refactor: archive the old repo

This commit is contained in:
11b 2023-01-08 17:31:20 -03:00
parent beec9ba31f
commit 50ae8816a1
26 changed files with 9 additions and 3108 deletions

12
.gitignore vendored
View File

@ -1,12 +0,0 @@
# Cache files.
/*.egg-info/
**/__pycache__/
/.mypy_cache/
# Machine-specific stuff.
/.pdm.toml
/.venv/
# Large/binary files.
/data/*
!/data/.keep

View File

@ -1 +0,0 @@
pdm 2.3.3

View File

@ -1,660 +0,0 @@
### GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (C) 2007 Free Software Foundation, Inc.
<https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
### Preamble
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains
free software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing
under this license.
The precise terms and conditions for copying, distribution and
modification follow.
### TERMS AND CONDITIONS
#### 0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public
License.
"Copyright" also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a "modified version" of
the earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.
An interactive user interface displays "Appropriate Legal Notices" to
the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
#### 1. Source Code.
The "source code" for a work means the preferred form of the work for
making modifications to it. "Object code" means any non-source form of
a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same
work.
#### 2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for
you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10 makes
it unnecessary.
#### 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against
the work's users, your or third parties' legal rights to forbid
circumvention of technological measures.
#### 4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
#### 5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:
- a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
- b) The work must carry prominent notices stating that it is
released under this License and any conditions added under
section 7. This requirement modifies the requirement in section 4
to "keep intact all notices".
- c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
- d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
#### 6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:
- a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
- b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.
- c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
- d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
- e) Convey the object code using peer-to-peer transmission,
provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user,
"normally used" refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected
to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant
mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or
installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
#### 7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:
- a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
- b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
- c) Prohibiting misrepresentation of the origin of that material,
or requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
- d) Limiting the use for publicity purposes of names of licensors
or authors of the material; or
- e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
- f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions
of it) with contractual assumptions of liability to the recipient,
for any liability that these contractual assumptions directly
impose on those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the
above requirements apply either way.
#### 8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
#### 9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
#### 10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
#### 11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims owned
or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on
the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the
work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by
you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
#### 12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to
terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely
from conveying the Program.
#### 13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your
version supports such interaction) an opportunity to receive the
Corresponding Source of your version by providing access to the
Corresponding Source from a network server at no charge, through some
standard or customary means of facilitating copying of software. This
Corresponding Source shall include the Corresponding Source for any
work covered by version 3 of the GNU General Public License that is
incorporated pursuant to the following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
#### 14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Affero General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever
published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions
of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
#### 15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
#### 16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
#### 17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
### How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.
To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively state
the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper
mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for
the specific requirements.
You should also get your employer (if you work as a programmer) or
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. For more information on this, and how to apply and follow
the GNU AGPL, see <https://www.gnu.org/licenses/>.

