57bd91c47dc483a1e10048131ffb52d901bfe2beb6102e8"},
|
||||
{url = "https://files.pythonhosted.org/packages/cc/c2/6d41a7a9690d4543b1f438f45576af96523c4f1caeb5307fff3350ec7d0b/regex-2022.10.31-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:702d8fc6f25bbf412ee706bd73019da5e44a8400861dfff7ff31eb5b4a1276dc"},
|
||||
{url = "https://files.pythonhosted.org/packages/ce/ac/519de46093b4162e154f055ec020ba2f3641ba2cf6f1ddefd1abea5043b3/regex-2022.10.31-cp39-cp39-win32.whl", hash = "sha256:395161bbdbd04a8333b9ff9763a05e9ceb4fe210e3c7690f5e68cedd3d65d8e1"},
|
||||
{url = "https://files.pythonhosted.org/packages/d2/a6/2af9cc002057b75868ec7740fe3acb8f89796c9d29caf5775fefd96c3240/regex-2022.10.31-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:4fe7fda2fe7c8890d454f2cbc91d6c01baf206fbc96d89a80241a02985118c0c"},
|
||||
{url = "https://files.pythonhosted.org/packages/d8/5c/40e197174793b44637dd542c1dee45a5517023d1cac5ca5a68fbe60e4105/regex-2022.10.31-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:6ffd55b5aedc6f25fd8d9f905c9376ca44fcf768673ffb9d160dd6f409bfda73"},
|
||||
{url = "https://files.pythonhosted.org/packages/dd/08/67feb849ab7288465b7b577cf076c0db5244dfd64bec8740cd8f0e074897/regex-2022.10.31-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:052b670fafbe30966bbe5d025e90b2a491f85dfe5b2583a163b5e60a85a321ad"},
|
||||
{url = "https://files.pythonhosted.org/packages/dd/82/2fcd88776b621ce6569ca51aa4bd33e55d49d0f594a0252bc1d97899c2d9/regex-2022.10.31-cp36-cp36m-musllinux_1_1_s390x.whl", hash = "sha256:586b36ebda81e6c1a9c5a5d0bfdc236399ba6595e1397842fd4a45648c30f35e"},
|
||||
{url = "https://files.pythonhosted.org/packages/de/82/1e868572aaa6b5468f07512fd184650bf9ade15943d4f1ae83d0dc512872/regex-2022.10.31-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4f781ffedd17b0b834c8731b75cce2639d5a8afe961c1e58ee7f1f20b3af185"},
|
||||
{url = "https://files.pythonhosted.org/packages/e5/7d/0b0d25b7bb9a38cdccffd3fdcbf4ad7dd124fdf6ca6067cd973edff804bc/regex-2022.10.31-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:78d680ef3e4d405f36f0d6d1ea54e740366f061645930072d39bca16a10d8c93"},
|
||||
{url = "https://files.pythonhosted.org/packages/e6/4a/48779981af80558ac01f0f2c0d71c1214215bc74c9b824eb6581e94a847c/regex-2022.10.31-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4cac3405d8dda8bc6ed499557625585544dd5cbf32072dcc72b5a176cb1271c8"},
|
||||
{url = "https://files.pythonhosted.org/packages/ec/26/6577862030d42967657f1132956c4600a95bb7e999741bfa32cc0c5441ff/regex-2022.10.31-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:22960019a842777a9fa5134c2364efaed5fbf9610ddc5c904bd3a400973b0eb8"},
|
||||
{url = "https://files.pythonhosted.org/packages/f8/ca/105a8f6d70499f2687a857570dcd411c0621a347b06c27126cffc32e77e0/regex-2022.10.31-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8b0886885f7323beea6f552c28bff62cbe0983b9fbb94126531693ea6c5ebb90"},
|
||||
{url = "https://files.pythonhosted.org/packages/fa/54/acb97b65bc556520d61262ff22ad7d4baff96e3219fa1dc5425269def873/regex-2022.10.31-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:542e3e306d1669b25936b64917285cdffcd4f5c6f0247636fec037187bd93542"},
|
||||
{url = "https://files.pythonhosted.org/packages/fc/be/e2ffc7e7454a6db7650050db188af4575a5e4fc0ce6dc73a5d31c6796c34/regex-2022.10.31-cp36-cp36m-win32.whl", hash = "sha256:144486e029793a733e43b2e37df16a16df4ceb62102636ff3db6033994711066"},
|
||||
{url = "https://files.pythonhosted.org/packages/fd/12/c5d64d860c2d1be211a91b2416097d5e40699b80296cb4e99a064d4b4ff2/regex-2022.10.31-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9af69f6746120998cd9c355e9c3c6aec7dff70d47247188feb4f829502be8ab4"},
|
||||
{url = "https://files.pythonhosted.org/packages/fe/f2/20be658beb9ebef677550be562eae86c5433119b4b2fdb67035e9a841b0f/regex-2022.10.31-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:1ddf14031a3882f684b8642cb74eea3af93a2be68893901b2b387c5fd92a03ec"},
|
||||
]
|
||||
"scikit-learn 1.2.0" = [
|
||||
{url = "https://files.pythonhosted.org/packages/08/b4/c122c0e7225e438ff64867e5c9eb8ec246dcd2bfe5435a9a2adb3f7e160e/scikit_learn-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5546a8894a0616e92489ef995b39a0715829f3df96e801bb55cbf196be0d9649"},
|
||||
{url = "https://files.pythonhosted.org/packages/1a/30/e3f9ea2a4766a59ae4c2e1c229094d9589fb32e7027167fa9e81e080e321/scikit_learn-1.2.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:40f3ff68c505cb9d1f3693397c73991875d609da905087e00e7b4477645ec67b"},
|
||||
{url = "https://files.pythonhosted.org/packages/1a/73/4aef932bc3b85afef78310ebad9cc025f20c4d979d23c42e311b25d36166/scikit_learn-1.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:da29d2e379c396a63af5ed4b671ad2005cd690ac373a23bee5a0f66504e05272"},
|
||||
{url = "https://files.pythonhosted.org/packages/27/a0/95eae31ceabeb7710a694367816edfcc0ccb001c794c14b3b234c148ae50/scikit-learn-1.2.0.tar.gz", hash = "sha256:680b65b3caee469541385d2ca5b03ff70408f6c618c583948312f0d2125df680"},
|
||||
{url = "https://files.pythonhosted.org/packages/44/09/1ce869919aef7996869c3c339a4531ce8db16ed8d49fb1c7acd50057203e/scikit_learn-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:23a88883ca60c571a06278e4726b3b51b3709cfa4c93cacbf5568b22ba960899"},
|
||||
{url = "https://files.pythonhosted.org/packages/48/0a/b8049d5f2fb9d8f6960a0b1994d32529c17235d46cbaae2de15d6735ad36/scikit_learn-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:25ba705ee1600ffc5df1dccd8fae129d7c6836e44ffcbb52d78536c9eaf8fcf9"},
|
||||
{url = "https://files.pythonhosted.org/packages/49/2c/7baa1b58d0987b1c7559250d87ed072d4b883193a36333a3b722b5f11344/scikit_learn-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1beaa631434d1f17a20b1eef5d842e58c195875d2bc11901a1a70b5fe544745b"},
|
||||
{url = "https://files.pythonhosted.org/packages/4f/10/dffb594160e9edf37fafde277933aee4c2bd19849c624c6c9541bb38341c/scikit_learn-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e9535e867281ae6987bb80620ba14cf1649e936bfe45f48727b978b7a2dbe835"},
|
||||
{url = "https://files.pythonhosted.org/packages/60/cf/d516a5aa2b35b6540693990452d366beec8001f37bd621c997631477c66b/scikit_learn-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd3480c982b9e616b9f76ad8587804d3f4e91b4e2a6752e7dafb8a2e1f541098"},
|
||||
{url = "https://files.pythonhosted.org/packages/6a/b1/bbedcbdae2c3f67b9b14af02178996e1305cf3d064fcd32d145394d17a3b/scikit_learn-1.2.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d395730f26d8fc752321f1953ddf72647c892d8bed74fad4d7c816ec9b602dfa"},
|
||||
{url = "https://files.pythonhosted.org/packages/83/b5/0436307cb4f91ba280c74746fde7c89bed7a87703a2bf6e21791f56ce6de/scikit_learn-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de897720173b26842e21bed54362f5294e282422116b61cd931d4f5d870b9855"},
|
||||
{url = "https://files.pythonhosted.org/packages/92/03/02d3123d9462c6325e67731e7582f96904f514ede5b0666524c1bc25c053/scikit_learn-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0834e4cec2a2e0d8978f39cb8fe1cad3be6c27a47927e1774bf5737ea65ec228"},
|
||||
{url = "https://files.pythonhosted.org/packages/a0/53/d43d4e2882499ca3492a0c2a44184e96e6e87d4f2c7c2b60e4be5967e243/scikit_learn-1.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83c772fa8c64776ad769fd764752c8452844307adcf10dee3adcc43988260f21"},
|
||||
{url = "https://files.pythonhosted.org/packages/b0/73/8992b6647ca8753dbe194c3582423cd965e731e2828c3edc8de5fd64ebe6/scikit_learn-1.2.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:bc7073e025b62c1067cbfb76e69d08650c6b9d7a0e7afdfa20cb92d4afe516f6"},
|
||||
{url = "https://files.pythonhosted.org/packages/b4/56/4282c0f73a49009f30b8c60b348c71b136036f608320cfba9ea744214f71/scikit_learn-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e1ea0bc1706da45589bcf2490cde6276490a1b88f9af208dbb396fdc3a0babf"},
|
||||
{url = "https://files.pythonhosted.org/packages/b9/86/62738531b1db41defda03c8d065ec9f6282ec96b82309cba7715e0e263ce/scikit_learn-1.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:f17420a8e3f40129aeb7e0f5ee35822d6178617007bb8f69521a2cefc20d5f00"},
|
||||
{url = "https://files.pythonhosted.org/packages/ba/8c/a211a7b42e21f525ca94630ca41c888d84e6e24f6150fb08a5f187622e79/scikit_learn-1.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:ceb0008f345188aa236e49c973dc160b9ed504a3abd7b321a0ecabcb669be0bd"},
|
||||
{url = "https://files.pythonhosted.org/packages/ca/3b/07b7dbef252b8da7c6f613fa89a69dc34cc99a6bc34fd48a1f9ddc2ffc71/scikit_learn-1.2.0-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:6b63ca2b0643d30fbf9d25d93017ed3fb8351f31175d82d104bfec60cba7bb87"},
|
||||
{url = "https://files.pythonhosted.org/packages/ef/bb/b625922655b063f2c2cba49b8268dac332b78b9fa7738b9e59b04909d069/scikit_learn-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:184a42842a4e698ffa4d849b6019de50a77a0aa24d26afa28fa49c9190bb144b"},
|
||||
{url = "https://files.pythonhosted.org/packages/f0/1d/07b66497eb3797091944f1340698465ca4bd1a75a5a19b6bc6c865c8f40b/scikit_learn-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc0a72237f0c56780cf550df87201a702d3bdcbbb23c6ef7d54c19326fa23f19"},
|
||||
{url = "https://files.pythonhosted.org/packages/fb/bc/affe1a47dc4e29f734959a53be8ae910acb627b757403f52d9c5cc2c22e4/scikit_learn-1.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:867023a044fdfe59e5014a7fec7a3086a8928f10b5dce9382eedf4135f6709a2"},
|
||||
]
|
||||
"scipy 1.9.3" = [
|
||||
{url = "https://files.pythonhosted.org/packages/0a/2e/44795c6398e24e45fa0bb61c3e98de1cfea567b1b51efd3751e2f7ff9720/scipy-1.9.3.tar.gz", hash = "sha256:fbc5c05c85c1a02be77b1ff591087c83bc44579c6d2bd9fb798bb64ea5e1a027"},
|
||||
{url = "https://files.pythonhosted.org/packages/40/0e/3ff193b6ba6a0a6f13f8d367e8976370232e769bd609c8c11d86e0353adf/scipy-1.9.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:83b89e9586c62e787f5012e8475fbb12185bafb996a03257e9675cd73d3736dd"},
|
||||
{url = "https://files.pythonhosted.org/packages/42/14/d2500818b7bb7b862d70c1ae97e646a4795b068583c67720553764095024/scipy-1.9.3-cp38-cp38-win_amd64.whl", hash = "sha256:2318bef588acc7a574f5bfdff9c172d0b1bf2c8143d9582e05f878e580a3781e"},
|
||||
{url = "https://files.pythonhosted.org/packages/42/81/0a64d2204c3b261380ac96c6d61f018528108b62c0e21e6153a58cebf4f6/scipy-1.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:06d2e1b4c491dc7d8eacea139a1b0b295f74e1a1a0f704c375028f8320d16e31"},
|
||||
{url = "https://files.pythonhosted.org/packages/44/8a/bae77e624391b27aeea2d33a02f2ce4a8019f1378ce92faf5780f1521f2e/scipy-1.9.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:545c83ffb518094d8c9d83cce216c0c32f8c04aaf28b92cc8283eda0685162d5"},
|
||||
{url = "https://files.pythonhosted.org/packages/56/af/6a2b90fe280e89466d84747054667f74b84a8304f75931a173090919991f/scipy-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cff3a5295234037e39500d35316a4c5794739433528310e117b8a9a0c76d20fc"},
|
||||
{url = "https://files.pythonhosted.org/packages/59/0b/8a9acfc5c36bbf6e18d02f3a08db5b83bebba510be2df3230f53852c74a4/scipy-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d01e1dd7b15bd2449c8bfc6b7cc67d630700ed655654f0dfcf121600bad205c9"},
|
||||
{url = "https://files.pythonhosted.org/packages/59/ef/d54d17c36b46a9b8f6e1d4bf039b7f7ad236504cfb13cf1872caec9cbeaa/scipy-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d644a64e174c16cb4b2e41dfea6af722053e83d066da7343f333a54dae9bc31c"},
|
||||
{url = "https://files.pythonhosted.org/packages/84/86/4f38fa30c112c3590954420f85d95b8cd23811ecc5cfc4bfd4d988d4db44/scipy-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5a04cd7d0d3eff6ea4719371cbc44df31411862b9646db617c99718ff68d4840"},
|
||||
{url = "https://files.pythonhosted.org/packages/92/f9/7ae2c1ae200212bc84b5a8369a10d644aa8b588140fe292d59db3b4a2545/scipy-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abaf921531b5aeaafced90157db505e10345e45038c39e5d9b6c7922d68085cb"},
|
||||
{url = "https://files.pythonhosted.org/packages/b5/67/c5451465ec94e654e6315cd5136961d267ae94a0f799b85d26eb9efe4c9f/scipy-1.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4db5b30849606a95dcf519763dd3ab6fe9bd91df49eba517359e450a7d80ce2e"},
|
||||
{url = "https://files.pythonhosted.org/packages/bb/b7/380c9e4cd71263f03d16f8a92c0e44c9bdef38777e1a7dde1f47ba996bac/scipy-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c68db6b290cbd4049012990d7fe71a2abd9ffbe82c0056ebe0f01df8be5436b0"},
|
||||
{url = "https://files.pythonhosted.org/packages/c3/3e/e40c52775a5d19abd43b1c245fbc5dee283a29acc45c830bc73bfad9468b/scipy-1.9.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:90453d2b93ea82a9f434e4e1cba043e779ff67b92f7a0e85d05d286a3625df3c"},
|
||||
{url = "https://files.pythonhosted.org/packages/c8/0f/d9f8c50be8670b7ba6f002679e84cd18f46a23faf62c1590f4d1bbec0c8c/scipy-1.9.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:da8245491d73ed0a994ed9c2e380fd058ce2fa8a18da204681f2fe1f57f98f95"},
|
||||
{url = "https://files.pythonhosted.org/packages/ce/28/635391e72e24bd3f4a91e374f4a186a5e4ecc95f23d8a55c9b0d25777cf7/scipy-1.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a72d885fa44247f92743fc20732ae55564ff2a519e8302fb7e18717c5355a8b"},
|
||||
{url = "https://files.pythonhosted.org/packages/cf/0e/3f1685c1fcb5dfe35ec027a5fc7a29e8818c61b2cc7fa207b4fc7b959f52/scipy-1.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:68239b6aa6f9c593da8be1509a05cb7f9efe98b80f43a5861cd24c7557e98523"},
|
||||
{url = "https://files.pythonhosted.org/packages/d0/96/4f6eac3fea18f836a0e403539556b1684e6f3361fa39aa5d5797dedecd75/scipy-1.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:5b88e6d91ad9d59478fafe92a7c757d00c59e3bdc3331be8ada76a4f8d683f58"},
|
||||
{url = "https://files.pythonhosted.org/packages/df/75/c0254dc58d1f1b00f9d3dbda029743b71b815dd512461ed20d9b7f459e37/scipy-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b41bc822679ad1c9a5f023bc93f6d0543129ca0f37c1ce294dd9d386f0a21096"},
|
||||
{url = "https://files.pythonhosted.org/packages/f4/9d/882134b1e774a9227ab855c71a39612194e1106185595417ce92f0f1e78c/scipy-1.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d54222d7a3ba6022fdf5773931b5d7c56efe41ede7f7128c7b1637700409108"},
|
||||
{url = "https://files.pythonhosted.org/packages/f9/37/5cd44af74d7178a44452b17ea162bc93996d5555b4a978877d2efd56fe84/scipy-1.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83c06e62a390a9167da60bedd4575a14c1f58ca9dfde59830fc42e5197283dab"},
|
||||
{url = "https://files.pythonhosted.org/packages/fb/ba/1733dbbc19f2aa07d100cfa220bcc83a3977bc5c9f0a5ad262dae1f3ab90/scipy-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1884b66a54887e21addf9c16fb588720a8309a57b2e258ae1c7986d4444d3bc0"},
|
||||
]
|
||||
"six 1.16.0" = [
|
||||
{url = "https://files.pythonhosted.org/packages/71/39/171f1c67cd00715f190ba0b100d606d440a28c93c7714febeca8b79af85e/six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
|
||||
{url = "https://files.pythonhosted.org/packages/d9/5a/e7c31adbe875f2abbb91bd84cf2dc52d792b5a01506781dbcf25c91daf11/six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
|
||||
]
|
||||
"threadpoolctl 3.1.0" = [
|
||||
{url = "https://files.pythonhosted.org/packages/1b/c7/3d85f8b3894ba7228d0c74e16e97a36a72b2cd2b0e0f8f89b5d435d11f71/threadpoolctl-3.1.0.tar.gz", hash = "sha256:a335baacfaa4400ae1f0d8e3a58d6674d2f8828e3716bb2802c44955ad391380"},
|
||||
{url = "https://files.pythonhosted.org/packages/61/cf/6e354304bcb9c6413c4e02a747b600061c21d38ba51e7e544ac7bc66aecc/threadpoolctl-3.1.0-py3-none-any.whl", hash = "sha256:8b99adda265feb6773280df41eece7b2e6561b772d21ffd52e372f999024907b"},
|
||||
]
|
||||
"toml 0.10.2" = [
|
||||
{url = "https://files.pythonhosted.org/packages/44/6f/7120676b6d73228c96e17f1f794d8ab046fc910d781c8d151120c3f1569e/toml-0.10.2-py2.py3-none-any.whl", hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b"},
|
||||
{url = "https://files.pythonhosted.org/packages/be/ba/1f744cdc819428fc6b5084ec34d9b30660f6f9daaf70eead706e3203ec3c/toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f"},
|
||||
]
|
||||
"tomli 2.0.1" = [
|
||||
{url = "https://files.pythonhosted.org/packages/97/75/10a9ebee3fd790d20926a90a2547f0bf78f371b2f13aa822c759680ca7b9/tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"},
|
||||
{url = "https://files.pythonhosted.org/packages/c0/3f/d7af728f075fb08564c5949a9c95e44352e23dee646869fa104a3b2060a3/tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
|
||||
]
|
||||
"tomlkit 0.11.6" = [
|
||||
{url = "https://files.pythonhosted.org/packages/2b/df/971fa5db3250bb022105d17f340339370f73d502e65e687a94ca1a4c4b1f/tomlkit-0.11.6-py3-none-any.whl", hash = "sha256:07de26b0d8cfc18f871aec595fda24d95b08fef89d147caa861939f37230bf4b"},
|
||||
{url = "https://files.pythonhosted.org/packages/ff/04/58b4c11430ed4b7b8f1723a5e4f20929d59361e9b17f0872d69681fd8ffd/tomlkit-0.11.6.tar.gz", hash = "sha256:71b952e5721688937fb02cf9d354dbcf0785066149d2855e44531ebdd2b65d73"},
|
||||
]
|
||||
"typing-extensions 4.4.0" = [
|
||||
{url = "https://files.pythonhosted.org/packages/0b/8e/f1a0a5a76cfef77e1eb6004cb49e5f8d72634da638420b9ea492ce8305e8/typing_extensions-4.4.0-py3-none-any.whl", hash = "sha256:16fa4864408f655d35ec496218b85f79b3437c829e93320c7c9215ccfd92489e"},
|
||||
{url = "https://files.pythonhosted.org/packages/e3/a7/8f4e456ef0adac43f452efc2d0e4b242ab831297f1bac60ac815d37eb9cf/typing_extensions-4.4.0.tar.gz", hash = "sha256:1511434bb92bf8dd198c12b1cc812e800d4181cfcb867674e0f8279cc93087aa"},
|
||||
]
|
||||
"wmctrl 0.4" = [
|
||||
{url = "https://files.pythonhosted.org/packages/a5/48/bd9b5c4c0d865e5d143f91020600f921c37f9755c8101336d292e1de1252/wmctrl-0.4.tar.gz", hash = "sha256:66cbff72b0ca06a22ec3883ac3a4d7c41078bdae4fb7310f52951769b10e14e0"},
|
||||
]
|
||||
"wrapt 1.14.1" = [
|
||||
{url = "https://files.pythonhosted.org/packages/00/61/04422b7469534650b622d5baa1dd335c4b91d35c8d33548b272f33060519/wrapt-1.14.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b02d65b9ccf0ef6c34cba6cf5bf2aab1bb2f49c6090bafeecc9cd81ad4ea1c1"},
|
||||
{url = "https://files.pythonhosted.org/packages/03/c6/d864b8da8afa57a638b12596c3a58dfe3471acda900961c02a904010e0e9/wrapt-1.14.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:9f3e6f9e05148ff90002b884fbc2a86bd303ae847e472f44ecc06c2cd2fcdb2d"},
|
||||
{url = "https://files.pythonhosted.org/packages/07/06/2b4aaaa4403f766c938f9780c700d7399726bce3dfd94f5a57c4e5b9dc68/wrapt-1.14.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:4fcc4649dc762cddacd193e6b55bc02edca674067f5f98166d7713b193932b7f"},
|
||||
{url = "https://files.pythonhosted.org/packages/0a/61/330f24065b8f2fc02f94321092a24e0c30aefcbac89ab5c860e180366c9f/wrapt-1.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d52a25136894c63de15a35bc0bdc5adb4b0e173b9c0d07a2be9d3ca64a332735"},
|
||||
{url = "https://files.pythonhosted.org/packages/0d/dc/3f588e42e09fb5170349924366587319e1e49d50a1a58dbe78d6046ca812/wrapt-1.14.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:2b39d38039a1fdad98c87279b48bc5dce2c0ca0d73483b12cb72aa9609278e8a"},
|
||||
{url = "https://files.pythonhosted.org/packages/11/eb/e06e77394d6cf09977d92bff310cb0392930c08a338f99af6066a5a98f92/wrapt-1.14.1.tar.gz", hash = "sha256:380a85cf89e0e69b7cfbe2ea9f765f004ff419f34194018a6827ac0e3edfed4d"},
|
||||
{url = "https://files.pythonhosted.org/packages/12/cd/da6611401655ac2b8496b316ad9e21a3fd4f8e62e2c3b3e3c50207770517/wrapt-1.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7b7c050ae976e286906dd3f26009e117eb000fb2cf3533398c5ad9ccc86867b1"},
|
||||
{url = "https://files.pythonhosted.org/packages/1b/77/9f3660dca3d6b7079c3b1b64ad0795db3603cb9345fba3ca580ccdc3fef5/wrapt-1.14.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:903500616422a40a98a5a3c4ff4ed9d0066f3b4c951fa286018ecdf0750194ef"},
|
||||
{url = "https://files.pythonhosted.org/packages/21/55/42ff84a671415db8fc87a1c301c6c7f52b978669324059bdb8dbd7d3f0ce/wrapt-1.14.1-cp35-cp35m-win_amd64.whl", hash = "sha256:b21bb4c09ffabfa0e85e3a6b623e19b80e7acd709b9f91452b8297ace2a8ab00"},
|
||||
{url = "https://files.pythonhosted.org/packages/23/8b/e4de40ac2fa6d53e694310c576e160bec3db8a282fbdcd5596544f6bc69e/wrapt-1.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:642c2e7a804fcf18c222e1060df25fc210b9c58db7c91416fb055897fc27e8cc"},
|
||||
{url = "https://files.pythonhosted.org/packages/2a/86/c9ef2fa4899ec069c8efe43fc92ca2ba0c5a7921cfaf83090030cf7b1487/wrapt-1.14.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:ee6acae74a2b91865910eef5e7de37dc6895ad96fa23603d1d27ea69df545015"},
|
||||
{url = "https://files.pythonhosted.org/packages/30/31/c3f80ed75bec31fc3b4e3193f660b96da8fef70811f0ed67a4dc873412bc/wrapt-1.14.1-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:6b1a564e6cb69922c7fe3a678b9f9a3c54e72b469875aa8018f18b4d1dd1adf3"},
|
||||
{url = "https://files.pythonhosted.org/packages/33/cd/7335d8b82ff0a442581ab37a8d275ad76b4c1f33ace63c1a4d7c23791eee/wrapt-1.14.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8c0ce1e99116d5ab21355d8ebe53d9460366704ea38ae4d9f6933188f327b456"},
|
||||
{url = "https://files.pythonhosted.org/packages/36/ee/944dc7e5462662270e8a379755bcc543fc8f09029866288060dc163ed5b4/wrapt-1.14.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef3f72c9666bba2bab70d2a8b79f2c6d2c1a42a7f7e2b0ec83bb2f9e383950af"},
|
||||
{url = "https://files.pythonhosted.org/packages/38/38/5b338163b3b4f1ab718306984678c3d180b85a25d72654ea4c61aa6b0968/wrapt-1.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cca3c2cdadb362116235fdbd411735de4328c61425b0aa9f872fd76d02c4e86"},
|
||||
{url = "https://files.pythonhosted.org/packages/39/4d/34599a47c8a41b3ea4986e14f728c293a8a96cd6c23663fe33657c607d34/wrapt-1.14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:07f7a7d0f388028b2df1d916e94bbb40624c59b48ecc6cbc232546706fac74c2"},
|
||||
{url = "https://files.pythonhosted.org/packages/39/a1/9b4d07b6836a62c6999e8bb5cefced5b34a26fb03941a19c27af98eecec0/wrapt-1.14.1-cp35-cp35m-win32.whl", hash = "sha256:dbcda74c67263139358f4d188ae5faae95c30929281bc6866d00573783c422b7"},
|
||||
{url = "https://files.pythonhosted.org/packages/40/f4/7be7124a06c14b92be53912f93c8dc84247f1cb93b4003bed460a430d1de/wrapt-1.14.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8ad85f7f4e20964db4daadcab70b47ab05c7c1cf2a7c1e51087bfaa83831854c"},
|
||||
{url = "https://files.pythonhosted.org/packages/49/a8/528295a24655f901148177355edb6a22b84abb2abfadacc1675643c1434a/wrapt-1.14.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d649d616e5c6a678b26d15ece345354f7c2286acd6db868e65fcc5ff7c24a77"},
|
||||
{url = "https://files.pythonhosted.org/packages/4b/07/782463e367a7c6b418af231ded753e4b2dd3293a157d9b0bb010806fc0c0/wrapt-1.14.1-cp39-cp39-win32.whl", hash = "sha256:dee0ce50c6a2dd9056c20db781e9c1cfd33e77d2d569f5d1d9321c641bb903d5"},
|
||||
{url = "https://files.pythonhosted.org/packages/4b/5b/3cf79a5fce7a91c0c10275835199fafdf30c1b8c7008fa671af3c4e8046c/wrapt-1.14.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:5a9a0d155deafd9448baff28c08e150d9b24ff010e899311ddd63c45c2445e28"},
|
||||
{url = "https://files.pythonhosted.org/packages/4f/83/2669bf2cb4cc2b346c40799478d29749ccd17078cb4f69b4a9f95921ff6d/wrapt-1.14.1-cp310-cp310-win32.whl", hash = "sha256:a9a52172be0b5aae932bef82a79ec0a0ce87288c7d132946d645eba03f0ad8a8"},
|
||||
{url = "https://files.pythonhosted.org/packages/50/d5/bf619c4d204fe8888460f65222b465c7ecfa43590fdb31864fe0e266da29/wrapt-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:02b41b633c6261feff8ddd8d11c711df6842aba629fdd3da10249a53211a72c4"},
|
||||
{url = "https://files.pythonhosted.org/packages/5b/02/5ac7ea3b6722c84a2882d349ac581a9711b4047fe7a58475903832caa295/wrapt-1.14.1-cp39-cp39-win_amd64.whl", hash = "sha256:dee60e1de1898bde3b238f18340eec6148986da0455d8ba7848d50470a7a32fb"},
|
||||
{url = "https://files.pythonhosted.org/packages/5c/46/b91791db2ac7cc4c186408b7aed37b994463970f2397d0548f38b2b47aca/wrapt-1.14.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:d79d7d5dc8a32b7093e81e97dad755127ff77bcc899e845f41bf71747af0c569"},
|
||||
{url = "https://files.pythonhosted.org/packages/5e/d3/bd44864e0274b7e162e2a68c71fffbd8b3a7b620efd23320fd0f70333cff/wrapt-1.14.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e3fb1677c720409d5f671e39bac6c9e0e422584e5f518bfd50aa4cbbea02433f"},
|
||||
{url = "https://files.pythonhosted.org/packages/67/b4/b5504dddcb2ff9486f8569953938591e0013cca09c912b28747d1d9cb04f/wrapt-1.14.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7ef58fb89674095bfc57c4069e95d7a31cfdc0939e2a579882ac7d55aadfd2a1"},
|
||||
{url = "https://files.pythonhosted.org/packages/6a/12/76bbe26dc39d05f1a7be8d570d91c87bb79297e08e885148ed670ed17b7b/wrapt-1.14.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6a9a25751acb379b466ff6be78a315e2b439d4c94c1e99cb7266d40a537995d3"},
|
||||
{url = "https://files.pythonhosted.org/packages/72/24/490a0bbc67135f737d2eb4b270bfc91e54cc3f0b5e97b4ceec91a44bb898/wrapt-1.14.1-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:6e743de5e9c3d1b7185870f480587b75b1cb604832e380d64f9504a0535912d1"},
|
||||
{url = "https://files.pythonhosted.org/packages/79/9c/f5d1209c8e4e091e250eb3ed099056e7e1ad0ec1e9ca46f6d88389e2d6d4/wrapt-1.14.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:e2f83e18fe2f4c9e7db597e988f72712c0c3676d337d8b101f6758107c42425b"},
|
||||
{url = "https://files.pythonhosted.org/packages/82/27/1eac9e63b9ef0e0929e00e17872d45de9d7d965c7f49b933e2daa22c7896/wrapt-1.14.1-cp36-cp36m-win32.whl", hash = "sha256:81b19725065dcb43df02b37e03278c011a09e49757287dca60c5aecdd5a0b8ed"},
|
||||
{url = "https://files.pythonhosted.org/packages/88/ef/05655df7648752ae0a57fe2b9820e340ff025cecec9341aad7936c589a2f/wrapt-1.14.1-cp38-cp38-win32.whl", hash = "sha256:aa31fdcc33fef9eb2552cbcbfee7773d5a6792c137b359e82879c101e98584c5"},
|
||||
{url = "https://files.pythonhosted.org/packages/92/b5/788b92550804405424e0d0b1a95250137cbf0e050bb5c461e8ad0fefdc86/wrapt-1.14.1-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:ee2b1b1769f6707a8a445162ea16dddf74285c3964f605877a20e38545c3c462"},
|
||||
{url = "https://files.pythonhosted.org/packages/93/12/b20ae4dbefa94ef5d667ba71324763d870b86064a944c8ec9533042a41fc/wrapt-1.14.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7d2872609603cb35ca513d7404a94d6d608fc13211563571117046c9d2bcc3d7"},
|
||||
{url = "https://files.pythonhosted.org/packages/93/8c/1bbba9357142e6f9bcf55c79e2aa6fd5f4066c331e731376705777a0077f/wrapt-1.14.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9736af4641846491aedb3c3f56b9bc5568d92b0692303b5a305301a95dfd38b1"},
|
||||
{url = "https://files.pythonhosted.org/packages/93/b1/007fd8d5c8c366ee1c1b93a99962de5fd34f81dae679ee2bf6a6e0ffc8f0/wrapt-1.14.1-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:a85d2b46be66a71bedde836d9e41859879cc54a2a04fad1191eb50c2066f6e9d"},
|
||||
{url = "https://files.pythonhosted.org/packages/94/4b/ff8d58aee32ed91744f1ff4970e590f0c8fdda3fa6d702dc82281e0309bd/wrapt-1.14.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:01c205616a89d09827986bc4e859bcabd64f5a0662a7fe95e0d359424e0e071b"},
|
||||
{url = "https://files.pythonhosted.org/packages/94/56/fd707fb8e1ea86e72503d823549fb002a0f16cb4909619748996daeb3a82/wrapt-1.14.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2fe803deacd09a233e4762a1adcea5db5d31e6be577a43352936179d14d90069"},
|
||||
{url = "https://files.pythonhosted.org/packages/94/59/60b2fe919ffb190cf8cae0307bafdaf1695eac8655921f59768ce3bf1084/wrapt-1.14.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:88bd7b6bd70a5b6803c1abf6bca012f7ed963e58c68d76ee20b9d751c74a3248"},
|
||||
{url = "https://files.pythonhosted.org/packages/98/0f/3db7e01896b726e68fa2ba918ed0d79f3cc2da2ce928799282264d14c6f6/wrapt-1.14.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:36f582d0c6bc99d5f39cd3ac2a9062e57f3cf606ade29a0a0d6b323462f4dd87"},
|
||||
{url = "https://files.pythonhosted.org/packages/a2/a7/dd6e91c68d76328d09dd61a7aadac19d49ec509a07e853173036dc05fb79/wrapt-1.14.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:1b376b3f4896e7930f1f772ac4b064ac12598d1c38d04907e696cc4d794b43d3"},
|
||||
{url = "https://files.pythonhosted.org/packages/a7/0d/a52a0268c98a687785c5452324e10f9462d289e850066e281aa327505aa7/wrapt-1.14.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5901a312f4d14c59918c221323068fad0540e34324925c8475263841dbdfe68"},
|
||||
{url = "https://files.pythonhosted.org/packages/b1/ca/ec539e402932bb64814a039f471d327d0deb4612199506094ca60821b94c/wrapt-1.14.1-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:00b6d4ea20a906c0ca56d84f93065b398ab74b927a7a3dbd470f6fc503f95dc3"},
|
||||
{url = "https://files.pythonhosted.org/packages/bb/70/73c54e24ea69a8b06ae9649e61d5e64f2b4bdfc6f202fc7794abeac1ed20/wrapt-1.14.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:988635d122aaf2bdcef9e795435662bcd65b02f4f4c1ae37fbee7401c440b3a7"},
|
||||
{url = "https://files.pythonhosted.org/packages/c0/1e/e5a5ac09e92fd112d50e1793e5b9982dc9e510311ed89dacd2e801f82967/wrapt-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:6d323e1554b3d22cfc03cd3243b5bb815a51f5249fdcbb86fda4bf62bab9e164"},
|
||||
{url = "https://files.pythonhosted.org/packages/c7/1b/0cdff572d22600fcf47353e8eb1077d83cab3f161ebfb4843565c6e07e66/wrapt-1.14.1-cp38-cp38-win_amd64.whl", hash = "sha256:d1967f46ea8f2db647c786e78d8cc7e4313dbd1b0aca360592d8027b8508e24d"},
|
||||
{url = "https://files.pythonhosted.org/packages/c8/03/b36a48dcb6f6332d754017b2dd617757687984a6c433e44ca59bb7fefd4c/wrapt-1.14.1-cp37-cp37m-win32.whl", hash = "sha256:60db23fa423575eeb65ea430cee741acb7c26a1365d103f7b0f6ec412b893853"},
|
||||
{url = "https://files.pythonhosted.org/packages/ca/16/e79e786d930b69a20481174c7bc97e989fb67d2a181a5043e1d3c70c9b21/wrapt-1.14.1-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ddaea91abf8b0d13443f6dac52e89051a5063c7d014710dcb4d4abb2ff811a59"},
|
||||
{url = "https://files.pythonhosted.org/packages/cd/ec/383d9552df0641e9915454b03139571e0c6e055f5d414d8f3d04f3892f38/wrapt-1.14.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:11871514607b15cfeb87c547a49bca19fde402f32e2b1c24a632506c0a756656"},
|
||||
{url = "https://files.pythonhosted.org/packages/d9/3b/f6b760bf04d13e5ddb70d019779466c22952637cf0f606a26d5f784f27ff/wrapt-1.14.1-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:43ca3bbbe97af00f49efb06e352eae40434ca9d915906f77def219b88e85d907"},
|
||||
{url = "https://files.pythonhosted.org/packages/d9/ab/3ba5816dd466ffd7242913708771d258569825ab76fd29d7fd85b9361311/wrapt-1.14.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3232822c7d98d23895ccc443bbdf57c7412c5a65996c30442ebe6ed3df335383"},
|
||||
{url = "https://files.pythonhosted.org/packages/da/f4/7af9e01b6c1126b2daef72d5ba2cbf59a7229fd57c5b23166f694d758a8f/wrapt-1.14.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2cf71233a0ed05ccdabe209c606fe0bac7379fdcf687f39b944420d2a09fdb57"},
|
||||
{url = "https://files.pythonhosted.org/packages/e0/20/9716fb522d17a726364c4d032c8806ffe312268773dd46a394436b2787cc/wrapt-1.14.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b9b7a708dd92306328117d8c4b62e2194d00c365f18eff11a9b53c6f923b01e3"},
|
||||
{url = "https://files.pythonhosted.org/packages/e0/6a/3c660fa34c8106aa9719f2a6636c1c3ea7afd5931ae665eb197fdf4def84/wrapt-1.14.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40e7bc81c9e2b2734ea4bc1aceb8a8f0ceaac7c5299bc5d69e37c44d9081d43b"},
|
||||
{url = "https://files.pythonhosted.org/packages/e0/80/af9da7379ee6df583875d0aeb80f9d5f0bd5f081dd1ee5ce06587d8bfec7/wrapt-1.14.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21ac0156c4b089b330b7666db40feee30a5d52634cc4560e1905d6529a3897ff"},
|
||||
{url = "https://files.pythonhosted.org/packages/e6/57/d5673f5201ccbc287e70a574868319267735de3041e496e1e26b48d8f653/wrapt-1.14.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:833b58d5d0b7e5b9832869f039203389ac7cbf01765639c7309fd50ef619e0b1"},
|
||||
{url = "https://files.pythonhosted.org/packages/e7/a1/a9596c5858c4a58be8cdd5e8b0e5f53f9c1c17f0616b47edde8de1a356fe/wrapt-1.14.1-cp37-cp37m-win_amd64.whl", hash = "sha256:709fe01086a55cf79d20f741f39325018f4df051ef39fe921b1ebe780a66184c"},
|
||||
{url = "https://files.pythonhosted.org/packages/e8/f6/7e30a8c53d27ef8c1ff872dc4fb75247c99eb73d834c91a49a55d046c127/wrapt-1.14.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:5a0f54ce2c092aaf439813735584b9537cad479575a09892b8352fea5e988dc0"},
|
||||
{url = "https://files.pythonhosted.org/packages/f0/db/2a9ea49cd8bdde87a85262e517563d42b9e5b760473597b9da511fcbd54d/wrapt-1.14.1-cp36-cp36m-win_amd64.whl", hash = "sha256:b014c23646a467558be7da3d6b9fa409b2c567d2110599b7cf9a0c5992b3b471"},
|
||||
{url = "https://files.pythonhosted.org/packages/f1/96/d22461ba08d61a859c45cda5064b878f2baa61f142d3acfa8adabd82bf07/wrapt-1.14.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:9e0fd32e0148dd5dea6af5fee42beb949098564cc23211a88d799e434255a1f4"},
|
||||
{url = "https://files.pythonhosted.org/packages/f7/92/121147bb2f9ed1aa35a8780c636d5da9c167545f97737f0860b4c6c92086/wrapt-1.14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:80bb5c256f1415f747011dc3604b59bc1f91c6e7150bd7db03b19170ee06b320"},
|
||||
{url = "https://files.pythonhosted.org/packages/f8/c4/3f8130d646bfc89382966adfb3d6428f26d0f752543a7e2fd92c1e493be6/wrapt-1.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d77c85fedff92cf788face9bfa3ebaa364448ebb1d765302e9af11bf449ca36d"},
|
||||
{url = "https://files.pythonhosted.org/packages/f9/3c/110e52b9da396a4ef3a0521552a1af9c7875a762361f48678c1ac272fd7e/wrapt-1.14.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:34aa51c45f28ba7f12accd624225e2b1e5a3a45206aa191f6f9aac931d9d56fe"},
|
||||
{url = "https://files.pythonhosted.org/packages/fd/70/8a133c88a394394dd57159083b86a564247399440b63f2da0ad727593570/wrapt-1.14.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:257fd78c513e0fb5cdbe058c27a0624c9884e735bbd131935fd49e9fe719d310"},
|
||||
]
|
||||
"yapf 0.32.0" = [
|
||||
{url = "https://files.pythonhosted.org/packages/47/88/843c2e68f18a5879b4fbf37cb99fbabe1ffc4343b2e63191c8462235c008/yapf-0.32.0-py2.py3-none-any.whl", hash = "sha256:8fea849025584e486fd06d6ba2bed717f396080fd3cc236ba10cb97c4c51cf32"},
|
||||
{url = "https://files.pythonhosted.org/packages/c2/cd/d0d1e95b8d78b8097d90ca97af92f4af7fb2e867262a2b6e37d6f48e612a/yapf-0.32.0.tar.gz", hash = "sha256:a3f5085d37ef7e3e004c4ba9f9b3e40c54ff1901cd111f05145ae313a7c67d1b"},
|
||||
]
|
|
@ -1,43 +0,0 @@
|
|||
[tool.pdm]
|
||||
|
||||
[project]
|
||||
name = "toolbox"
|
||||
version = "0.1.0"
|
||||
description = "Code for ingesting data from several sources, formatting it and creating a training dataset."
|
||||
authors = [
|
||||
{name = "0x000011b", email = "0x000011b@proton.me"},
|
||||
]
|
||||
requires-python = ">=3.10"
|
||||
license = {text = "AGPL-3.0-only"}
|
||||
dependencies = [
|
||||
"ijson>=3.1.4",
|
||||
"mashumaro>=3.2",
|
||||
"regex>=2022.10.31",
|
||||
"scikit-learn>=1.2.0",
|
||||
"pandas>=1.5.2",
|
||||
"pyarrow>=10.0.1",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
dev = [
|
||||
"yapf>=0.32.0",
|
||||
"toml>=0.10.2",
|
||||
"isort>=5.10.1",
|
||||
"pylint>=2.15.8",
|
||||
"mypy>=0.991",
|
||||
]
|
||||
debugging = [
|
||||
"pdbpp>=0.10.3",
|
||||
]
|
||||
|
||||
[tool.setuptools]
|
||||
py-modules = ["toolbox"]
|
||||
|
||||
[tool.pdm.scripts]
|
||||
lint = {shell = "pylint --jobs 0 ./toolbox/**/*.py"}
|
||||
importcheck = "isort --check --diff toolbox"
|
||||
stylecheck = "yapf --parallel --diff --recursive toolbox"
|
||||
typecheck = "mypy --strict toolbox"
|
||||
|
||||
[tool.yapf]
|
||||
based_on_style = "google"
|
|
@ -1,28 +0,0 @@
|
|||
class PromptConstants:
|
||||
'''String constants related to prompt engineering.'''
|
||||
|
||||
# Prefix for user messages.
|
||||
USER_PREFIX = "You"
|
||||
|
||||
# Token to be replaced with the user's display name within bot messages.
|
||||
USER_TOKEN = "<USER>"
|
||||
|
||||
# Token to be replaced by the bot's name.
|
||||
BOT_TOKEN = "<BOT>"
|
||||
|
||||
# Should be kept in sync with the relevant model that will be trained. This
|
||||
# is taken from EleutherAI's Pythia (so, GPT-NeoX).
|
||||
EOS_TOKEN = "<|endoftext|>"
|
||||
|
||||
# Token to separate prompt trickery from actual dialogue.
|
||||
CHAT_START_TOKEN = "<START>"
|
||||
|
||||
# Global target word count. The word count is chosen in such a way that we
|
||||
# can fit all the required prompt trickery into the model's input, but still
|
||||
# leave enough space for the user's input message and the inference result.
|
||||
TARGET_WORD_COUNT_PER_EPISODE = 1024
|
||||
|
||||
@staticmethod
|
||||
def pdm_prefix_for(name: str) -> str:
|
||||
'''Builds the Persona Dialogue Module prefix for a given `name`.'''
|
||||
return f"{name}'s Persona"
|
|
@ -1,15 +0,0 @@
|
|||
import typing as t
|
||||
|
||||
T = t.TypeVar("T")
|
||||
|
||||
|
||||
class BaseDataset(t.Generic[T]):
|
||||
'''Base dataset class.'''
|
||||
|
||||
def __iter__(self) -> t.Generator[T, None, None]:
|
||||
'''Implements the basic iterator interface.'''
|
||||
return self.generator()
|
||||
|
||||
def generator(self) -> t.Generator[T, None, None]:
|
||||
'''Should yield individual items from the dataset.'''
|
||||
raise NotImplementedError
|
|
@ -1,161 +0,0 @@
|
|||
import json
|
||||
import logging
|
||||
import os
|
||||
import typing as t
|
||||
from dataclasses import dataclass
|
||||
|
||||
from toolbox.datasets import BaseDataset
|
||||
from toolbox.utils.dataset import get_data_path
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class CaiBotInfo:
|
||||
name: str
|
||||
title: str
|
||||
description: str | None
|
||||
greeting: str
|
||||
|
||||
# Optional because it might be private.
|
||||
definitions: str | None
|
||||
|
||||
# Useful for when several bots have the same name - we can tell them apart
|
||||
# by their external_id.
|
||||
external_id: str
|
||||
|
||||
# There's also categories, but I'm ignoring them for now since I don't think
|
||||
# they'll be of much use.
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class CaiMessage:
|
||||
is_human: bool
|
||||
text: str
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class CaiChat:
|
||||
# First message is always the bot's greeting.
|
||||
messages: list[CaiMessage]
|
||||
bot: CaiBotInfo
|
||||
|
||||
|
||||
class CharacterAiDataset(BaseDataset[CaiChat]):
|
||||
'''Dataset for CharacterAI dumps.'''
|
||||
|
||||
def generator(self) -> t.Generator[CaiChat, None, None]:
|
||||
bot_id_to_info_dict = {}
|
||||
|
||||
# Do a first run through all the files to load all the definitions and
|
||||
# descriptions.
|
||||
for data in _available_json_data():
|
||||
if not _is_definition_data(data):
|
||||
continue
|
||||
|
||||
bot_info = _bot_info_from_dict(data["character"])
|
||||
bot_id_to_info_dict[bot_info.external_id] = bot_info
|
||||
|
||||
# Now do a second pass, to actually handle chat histories/messages.
|
||||
for data in _available_json_data():
|
||||
if _is_definition_data(data):
|
||||
continue
|
||||
|
||||
# Prefer grabbing bot info from a Character Editor dump, if it
|
||||
# exists. Fall back to public data otherwise.
|
||||
bot_id = data["info"]["character"]["external_id"]
|
||||
bot_info = bot_id_to_info_dict.get(
|
||||
bot_id, _bot_info_from_dict(data["info"]["character"]))
|
||||
|
||||
for history_dict in data["histories"]["histories"]:
|
||||
messages = _messages_from_dict(history_dict["msgs"])
|
||||
yield CaiChat(bot=bot_info, messages=messages)
|
||||
|
||||
|
||||
#
|
||||
# Private helpers.
|
||||
#
|
||||
|
||||
|
||||
def _enumerate_json_files(root_path: str) -> list[str]:
|
||||
'''Returns a list of files available in the given `root_path`.'''
|
||||
items = os.listdir(root_path)
|
||||
|
||||
files: list[str] = []
|
||||
for item in items:
|
||||
item_path = os.path.join(root_path, item)
|
||||
if not os.path.isfile(item_path) or not item_path.endswith(".json"):
|
||||
# We only care about JSON files.
|
||||
continue
|
||||
|
||||
absolute_file_path = os.path.abspath(os.path.join(root_path, item))
|
||||
files.append(absolute_file_path)
|
||||
|
||||
return files
|
||||
|
||||
|
||||
def _available_json_data() -> t.Generator[dict[str, t.Any], None, None]:
|
||||
'''
|
||||
Yields all available JSON data, parsed from the files in the CharacterAI
|
||||
data folder.
|
||||
'''
|
||||
dataset_path = get_data_path(dataset_name="characterai")
|
||||
|
||||
for folder in ["public", "private"]:
|
||||
folder_path = os.path.join(dataset_path, folder)
|
||||
for json_file_path in _enumerate_json_files(folder_path):
|
||||
with open(json_file_path, "r", encoding="utf-8") as json_file:
|
||||
try:
|
||||
yield json.load(json_file)
|
||||
except json.decoder.JSONDecodeError as ex:
|
||||
logger.error("Failed to parse %s: %s", json_file_path, ex)
|
||||
|
||||
|
||||
def _bot_info_from_dict(info_dict: dict[str, t.Any]) -> CaiBotInfo:
|
||||
'''Builds a CaiBotInfo object from the `character` field in the JSON.'''
|
||||
return CaiBotInfo(
|
||||
name=info_dict["name"],
|
||||
title=info_dict["title"],
|
||||
# This comes in as an empty string instead of `null` in the JSON when
|
||||
# it's not defined for some reason, so we cast to None here for clarity.
|
||||
description=info_dict["description"] or None,
|
||||
greeting=info_dict["greeting"],
|
||||
definitions=info_dict.get("definition"),
|
||||
external_id=info_dict["external_id"],
|
||||
)
|
||||
|
||||
|
||||
def _messages_from_dict(msgs_dict: list[dict[str, t.Any]]) -> list[CaiMessage]:
|
||||
'''Builds an array of messages from an entry from the `histories` JSON.'''
|
||||
messages: list[CaiMessage] = []
|
||||
for raw_message in msgs_dict:
|
||||
message = CaiMessage(
|
||||
text=raw_message["text"],
|
||||
is_human=raw_message["src"]["is_human"],
|
||||
)
|
||||
messages.append(message)
|
||||
return messages
|
||||
|
||||
|
||||
def _is_definition_data(dict_from_json: dict[str, t.Any]) -> bool:
|
||||
'''
|
||||
Figures out whether the given dict (parsed from a JSON file) is a regular
|
||||
dump, or a dump from the Character Editor (possibly containing definitions).
|
||||
|
||||
If it doesn't seem like either, raises a `ValueError` so we can discard bad
|
||||
data.
|
||||
'''
|
||||
keys = list(dict_from_json.keys())
|
||||
|
||||
# Some people messed with their files so the order of the keys isn't always
|
||||
# the same, so we sort for consistency.
|
||||
keys.sort()
|
||||
if keys == ["character"]:
|
||||
return True
|
||||
elif keys == ["character", "user__username"]:
|
||||
return True
|
||||
elif keys == ["histories", "info"]:
|
||||
return False
|
||||
else:
|
||||
print(dict_from_json)
|
||||
raise ValueError(f"Unexpected keys found in CAI dump JSON file: {keys}")
|
|
@ -1,300 +0,0 @@
|
|||
import json
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import typing as t
|
||||
from dataclasses import dataclass
|
||||
|
||||
from toolbox.core.consts import PromptConstants
|
||||
from toolbox.datasets import BaseDataset
|
||||
from toolbox.utils.dataset import get_data_path
|
||||
|
||||
# The regex used to find message variants (e.g.: `%{Hi|Hello} there!`)
|
||||
KAJIWOTO_VARIANT_REGEX = re.compile(r'%{(.+?)}')
|
||||
|
||||
# These bots shouldn't be a part of the final dataset, for whatever reason.
|
||||
BLACKLISTED_BOT_IDS = set(["WvqA"])
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class KajiwotoMessageResponsePair:
|
||||
message_id: str
|
||||
bot_id: str
|
||||
|
||||
user_message: str
|
||||
bot_response: str
|
||||
condition: str
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class BotMetadata:
|
||||
bot_id: str
|
||||
name: str
|
||||
description: str
|
||||
personalities: t.List[t.List[str]]
|
||||
has_nsfw: bool
|
||||
tags: t.List[str]
|
||||
|
||||
|
||||
class KajiwotoDataset(BaseDataset[t.List[KajiwotoMessageResponsePair]]):
|
||||
'''
|
||||
The Kajiwoto dataset.
|
||||
|
||||
Takes care of properly handling chat history/message context.
|
||||
'''
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.filepaths = _enumerate_kajiwoto_json_files()
|
||||
self.cached_metadata: dict[str, BotMetadata] = {}
|
||||
|
||||
def get_metadata_for_bot(self, bot_id: str) -> BotMetadata:
|
||||
'''Returns known medatada for the given bot ID.'''
|
||||
if bot_id in self.cached_metadata:
|
||||
return self.cached_metadata[bot_id]
|
||||
|
||||
dataset_path = get_data_path(dataset_name="kajiwoto")
|
||||
metadata_filepath = os.path.join(dataset_path,
|
||||
f"{bot_id}_metadata.json")
|
||||
|
||||
with open(metadata_filepath, "r", encoding="utf-8") as metadata_file:
|
||||
metadata_dict = json.loads(
|
||||
metadata_file.read())["data"]["aiTrainerGroup"]
|
||||
metadata = _metadata_dict_to_dataclass(metadata_dict)
|
||||
return metadata
|
||||
|
||||
def generator(
|
||||
self
|
||||
) -> t.Generator[t.List[KajiwotoMessageResponsePair], None, None]:
|
||||
for filepath in self.filepaths:
|
||||
with open(filepath, "r", encoding="utf-8") as file:
|
||||
messages = json.loads(file.read())["data"]["aiTrainedList"]
|
||||
|
||||
# So, there's a tricky thing to handle in these datasets which
|
||||
# is the fact that follow-up messages are saved as completely
|
||||
# separate entries in the messages array. For example, if we
|
||||
# have a chat log like:
|
||||
#
|
||||
# Human: 1
|
||||
# Bot: 2
|
||||
# Human: 3
|
||||
# Bot: 4
|
||||
#
|
||||
# We will have, in the messages array, something like:
|
||||
# [
|
||||
# {"userMessage": "3", message: "4", "history": ["1"]},
|
||||
# {"userMessage": "1", message: "2"},
|
||||
# ]
|
||||
#
|
||||
# As far as I could tell, whenever a message has a "history"
|
||||
# field, it usually doesn't make sense by itself. Or even by
|
||||
# appending history. One needs to look up the original message
|
||||
# and reply pair using the history field, then build up the
|
||||
# sequence again manually.
|
||||
#
|
||||
# As such, for each file, we need to load the entire thing into
|
||||
# memory to run over it and build an index to do just that
|
||||
# (lookups via the history field), so here we go:
|
||||
history_contents_to_original_msg_idx: dict[str, int] = {}
|
||||
used_message_indexes: t.Set[int] = set()
|
||||
|
||||
for idx, msg in enumerate(messages):
|
||||
if msg["history"]:
|
||||
# Message already references an earlier message-reply
|
||||
# pair. As far as I could tell, that means _this_
|
||||
# specific message can't be referenced, so no point in
|
||||
# saving an index for it here.
|
||||
continue
|
||||
|
||||
history_contents_to_original_msg_idx[
|
||||
msg["userMessage"]] = idx
|
||||
|
||||
# Now that we have the history index, let's go over _only_ the
|
||||
# messages that need to be concatenated with their history.
|
||||
for idx, msg in enumerate(messages):
|
||||
if not msg.get("history", None):
|
||||
continue
|
||||
history_contents = msg["history"][0]
|
||||
|
||||
# Sometimes, a message seems to reference a previous one
|
||||
# that does not exist. Don't know what's up with that, so
|
||||
# let's just ignore.
|
||||
if not history_contents in history_contents_to_original_msg_idx:
|
||||
continue
|
||||
|
||||
# Fetch the original "history" message to use as context.
|
||||
original_msg_idx = history_contents_to_original_msg_idx[
|
||||
history_contents]
|
||||
original_msg = messages[original_msg_idx]
|
||||
|
||||
# Yield the conversation episode.
|
||||
yield [
|
||||
_dict_to_dataclass(original_msg),
|
||||
_dict_to_dataclass(msg),
|
||||
]
|
||||
|
||||
# Save the indexes of both of these so we don't re-use them
|
||||
# without the proper context.
|
||||
used_message_indexes.add(idx)
|
||||
used_message_indexes.add(original_msg_idx)
|
||||
|
||||
# Now let's go over regular, history-free messages.
|
||||
for idx, msg in enumerate(messages):
|
||||
if idx in used_message_indexes:
|
||||
continue
|
||||
|
||||
yield [_dict_to_dataclass(msg)]
|
||||
|
||||
|
||||
#
|
||||
# Public helpers.
|
||||
#
|
||||
|
||||
seen_special_tokens: set[str] = set()
|
||||
seen_scenes: set[str] = set()
|
||||
|
||||
|
||||
def replace_special_tokens_in(string: str) -> str:
|
||||
'''
|
||||
Replaces known special tokens (e.g.: `%{name}`) with their expected
|
||||
equivalents.
|
||||
'''
|
||||
string = string.replace("%{name}", PromptConstants.USER_TOKEN)
|
||||
string = string.replace("%{kajiname}", PromptConstants.BOT_TOKEN)
|
||||
|
||||
if (match := re.search(KAJIWOTO_VARIANT_REGEX, string)) is not None:
|
||||
special_token = match.groups()[0]
|
||||
if '|' not in special_token and special_token not in seen_special_tokens:
|
||||
logger.warning("Unhandled Kajiwoto token: %s", special_token)
|
||||
seen_special_tokens.add(special_token)
|
||||
|
||||
if (scene_match := re.search(r"#scene=(.+?)\b", string)) is not None:
|
||||
seen_scene = scene_match.groups()[0]
|
||||
if seen_scene not in seen_scenes:
|
||||
logger.debug("Unhandled Kajiwoto scene: %s", seen_scene)
|
||||
seen_scenes.add(seen_scene)
|
||||
|
||||
# Drop the scene marker. Maybe we can use it for something useful, but
|
||||
# I can't think of anything at the moment.
|
||||
string = string.replace(f"#scene={seen_scene}", "").strip()
|
||||
|
||||
# TODO: There's a few of these which I haven't handled yet. E.g.:
|
||||
# %{pronoun} (before and after a dot, so careful with caps).
|
||||
return string
|
||||
|
||||
|
||||
def generate_variants_for(
|
||||
string: str,
|
||||
max_generations: int = 16,
|
||||
start_counter_at: int = 0) -> t.Generator[str, None, None]:
|
||||
'''
|
||||
Given a string like "%{Hello|Hi} there{.|!}, this should yield:
|
||||
|
||||
- Hello there.
|
||||
- Hello there!
|
||||
- Hi there.
|
||||
- Hi there!
|
||||
'''
|
||||
|
||||
# Some bot creators went wild with the variants, which causes ridiculous
|
||||
# generations if we try to exhaust all possibilities so we cap that here.
|
||||
# `start_counter_at` is used for keeping track across recursive calls.
|
||||
counter = start_counter_at
|
||||
|
||||
if (match := re.search(KAJIWOTO_VARIANT_REGEX, string)) is not None:
|
||||
# Once we have a "%{X|Y|Z}" matched inside the original string, we:
|
||||
# - Fetch .groups()[0] (which will give us `X|Y|Z`)
|
||||
# - Split by `|` (so we have ["X", "Y", "Z"])
|
||||
# - Filter out empty strings
|
||||
alternatives = filter(lambda x: x.strip(), match.groups()[0].split("|"))
|
||||
|
||||
# Then, we break the string apart into what comes before and after the
|
||||
# alternatives, that way we can re-build with "prefix + choice + sufix".
|
||||
prefix = string[:match.start()]
|
||||
sufix = string[match.end():]
|
||||
|
||||
for alternative in alternatives:
|
||||
variant = f'{prefix}{alternative}{sufix}'
|
||||
|
||||
# However, some strings have multiple variant blocks. In that case,
|
||||
# we operate on them recursively until we have just regular strings
|
||||
# after generating all possible variants.
|
||||
still_have_match = re.search(KAJIWOTO_VARIANT_REGEX,
|
||||
variant) is not None
|
||||
if still_have_match:
|
||||
for inner_variant in generate_variants_for(
|
||||
variant, start_counter_at=counter):
|
||||
yield inner_variant
|
||||
|
||||
# Keep track and break after `max_generations`.
|
||||
counter += 1
|
||||
if max_generations is not None and counter >= max_generations:
|
||||
break
|
||||
else:
|
||||
yield variant
|
||||
|
||||
# Keep track and break after `max_generations`.
|
||||
counter += 1
|
||||
if max_generations is not None and counter >= max_generations:
|
||||
break
|
||||
else:
|
||||
yield string
|
||||
|
||||
|
||||
#
|
||||
# Private helpers.
|
||||
#
|
||||
|
||||
|
||||
def _enumerate_kajiwoto_json_files() -> list[str]:
|
||||
'''
|
||||
Returns a list of paths to all available `.json` files for the `kajiwoto`
|
||||
dataset.
|
||||
'''
|
||||
dataset_path = get_data_path(dataset_name="kajiwoto")
|
||||
items = os.listdir(dataset_path)
|
||||
files: list[str] = []
|
||||
|
||||
for item in items:
|
||||
if not item.endswith(".json"):
|
||||
# Don't care about other file types.
|
||||
continue
|
||||
|
||||
if item.endswith("_metadata.json"):
|
||||
# Don't want to list metadata files here.
|
||||
continue
|
||||
|
||||
if item.replace(".json", "") in BLACKLISTED_BOT_IDS:
|
||||
# Don't want blacklisted bots being included.
|
||||
continue
|
||||
|
||||
item_path = os.path.join(dataset_path, item)
|
||||
if not os.path.isfile(item_path):
|
||||
# Don't care about folders.
|
||||
continue
|
||||
|
||||
absolute_item_path = os.path.abspath(os.path.join(dataset_path, item))
|
||||
files.append(absolute_item_path)
|
||||
return files
|
||||
|
||||
|
||||
def _dict_to_dataclass(obj: dict[str, str]) -> KajiwotoMessageResponsePair:
|
||||
return KajiwotoMessageResponsePair(
|
||||
message_id=obj["id"],
|
||||
bot_id=obj["aiTrainerGroupId"],
|
||||
condition=obj["condition"],
|
||||
user_message=obj["userMessage"],
|
||||
bot_response=obj["message"],
|
||||
)
|
||||
|
||||
|
||||
def _metadata_dict_to_dataclass(obj: dict[str, t.Any]) -> BotMetadata:
|
||||
return BotMetadata(
|
||||
bot_id=obj["id"],
|
||||
name=obj["name"],
|
||||
description=obj["description"],
|
||||
personalities=obj["personalities"],
|
||||
has_nsfw=obj["nsfw"],
|
||||
tags=obj["tags"],
|
||||
)
|
|
@ -1,61 +0,0 @@
|
|||
import os
|
||||
import pickle
|
||||
import typing as t
|
||||
from dataclasses import dataclass
|
||||
|
||||
import mashumaro
|
||||
|
||||
from toolbox.datasets import BaseDataset
|
||||
from toolbox.utils.dataset import get_data_path
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class LightDialogueAgent(mashumaro.DataClassDictMixin):
|
||||
name: str
|
||||
persona: str
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class LightDialogueSetting(mashumaro.DataClassDictMixin):
|
||||
name: str
|
||||
category: str
|
||||
description: str
|
||||
background: str
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class LightDialogueEpisode(mashumaro.DataClassDictMixin):
|
||||
agents: t.List[LightDialogueAgent]
|
||||
setting: LightDialogueSetting
|
||||
character: t.List[str]
|
||||
context: t.List[str]
|
||||
room_objects: t.List[t.List[str]]
|
||||
room_agents: t.List[t.List[str]]
|
||||
all_descriptions: t.Dict[str, str]
|
||||
available_actions: t.List[t.List[str]]
|
||||
carrying: t.List[t.List[str]]
|
||||
wielding: t.List[t.List[str]]
|
||||
speech: t.List[str]
|
||||
emote: t.List[str]
|
||||
action: t.List[str]
|
||||
|
||||
|
||||
class LightDialogueDataset(BaseDataset[LightDialogueEpisode]):
|
||||
'''
|
||||
LIGHT: Learning in Interactive Games with Humans and Text
|
||||
|
||||
The LIGHT project is a large-scale fantasy text adventure game research
|
||||
platform for training agents that can both talk and act, interacting either
|
||||
with other models or with humans.
|
||||
|
||||
https://parl.ai/projects/light/
|
||||
'''
|
||||
|
||||
def generator(self) -> t.Generator[LightDialogueEpisode, None, None]:
|
||||
root_data_path = get_data_path("light_dialogue")
|
||||
light_data_path = os.path.join(root_data_path, "light_data.pkl")
|
||||
|
||||
with open(light_data_path, "rb") as light_data_file:
|
||||
light_data = pickle.load(light_data_file)
|
||||
for episode in light_data:
|
||||
yield LightDialogueEpisode.from_dict(episode)
|
|
@ -1,42 +0,0 @@
|
|||
import os
|
||||
import pickle
|
||||
import typing as t
|
||||
from dataclasses import dataclass
|
||||
|
||||
import mashumaro
|
||||
import pandas as pd
|
||||
|
||||
from toolbox.datasets import BaseDataset
|
||||
from toolbox.utils.dataset import get_data_path
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class SodaEpisode(mashumaro.DataClassDictMixin):
|
||||
narrative: str
|
||||
dialogue: t.List[str]
|
||||
speakers: t.List[str]
|
||||
relation: str
|
||||
literal: str
|
||||
|
||||
class SodaDataset(BaseDataset[SodaEpisode]):
|
||||
'''
|
||||
SODA: Million-scale Dialogue Distillation with Social Commonsense
|
||||
Contextualization
|
||||
|
||||
https://huggingface.co/datasets/allenai/soda
|
||||
'''
|
||||
|
||||
def generator(self) -> t.Generator[SodaEpisode, None, None]:
|
||||
root_data_path = get_data_path("soda")
|
||||
file_path = os.path.join(root_data_path, "test.parquet")
|
||||
df = pd.read_parquet(file_path)
|
||||
|
||||
# Iterate through the test part of the SODA dataset
|
||||
for i in df.index:
|
||||
yield SodaEpisode(
|
||||
narrative=df['narrative'][i],
|
||||
dialogue=df['dialogue'][i],
|
||||
speakers=df['speakers'][i],
|
||||
relation=df['relation'][i],
|
||||
literal=df['literal'][i]
|
||||
)
|
|
@ -1,16 +0,0 @@
|
|||
import typing as t
|
||||
|
||||
|
||||
class BaseModule:
|
||||
'''Base module class.'''
|
||||
|
||||
def __iter__(self) -> t.Generator[list[str], None, None]:
|
||||
'''Implements the basic iterator interface.'''
|
||||
return self.generator()
|
||||
|
||||
def generator(self) -> t.Generator[list[str], None, None]:
|
||||
'''
|
||||
Should yield dialogue turns that will be used in the model's training /
|
||||
validation / test splits.
|
||||
'''
|
||||
raise NotImplementedError
|
|
@ -1,203 +0,0 @@
|
|||
import logging
|
||||
import re
|
||||
import typing as t
|
||||
|
||||
from toolbox.core.consts import PromptConstants
|
||||
from toolbox.datasets.characterai import CharacterAiDataset
|
||||
from toolbox.modules import BaseModule
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Discard episodes shorter than 3 turns. These are likely not very useful for
|
||||
# the model to learn to converse properly, since they only really contain one
|
||||
# dialogue response (the first turn is the hardcoded greeting, and the second is
|
||||
# the user's input).
|
||||
MIN_EPISODE_LEN = 3
|
||||
|
||||
# Discard episodes where the average similarity between the bot's messages is
|
||||
# higher than this value.
|
||||
EPISODE_SIMILARITY_THRESHOLD = 0.55
|
||||
|
||||
#
|
||||
# So here's a quick rundown of what needs to happen. We have a limited context
|
||||
# window (of 2048 tokens, ATM) and for the Persona Dialogue Module (PDM), we
|
||||
# need to fit all of the following things in there:
|
||||
#
|
||||
# - The bot's description/definitions/persona/whatever you want to call it
|
||||
# - Last X messages of chat history/context (the more the merrier, usually)
|
||||
# - The user's input message, e.g. `You: [user text here]`
|
||||
# - The bot's response, e.g. `[Bot name]: [space for the bot's response]`
|
||||
#
|
||||
# As such, most of the code here is about taking globs of text and
|
||||
# chunking/splitting them up to make the format described above fit into blocks
|
||||
# of 2048-ish tokens (not exactly 2048 because the tokenizer depends on the
|
||||
# model used, and I don't want to create a dependency on a specific model at the
|
||||
# data processing stage at this point).
|
||||
#
|
||||
|
||||
|
||||
class CharacterAiPDM(BaseModule):
|
||||
'''A Persona Dialogue Module powered by CharacterAI data.'''
|
||||
|
||||
def generator(self) -> t.Generator[list[str], None, None]:
|
||||
for chat in CharacterAiDataset():
|
||||
if len(chat.messages) < MIN_EPISODE_LEN:
|
||||
logger.debug(
|
||||
"Found episode shorter than minimum length (%s < %s), discarding.",
|
||||
len(chat.messages), MIN_EPISODE_LEN)
|
||||
continue
|
||||
|
||||
base_turns = []
|
||||
if chat.bot.description is not None:
|
||||
pdm_prefix = PromptConstants.pdm_prefix_for(chat.bot.name)
|
||||
pdm_string = f"{pdm_prefix}: {chat.bot.description}"
|
||||
base_turns.append(pdm_string)
|
||||
|
||||
if chat.bot.definitions is not None:
|
||||
parsed_definitions, parsed_examples = _parse_definitions_for(
|
||||
chat.bot.name, chat.bot.definitions)
|
||||
base_turns.append(parsed_definitions)
|
||||
|
||||
# Add turn to separate persona info from messages, if
|
||||
# necessary.
|
||||
if len(base_turns) > 0:
|
||||
base_turns.append(PromptConstants.CHAT_START_TOKEN)
|
||||
|
||||
# Now, start adding messages and break episodes apart if they get
|
||||
# too big.
|
||||
turns = base_turns.copy()
|
||||
bot_messages: list[str] = []
|
||||
|
||||
for raw_message in chat.messages:
|
||||
message_text = _process_message(raw_message.text)
|
||||
if raw_message.is_human:
|
||||
message = f"{PromptConstants.USER_PREFIX}: {message_text}"
|
||||
else:
|
||||
message = f"{chat.bot.name}: {message_text}"
|
||||
bot_messages.append(message_text)
|
||||
turns.append(message)
|
||||
|
||||
# Splitting logic.
|
||||
cur_episode_len = sum([len(x.split()) for x in turns])
|
||||
if cur_episode_len > PromptConstants.TARGET_WORD_COUNT_PER_EPISODE:
|
||||
logger.debug(
|
||||
"Episode length went over TARGET_WORD_COUNT_PER_EPISODE (%s > %s), breaking apart.",
|
||||
cur_episode_len,
|
||||
PromptConstants.TARGET_WORD_COUNT_PER_EPISODE)
|
||||
|
||||
# Calculate similarity between sequential bot message pairs
|
||||
# within this episode, and drop it if it goes above the
|
||||
# defined threshold.
|
||||
similarity_score_matrix = _calculate_similarity_scores(
|
||||
bot_messages)
|
||||
average_similarity_score_for_episode = 0.0
|
||||
for score in similarity_score_matrix[0]:
|
||||
if score == 1:
|
||||
continue
|
||||
average_similarity_score_for_episode += score
|
||||
average_similarity_score_for_episode /= 2
|
||||
|
||||
# Adding the last message made the episode go over the
|
||||
# target word count, so we return the episode without it...
|
||||
removed_turn = turns.pop()
|
||||
if average_similarity_score_for_episode <= EPISODE_SIMILARITY_THRESHOLD:
|
||||
# yield "\n".join(turns)
|
||||
yield turns
|
||||
else:
|
||||
logger.debug(
|
||||
"Ignoring episode due to high similarity between messages (%s > %s)",
|
||||
average_similarity_score_for_episode,
|
||||
EPISODE_SIMILARITY_THRESHOLD)
|
||||
|
||||
# ...and start the next episode with the message we had to
|
||||
# trim out from this one.
|
||||
turns = base_turns.copy()
|
||||
turns.append(removed_turn)
|
||||
bot_messages = []
|
||||
|
||||
|
||||
#
|
||||
# Private helpers.
|
||||
#
|
||||
|
||||
EXAMPLE_CHAT_REGEX = re.compile(
|
||||
r"({{char}}|{{random_user_\d}}): (.+?)(?:END_OF_DIALOG)", re.DOTALL)
|
||||
RELAXED_EXAMPLE_CHAT_REGEX = re.compile(r"{{char}}: .+", re.DOTALL)
|
||||
EXCESSIVE_ELLIPSIS_REGEX = re.compile(r"\.{4,}")
|
||||
|
||||
|
||||
def _process_message(original_string: str) -> str:
|
||||
'''
|
||||
Processes a single message to clean it up and filter/replace the appropriate
|
||||
special tokens.
|
||||
'''
|
||||
string = EXCESSIVE_ELLIPSIS_REGEX.sub("...", original_string)
|
||||
string = string.replace("[NAME_IN_MESSAGE_REDACTED]",
|
||||
PromptConstants.USER_TOKEN)
|
||||
return string.strip()
|
||||
|
||||
|
||||
def _calculate_similarity_scores(bot_turns: list[str]) -> t.Any:
|
||||
'''
|
||||
Calculates similarity scores between bot turns.
|
||||
|
||||
This is a roundabout way to try and _possibly_ detect the post-1.1 CAI
|
||||
looping behavior so we can handle it during the data preprocessing.
|
||||
'''
|
||||
from sklearn.feature_extraction.text import CountVectorizer
|
||||
from sklearn.metrics.pairwise import cosine_similarity
|
||||
|
||||
vectorizer = CountVectorizer()
|
||||
x = vectorizer.fit_transform(bot_turns)
|
||||
arr = x.toarray()
|
||||
|
||||
sims = cosine_similarity(arr)
|
||||
return sims
|
||||
|
||||
|
||||
def _parse_definitions_for(bot_name: str,
|
||||
raw_definitions: str) -> t.Tuple[str, list[str]]:
|
||||
'''
|
||||
Parses bot definitions.
|
||||
|
||||
This function attempts to find example messages within the input string,
|
||||
parses them accordingly and returns them separately from the rest of the
|
||||
text in the original `definitions` string.
|
||||
'''
|
||||
definitions, examples = _parse_definitions_strict(raw_definitions)
|
||||
if len(examples) == 0:
|
||||
definitions, examples = _parse_definitions_relaxed(raw_definitions)
|
||||
|
||||
parsed_definitions = definitions.replace("{{char}}", bot_name)
|
||||
parsed_examples = [x.replace("{{char}}", bot_name) for x in examples]
|
||||
|
||||
return parsed_definitions, parsed_examples
|
||||
|
||||
|
||||
def _parse_definitions_strict(definitions: str) -> t.Tuple[str, list[str]]:
|
||||
'''
|
||||
Strict parsing of a bot's definitions string, assumes END_OF_DIALOG was used
|
||||
correctly by the bot's creator.
|
||||
'''
|
||||
matched_example_chats = EXAMPLE_CHAT_REGEX.finditer(definitions)
|
||||
examples = [
|
||||
x.group().replace("END_OF_DIALOG", "").strip()
|
||||
for x in matched_example_chats
|
||||
]
|
||||
definitions_without_examples = re.sub(EXAMPLE_CHAT_REGEX, "", definitions)
|
||||
|
||||
return definitions_without_examples, examples
|
||||
|
||||
|
||||
def _parse_definitions_relaxed(definitions: str) -> t.Tuple[str, list[str]]:
|
||||
'''
|
||||
Same as the `_parse_definitions_strict`, but this one is much more relaxed
|
||||
and should be used for when the bot creator didn't properly use
|
||||
END_OF_DIALOG to delineate example chats.
|
||||
'''
|
||||
matched_example_chats = RELAXED_EXAMPLE_CHAT_REGEX.finditer(definitions)
|
||||
examples = [x.group().strip() for x in matched_example_chats]
|
||||
definitions_without_examples = re.sub(RELAXED_EXAMPLE_CHAT_REGEX, "",
|
||||
definitions)
|
||||
|
||||
return definitions_without_examples, examples
|
|
@ -1,220 +0,0 @@
|
|||
'''
|
||||
This module generates dialogue data from Discord dumps. Specifically, it:
|
||||
|
||||
- Looks for a DHT (https://github.com/chylex/Discord-History-Tracker) database
|
||||
in `/data/discord/archive.dht` to parse
|
||||
- Builds a list of senders who meet certain criteria (enough messages sent,
|
||||
messages long enough), then
|
||||
- Attempts to find uninterruped conversations between them and another person in
|
||||
public channels.
|
||||
|
||||
Since a DHT database necessarily contains personal information, this module must
|
||||
be manually enabled and populated with your own data.
|
||||
'''
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import sqlite3
|
||||
import typing as t
|
||||
|
||||
from toolbox.modules import BaseModule
|
||||
from toolbox.utils.dataset import get_data_path
|
||||
|
||||
# Matches user mentions, channel links, emotes and maybe other stuff.
|
||||
SPECIAL_TOKENS_REGEX = re.compile(r"<[@:#].+?>")
|
||||
|
||||
MINIMUM_EPISODE_LENGTH = 5
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class DiscordVDM(BaseModule):
|
||||
'''A Vanilla Dialogue Module powered by Discord dumps.'''
|
||||
|
||||
def generator(self) -> t.Generator[list[str], None, None]:
|
||||
root_data_path = get_data_path("discord")
|
||||
db_path = os.path.join(root_data_path, "archive.dht")
|
||||
db = sqlite3.connect(db_path)
|
||||
db.row_factory = sqlite3.Row
|
||||
cursor = db.cursor()
|
||||
|
||||
sender_ids = _get_filtered_sender_ids(cursor)
|
||||
for sender_id in sender_ids:
|
||||
last_message_id = None
|
||||
while (episode_contents := _build_episode_turns(
|
||||
db, sender_id,
|
||||
start_after_message_id=last_message_id)) is not None:
|
||||
turns, last_message_id = episode_contents
|
||||
|
||||
# Discard short episodes.
|
||||
if len(turns) < MINIMUM_EPISODE_LENGTH:
|
||||
logger.debug(
|
||||
"Found short %s-turn episode (< %s), discarding.",
|
||||
len(turns), MINIMUM_EPISODE_LENGTH)
|
||||
continue
|
||||
|
||||
# Discard conversations with overly short messages.
|
||||
lengths = [len(x) for x in turns]
|
||||
avg = sum(lengths) / len(lengths)
|
||||
if avg < 64:
|
||||
logger.debug(
|
||||
"Found conversation where average message length was %s, discarding.",
|
||||
avg)
|
||||
continue
|
||||
|
||||
yield turns
|
||||
|
||||
|
||||
#
|
||||
# Private helpers.
|
||||
#
|
||||
def _clean_string(string: str) -> str:
|
||||
'''Removes user mentions, channel links and so on.'''
|
||||
return re.sub(SPECIAL_TOKENS_REGEX, "", string).strip()
|
||||
|
||||
|
||||
def _looks_like_ooc(raw_string: str) -> bool:
|
||||
'''Tries to figure out whether a message looks like it's out of character.'''
|
||||
string = raw_string.strip()
|
||||
|
||||
if string[0] == "(" and string[-1] == ")":
|
||||
return True
|
||||
|
||||
if "OOC:" in string:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def _get_filtered_sender_ids(cursor: sqlite3.Cursor) -> list[int]:
|
||||
'''Gets a list of sender_ids that meet the filtering criteria.'''
|
||||
res = cursor.execute('''
|
||||
SELECT
|
||||
sender_id
|
||||
FROM (
|
||||
SELECT
|
||||
"sender_id",
|
||||
AVG(LENGTH("text")) AS average_message_length,
|
||||
COUNT("sender_id") AS messages_sent
|
||||
FROM
|
||||
"messages"
|
||||
GROUP BY
|
||||
"sender_id"
|
||||
ORDER BY
|
||||
"average_message_length" DESC
|
||||
)
|
||||
WHERE
|
||||
"messages_sent" > 8 AND "average_message_length" >= 32;
|
||||
''').fetchall()
|
||||
|
||||
return [x[0] for x in res]
|
||||
|
||||
|
||||
def _build_episode_turns(
|
||||
db: sqlite3.Connection,
|
||||
sender_id: int,
|
||||
start_after_message_id: int | None = None
|
||||
) -> tuple[list[str], int] | None:
|
||||
logger.debug("Building episode for sender_id %s, starting after message %s",
|
||||
sender_id, start_after_message_id)
|
||||
|
||||
# Fetch the first message for the episode.
|
||||
if start_after_message_id:
|
||||
query = """
|
||||
SELECT
|
||||
message_id, channel_id
|
||||
FROM
|
||||
messages
|
||||
WHERE
|
||||
sender_id = :sender_id AND message_id > :message_id;
|
||||
"""
|
||||
else:
|
||||
query = """
|
||||
SELECT
|
||||
message_id, channel_id
|
||||
FROM
|
||||
messages
|
||||
WHERE
|
||||
sender_id = :sender_id LIMIT 1;
|
||||
"""
|
||||
|
||||
cursor = db.cursor()
|
||||
res = cursor.execute(query, {
|
||||
"sender_id": sender_id,
|
||||
"message_id": start_after_message_id,
|
||||
}).fetchone()
|
||||
|
||||
if res is None:
|
||||
logger.debug("No more suitable first messages found.")
|
||||
return None
|
||||
|
||||
message_id, channel_id = res["message_id"], res["channel_id"]
|
||||
logger.debug("Found suitable first message %s by %s.", message_id,
|
||||
sender_id)
|
||||
|
||||
# From there, fetch that specific channel's log from that point on.
|
||||
query = """
|
||||
SELECT
|
||||
*
|
||||
FROM
|
||||
messages
|
||||
WHERE
|
||||
channel_id = :channel_id
|
||||
AND
|
||||
message_id >= :message_id
|
||||
;
|
||||
"""
|
||||
res = cursor.execute(query, {
|
||||
"channel_id": channel_id,
|
||||
"message_id": message_id,
|
||||
})
|
||||
|
||||
person_a_id = sender_id
|
||||
person_b_id = None
|
||||
last_message_id = -1
|
||||
turns: list[str] = []
|
||||
|
||||
while (row := res.fetchone()) is not None:
|
||||
last_message_id = row["message_id"]
|
||||
|
||||
# Save who `sender_id` is talking to.
|
||||
if person_b_id is None and row["sender_id"] != person_a_id:
|
||||
person_b_id = row["sender_id"]
|
||||
|
||||
# Somebody else came into the conversation. Stop episode here.
|
||||
if person_b_id and row["sender_id"] not in (person_a_id, person_b_id):
|
||||
logger.debug(
|
||||
"%s barged into a conversation between %s and %s, assuming end of episode.",
|
||||
row["sender_id"],
|
||||
person_a_id,
|
||||
person_b_id,
|
||||
)
|
||||
break
|
||||
|
||||
cleaned_text = _clean_string(row["text"])
|
||||
if not cleaned_text:
|
||||
# Message was empty after cleaning it up, skip.
|
||||
continue
|
||||
|
||||
if _looks_like_ooc(cleaned_text):
|
||||
logger.debug("Dropping what _seems_ to be OOC talk: `%s`",
|
||||
cleaned_text)
|
||||
continue
|
||||
|
||||
# Get username.
|
||||
# TODO(11b): Anonymize.
|
||||
username_query = "SELECT name FROM users WHERE id = :user_id"
|
||||
username = db.cursor().execute(username_query, {
|
||||
"user_id": row["sender_id"]
|
||||
}).fetchone()["name"]
|
||||
|
||||
# Build up the string and add it to the episode.
|
||||
turn_string = f"{username}: {cleaned_text}"
|
||||
turns.append(turn_string)
|
||||
|
||||
if len(turns) == 0:
|
||||
logger.debug(
|
||||
"Empty episode, assuming no more conversations from this sender.")
|
||||
return None
|
||||
|
||||
return turns, last_message_id
|
|
@ -1,48 +0,0 @@
|
|||
import typing as t
|
||||
|
||||
from toolbox.core.consts import PromptConstants
|
||||
from toolbox.datasets.kajiwoto import (KajiwotoDataset, generate_variants_for,
|
||||
replace_special_tokens_in)
|
||||
from toolbox.modules import BaseModule
|
||||
from toolbox.utils.strings import uppercase
|
||||
|
||||
|
||||
class KajiwotoPDM(BaseModule):
|
||||
'''A Persona Dialogue Module powered by the Kajiwoto dataset.'''
|
||||
|
||||
def generator(self) -> t.Generator[str, None, None]:
|
||||
dataset = KajiwotoDataset()
|
||||
for episode in dataset:
|
||||
turns: list[str] = []
|
||||
|
||||
metadata = dataset.get_metadata_for_bot(episode[0].bot_id)
|
||||
|
||||
# `metadata.personalities` is in a format like: `[["friendly", "20.32"]]`
|
||||
# but we want that "phrased" closer to natural language, so we build
|
||||
# `persona_string` to take care of that.
|
||||
personality_descriptors = [x[0] for x in metadata.personalities]
|
||||
persona_string = ". ".join(
|
||||
[uppercase(x) for x in personality_descriptors]) + "."
|
||||
|
||||
description_string = metadata.description.replace("\n",
|
||||
" ").replace(
|
||||
" ", " ")
|
||||
turns.append(
|
||||
f"{PromptConstants.pdm_prefix_for(PromptConstants.BOT_TOKEN)}: {description_string}\n{persona_string}"
|
||||
)
|
||||
|
||||
# Empty turn to have a line break separating description/persona
|
||||
# and the actual messages.
|
||||
turns.append("")
|
||||
|
||||
for turn in episode:
|
||||
turns.append(
|
||||
f"{PromptConstants.USER_PREFIX}: {turn.user_message}")
|
||||
turns.append(
|
||||
f"{PromptConstants.BOT_TOKEN}: {turn.bot_response}")
|
||||
|
||||
string = "\n".join(turns)
|
||||
processed_string = replace_special_tokens_in(string)
|
||||
|
||||
for generated_string in generate_variants_for(processed_string):
|
||||
yield generated_string
|
|
@ -1,26 +0,0 @@
|
|||
import typing as t
|
||||
|
||||
from toolbox.core.consts import PromptConstants
|
||||
from toolbox.datasets.kajiwoto import (KajiwotoDataset, generate_variants_for,
|
||||
replace_special_tokens_in)
|
||||
from toolbox.modules import BaseModule
|
||||
|
||||
|
||||
class KajiwotoVDM(BaseModule):
|
||||
'''A Vanilla Dialogue Module powered by the Kajiwoto dataset.'''
|
||||
|
||||
def generator(self) -> t.Generator[list[str], None, None]:
|
||||
dataset = KajiwotoDataset()
|
||||
for episode in dataset:
|
||||
turns: t.List[str] = []
|
||||
for turn in episode:
|
||||
turns.append(
|
||||
f"{PromptConstants.USER_PREFIX}: {turn.user_message}")
|
||||
turns.append(
|
||||
f"{PromptConstants.BOT_TOKEN}: {turn.bot_response}")
|
||||
|
||||
string = "\n".join(turns)
|
||||
processed_string = replace_special_tokens_in(string)
|
||||
|
||||
for generated_string in generate_variants_for(processed_string):
|
||||
yield generated_string.split("\n")
|
|
@ -1,51 +0,0 @@
|
|||
import typing as t
|
||||
|
||||
from toolbox.core.consts import PromptConstants
|
||||
from toolbox.datasets.light_dialogue import LightDialogueDataset
|
||||
from toolbox.modules import BaseModule
|
||||
from toolbox.utils.strings import normalize_string, title_case
|
||||
|
||||
|
||||
class LightDialoguePDM(BaseModule):
|
||||
'''Persona Dialogue Module based on the LIGHT dataset.'''
|
||||
|
||||
def generator(self) -> t.Generator[list[str], None, None]:
|
||||
for episode in LightDialogueDataset():
|
||||
# TODO(11b): Scenario doesn't belong in a persona dialog module.
|
||||
context_message = f"Scenario: {episode.context[0]}\n"
|
||||
|
||||
persona_message = ""
|
||||
for agent in episode.agents:
|
||||
persona_message += f"{PromptConstants.pdm_prefix_for(title_case(agent.name))}: {agent.persona}\n"
|
||||
|
||||
episode_messages: t.List[str] = [context_message, persona_message]
|
||||
turn_count = len(episode.speech)
|
||||
|
||||
for idx in range(turn_count):
|
||||
character = title_case(episode.character[idx])
|
||||
speech = normalize_string(episode.speech[idx])
|
||||
|
||||
# Start off with just the actual speech dialogue.
|
||||
message = speech
|
||||
|
||||
# If there was an action performed in that turn, add it to the
|
||||
# string.
|
||||
#
|
||||
# NOTE(11b): Disabled for now. Adding the action like this
|
||||
# generates grammatically incorrect sentences.
|
||||
|
||||
# action = episode.action[idx]
|
||||
# if action is not None:
|
||||
# message += f" *{action}*"
|
||||
|
||||
# If there was an emote in that turn, add it to the string.
|
||||
emote = episode.emote[idx]
|
||||
if emote is not None:
|
||||
message = f"*{emote}* {message}"
|
||||
|
||||
# Finally, prepend the turn character's name.
|
||||
message = f"{character}: {message}"
|
||||
|
||||
episode_messages.append(message)
|
||||
|
||||
yield episode_messages
|
|
@ -1,48 +0,0 @@
|
|||
import typing as t
|
||||
|
||||
from toolbox.core.consts import PromptConstants
|
||||
from toolbox.datasets.soda import SodaDataset
|
||||
from toolbox.modules import BaseModule
|
||||
|
||||
|
||||
class SodaPDM(BaseModule):
|
||||
'''Persona Dialogue Module based on the SODA dataset.'''
|
||||
|
||||
def generator(self) -> t.Generator[list[str], None, None]:
|
||||
for episode in SodaDataset():
|
||||
episode_messages = []
|
||||
# NOTE(TG): We determine which order the speakers go on based on whether the relation is xAttr or not.
|
||||
# This is because some speakers are more abstract concepts rather than concrete names,
|
||||
# which would make them much more suitable as a bot
|
||||
if episode.relation == "xAttr":
|
||||
bot_name = episode.speakers[0]
|
||||
user_name = episode.speakers[1]
|
||||
else:
|
||||
user_name = episode.speakers[0]
|
||||
bot_name = episode.speakers[1]
|
||||
|
||||
# First, we would want to set the persona.
|
||||
# However, the only acceptable description of a persona would be when episode.relation is "xAttr", since that directly describes
|
||||
# a person in the conversation.
|
||||
if episode.relation == "xAttr":
|
||||
episode_messages.append(f"{PromptConstants.pdm_prefix_for(bot_name)}: {episode.literal}")
|
||||
|
||||
# Next, set the scenario.
|
||||
# Make sure to replace any instance of the person representing the user in the conversation with the user token
|
||||
replaced_narrative = episode.narrative.replace(user_name, PromptConstants.USER_TOKEN)
|
||||
scenario = f"Scenario: {replaced_narrative}"
|
||||
episode_messages.append(scenario)
|
||||
# Next, the start token
|
||||
episode_messages.append(PromptConstants.CHAT_START_TOKEN)
|
||||
|
||||
# I am going to assume that the length of episode.speakers is the same as the length of episode.dialogue
|
||||
# Looked pretty clean to me in the data. Fuck it, TODO: account for the possibility of that happening
|
||||
for i, utterance in enumerate(episode.dialogue):
|
||||
# For now, just leave bot's name unreplaced.
|
||||
if episode.speakers[i] == user_name:
|
||||
name = PromptConstants.USER_PREFIX
|
||||
else:
|
||||
name = bot_name
|
||||
episode_messages.append(f"{name}: {utterance.replace(user_name, PromptConstants.USER_TOKEN)}")
|
||||
|
||||
yield episode_messages
|
|
@ -1,217 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import hashlib
|
||||
import importlib
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import subprocess
|
||||
import sys
|
||||
import typing as t
|
||||
|
||||
from toolbox.core.consts import PromptConstants
|
||||
from toolbox.modules import BaseModule
|
||||
from toolbox.utils.strings import contains_suspect_unicode
|
||||
|
||||
# TODO(11b): Needs manual maintenance to keep up-to-date. Consider doing some
|
||||
# metaprogramming trickery to build this list out instead.
|
||||
DEFAULT_MODULE_LIST = [
|
||||
"characterai_pdm:CharacterAiPDM",
|
||||
# "discord_vdm:DiscordVDM",
|
||||
# KajiwotoPDM has a bunch of garbage I need to filter, disabling in favor
|
||||
# of the vanilla dialogue module for now.
|
||||
# "kajiwoto_pdm:KajiwotoPDM",
|
||||
# "kajiwoto_vdm:KajiwotoVDM",
|
||||
# "light_dialogue_pdm:LightDialoguePDM",
|
||||
]
|
||||
DEFAULT_MODULES_STRING = ",".join(DEFAULT_MODULE_LIST)
|
||||
|
||||
|
||||
def main() -> None:
|
||||
random.seed(42)
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-o",
|
||||
"--output-name",
|
||||
help="Path to write to. Should not include a file extension.")
|
||||
|
||||
parser.add_argument("-m",
|
||||
"--modules",
|
||||
default=DEFAULT_MODULES_STRING,
|
||||
help="List of modules to use, comma-separated.")
|
||||
|
||||
parser.add_argument(
|
||||
"-p",
|
||||
"--print",
|
||||
type=int,
|
||||
help="If given, print this many episodes instead of writing to a file.")
|
||||
|
||||
parser.add_argument(
|
||||
"-s",
|
||||
"--skip",
|
||||
type=int,
|
||||
help="If given, skip over this many episodes before printing.")
|
||||
|
||||
parser.add_argument("-v",
|
||||
"--verbose",
|
||||
action="store_true",
|
||||
help="Enable verbose logging.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
logging.basicConfig(
|
||||
format='[%(asctime)s] [%(levelname)s] %(message)s',
|
||||
level=logging.DEBUG if args.verbose else logging.INFO,
|
||||
)
|
||||
|
||||
# Sanity checks.
|
||||
if args.output_name and args.print:
|
||||
raise Exception("--output-name and --print are mutually exclusive.")
|
||||
if args.skip and not args.print:
|
||||
raise Exception("--skip can only be used in conjunction with --print.")
|
||||
|
||||
modules = _import_modules_from_string(args.modules)
|
||||
|
||||
#
|
||||
# If the print argument was specified, print and exit.
|
||||
#
|
||||
if args.print:
|
||||
idx = 0
|
||||
episodes_to_skip = args.skip if args.skip is not None else None
|
||||
for module in modules:
|
||||
for episode in module():
|
||||
if episodes_to_skip:
|
||||
episodes_to_skip -= 1
|
||||
continue
|
||||
|
||||
idx += 1
|
||||
if idx > args.print:
|
||||
sys.exit()
|
||||
|
||||
# Print a newline to visually separate different episodes.
|
||||
if idx != 1:
|
||||
print()
|
||||
|
||||
for ep in _episode_augmentations(episode):
|
||||
print("---| New Episode |---")
|
||||
print("---------------------")
|
||||
print("\n---\n".join(ep + [PromptConstants.EOS_TOKEN]))
|
||||
sys.exit()
|
||||
|
||||
#
|
||||
# Otherwise, proceed with the writing logic.
|
||||
#
|
||||
|
||||
# If no output name is given, we build one from the current git revision
|
||||
# plus a hash of the given arguments. That way, the same dataset should
|
||||
# theoretically always have the same output name, which is helpful for
|
||||
# reproducibility and bailing out early (e.g. if the file already exists).
|
||||
if args.output_name is None:
|
||||
args_hash = hashlib.sha256(str(args).encode("utf-8")).hexdigest()[:7]
|
||||
output_name = f"rev-{_get_git_revision_short_hash()}-args-{args_hash}"
|
||||
else:
|
||||
output_name = args.output_name
|
||||
|
||||
# Open the output file.
|
||||
output_filename = f"{output_name}.jsonl"
|
||||
if os.path.exists(output_filename):
|
||||
raise Exception(f"{output_filename} already exists, aborting.")
|
||||
|
||||
with open(output_filename, "w", encoding="utf-8") as output_file:
|
||||
# Iterate over each module sequentially, and write the data out into the
|
||||
# file.
|
||||
for module in modules:
|
||||
for episode in module():
|
||||
text = "\n".join(episode)
|
||||
if contains_suspect_unicode(text):
|
||||
print(
|
||||
f"Skipping. Found suspect unicode contents in `{text}`")
|
||||
continue
|
||||
|
||||
for augmented_episode in _episode_augmentations(episode):
|
||||
text = "\n".join(augmented_episode +
|
||||
[PromptConstants.EOS_TOKEN])
|
||||
json_line = json.dumps({"text": text})
|
||||
output_file.write(f"{json_line}\n")
|
||||
|
||||
|
||||
#
|
||||
# Helpers and CLI entrypoint.
|
||||
#
|
||||
|
||||
|
||||
def _episode_augmentations(
|
||||
episode: list[str]) -> t.Generator[list[str], None, None]:
|
||||
'''
|
||||
Generates augmented data for the given episode.
|
||||
|
||||
The first 1.3B model had wildly unpredictable performance at the start of
|
||||
conversations, which I attributed to the fact that originally we always fed
|
||||
the model entire episodes to train on, so there were no examples of freshly
|
||||
started conversations, in a sense.
|
||||
|
||||
This function takes a complete episode and yields different permutations of
|
||||
it in an attempt to provide that data (e.g. with/without persona, with only
|
||||
X messages in the history, X+2, X+4 and so on).
|
||||
'''
|
||||
permutated_episode = []
|
||||
offset_idx = 0
|
||||
|
||||
# Don't discard the original episode.
|
||||
yield episode
|
||||
|
||||
for turn in episode:
|
||||
if "'s Persona: " in turn or "Scenario: " in turn or PromptConstants.CHAT_START_TOKEN in turn:
|
||||
permutated_episode.append(turn.strip())
|
||||
offset_idx += 1
|
||||
continue
|
||||
|
||||
while len(episode) > 1 + offset_idx:
|
||||
permutated_episode.append(episode.pop(offset_idx))
|
||||
permutated_episode.append(episode.pop(offset_idx))
|
||||
|
||||
# Yielding every single instance results in too much data
|
||||
# repetition, so instead we take a random sample.
|
||||
should_yield = random.randint(0, 100) < 25
|
||||
if should_yield:
|
||||
yield permutated_episode
|
||||
|
||||
# Also, yield a version with _just_ dialogue if we've been yielding
|
||||
# with persona/scenario data this entire time.
|
||||
if offset_idx == 0:
|
||||
continue
|
||||
|
||||
should_yield = random.randint(0, 100) < 25
|
||||
if should_yield:
|
||||
yield permutated_episode[offset_idx:]
|
||||
|
||||
|
||||
def _get_git_revision_short_hash() -> str:
|
||||
'''Returns the project's short git revision hash.'''
|
||||
return subprocess.check_output(
|
||||
["git", "rev-parse", "--short", "HEAD"],
|
||||
cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "..",
|
||||
"..")).decode("ascii").strip()
|
||||
|
||||
|
||||
def _import_modules_from_string(string: str) -> t.List[t.Type[BaseModule]]:
|
||||
'''Imports all the module classes from the given, comma-separated string.'''
|
||||
modules: t.List[t.Type[BaseModule]] = []
|
||||
for module_and_class_name in string.split(","):
|
||||
qualified_module_name = "toolbox.modules"
|
||||
try:
|
||||
module_name, class_name = module_and_class_name.split(":")
|
||||
qualified_module_name = f"toolbox.modules.{module_name}"
|
||||
except ValueError:
|
||||
class_name = module_and_class_name
|
||||
|
||||
module = importlib.import_module(qualified_module_name)
|
||||
modules.append(getattr(module, class_name))
|
||||
|
||||
return modules
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,19 +0,0 @@
|
|||
import os
|
||||
import typing as t
|
||||
|
||||
HERE = os.path.realpath(os.path.dirname(__file__))
|
||||
|
||||
|
||||
def get_data_path(dataset_name: t.Optional[str] = None) -> str:
|
||||
'''
|
||||
Returns an absolute path to either the data folder, or a specific dataset if
|
||||
`dataset_name` is supplied.
|
||||
'''
|
||||
if 'WAIFU_DATA_PATH' in os.environ:
|
||||
return os.environ['WAIFU_DATA_PATH']
|
||||
|
||||
components = [HERE, "..", "..", "data"]
|
||||
if dataset_name:
|
||||
components.append(dataset_name)
|
||||
|
||||
return os.path.join(*components)
|
|
@ -1,72 +0,0 @@
|
|||
'''Utility functions to clean up text strings.'''
|
||||
|
||||
# Some of this is pasta from Meta's ParlAI. See:
|
||||
# https://github.com/facebookresearch/ParlAI/blob/main/parlai/utils/strings.py
|
||||
import regex
|
||||
|
||||
|
||||
def normalize_string(text: str, version: int = 1) -> str:
|
||||
'''
|
||||
Standardize the capitalization and punctuation spacing of the input text.
|
||||
- Version 1: Fix sentence start casing and punctuation.
|
||||
- Version 2: Add trailing period, if missing.
|
||||
'''
|
||||
|
||||
switch_list = [(' .', '.'), (' ,', ','), (' ?', '?'), (' !', '!'),
|
||||
(" ' ", "'")]
|
||||
|
||||
# add spaces so that words and punctuation can be seaprated
|
||||
new_text = text.lower()
|
||||
|
||||
# normalize in case of human:
|
||||
for new, old in switch_list:
|
||||
new_text = new_text.replace(old, new).replace(' ', ' ')
|
||||
|
||||
# split on punctuation to find sentence boundaries
|
||||
# capitalize stuff
|
||||
tokens = new_text.split(' ')
|
||||
for i in range(len(tokens)):
|
||||
if i == 0:
|
||||
tokens[i] = uppercase(tokens[i])
|
||||
elif tokens[i] in ('i', "i'm", "i've", "i'll", "i'd"):
|
||||
tokens[i] = uppercase(tokens[i])
|
||||
elif tokens[i] in '?.!' and i < len(tokens) - 1:
|
||||
tokens[i + 1] = uppercase(tokens[i + 1])
|
||||
new_text = ' '.join(tokens)
|
||||
new_text = ' ' + new_text + ' '
|
||||
|
||||
for tup in switch_list:
|
||||
new_text = new_text.replace(tup[0], tup[1])
|
||||
|
||||
# get rid of surrounding whitespace
|
||||
new_text = new_text.strip()
|
||||
new_text = new_text.replace(' ', ' ')
|
||||
|
||||
if version > 1 and new_text and new_text[-1] not in '!.?)"\'':
|
||||
new_text += '.'
|
||||
|
||||
return new_text
|
||||
|
||||
|
||||
def title_case(string: str) -> str:
|
||||
'''Converts a string into Title Case.'''
|
||||
return " ".join([uppercase(word) for word in string.split(" ")])
|
||||
|
||||
|
||||
def uppercase(string: str) -> str:
|
||||
'''
|
||||
Makes the first character of the string uppercase, if the string is
|
||||
non-empty.
|
||||
'''
|
||||
if len(string) == 0:
|
||||
return string
|
||||
else:
|
||||
return string[0].upper() + string[1:]
|
||||
|
||||
|
||||
def contains_suspect_unicode(string: str) -> bool:
|
||||
'''
|
||||
Returns whether the given string seems to have suspect Unicode trickery
|
||||
(e.g.: Zalgo text).
|
||||
'''
|
||||
return regex.search(r"\pM{3,}", string) is not None
|
Loading…
Reference in New Issue