View File

@ -1,70 +1,5 @@
# data-toolbox
# Archived repository
This repository contains the implementation of our data munging code.
Hello! All the code that used to be here is now under the [PygmalionAI organization on GitHub](https://github.com/PygmalionAI).
**Note:** Not very well documented at the moment. Still need to implement automatic downloading of data files and document how to install the project with PDM.
## How does it work?
In short, it takes raw data from several different sources and parses it. From there, we can quickly experiment with different ways of formatting or augmenting the parsed data to generate a final representation, ready to be used as training data for our models.
The general data flow goes something like this:
- We start off with raw datasets (see [./toolbox/datasets/](./toolbox/datasets/))
- These are basically classes reponsible for giving us raw data. They might, for example, download a `.zip` off the internet, unzip it, read a `.json` file from in there and then return its contents.
- Modules then make use of these datasets ([./toolbox/modules/](./toolbox/modules/))
- These are heavily inspired by the papers that introduced LaMDA and BlenderBot3 (and their relevant supporting papers)
- In general, each module is responsible for using a dataset as an input, and processing that data down into episodes, which will then be formatted into a proper dataset to be used in the fine-tuning process.
## Building a training dataset
The final data file is created with the [build_dataset.py](./toolbox/scripts/build_dataset.py) script:
```
$ ./toolbox/scripts/build_dataset.py --help
usage: build_dataset.py [-h] [-o OUTPUT_NAME] [-m MODULES] [-p PRINT] [-v]
options:
-h, --help show this help message and exit
-o OUTPUT_NAME, --output-name OUTPUT_NAME
File to write the dataset to. Should not include a file extension.
-m MODULES, --modules MODULES
List of modules to use, comma-separated.
-p PRINT, --print PRINT
If given, print this many episodes instead of writing out to a file.
-v, --verbose Enable verbose logging.
```
The default behavior is to write a file called `rev-{GIT_REVISION_HASH}-args{HASH_OF_USED_ARGS}.jsonl` to the current directory, with all the modules enabled. Behavior can be customized via the flags shown above.
The script also has an option to print some examples instead of writing to a file, for debugging/dev purposes. Example usage:
```bash
$ ./toolbox/scripts/build_dataset.py --print 1 --modules 'light_dialogue_pdm:LightDialoguePDM' # or -p 1 and -m ...
```
Example output:
```
--- new episode ---
Scenario: You are in the Watchtower.
The tower is the largest section of the castle. It contains an observatory for nighttime scouting, but is also used by the wise men to study the stars. Armed
guardsmen are always to be found keeping watch.
There's an alarm horn here.
A soldier is here. You are carrying nothing.
Court Wizard: A quiet night this evening...
Soldier: Yes it is
Court Wizard: *ponder* Have any else come up this eve? I had hoped for a quiet night to examine the stars
Soldier: *nod* Yes, a few came through, but it is a cold night for me, I am used to warmer weather
Court Wizard: *sigh* Well, you are but a common soldier. No doubt you are used to such a lot. Thankfully I have my spells to keep me warm.
Soldier: *grin* I am a soldier doing my job
Court Wizard: Yes... Well... Very well then. See that you do! No slacking off while your betters are about.
Soldier: No sir
Court Wizard: When, for example, was this horn last tested? It looks dented. How can we be sure it will work?
Soldier: A year ago, test it out or cause a need to use it
Court Wizard: *frown* Mayhap I will speak to the king about such lackness. Or perhaps I can sell him a spell that will serve just as well.
Soldier: Good idea, I agree, go do that *hug court wizard*
Court Wizard: Get off of me, you fool! Who gave you permission to touch me! *hit soldier*
Soldier: To the jail with you *hit court wizard*
```
If you're looking for the CharacterAI dumper userscript, that's [here under my personal GitHub account](https://github.com/0x000011b/characterai-dumper).

View File

@ -1,37 +1,3 @@
# Project Roadmap
# Archived repository
## An intro for dummies
If you're not familiar with all the theory/technology behind the project, here's a super simplified rundown:
- There are "text generation AIs" that are freely available for researchers. These are called open-source LMs (language models).
- Modern chatbots are usually made by taking a language model and "fine-tuning" it, which basically just means feeding it data similar to what you want it to generate.
- In our case, this means fine-tuning it with conversation and roleplay data (research usually calls this "dialogue data", and they call models fine-tuned on dialogue data "dialogue models").
- LMs can have different "sizes". For example, Meta's OPT language model is offered in 125m, 350m, 1.3B, 2.7B, 6.7B, 30B and 66B sizes (where "m" = million and "B" = billion parameters).
- The bigger the model, the better its quality. However, the more hardware you need to fine-tune and use it. And when I say more, I don't mean a couple more gigabytes of system RAM, I mean going from a single 6GB GPU to hundreds of 80GB GPUs.
So, knowing the above, our main "top-level"/medium-term objective at the moment is to get as much good quality data as we can, and fine-tune the biggest model we can. From there, we can play around with the models and see what the results are like, then debate and decide how to move forward.
---
For anyone who's interested in the actual details, here's a TL;DR version of the project's current roadmap at the task level:
## Current Status
- We have all the tooling to build a dataset from various sources, fine-tune a pre-trained LM on that dataset, and then run inference on checkpoints saved during the fine-tune process.
- All of that tooling can be found within this repository.
- We have taken a small model, Meta's OPT-350m, and fine-tuned it on a small dataset we've built with the tooling described above. We've released it as a tiny prototype.
- The model checkpoint is hosted on HuggingFace under [Pygmalion-AI/pygmalion-350m](https://huggingface.co/Pygmalion-AI/pygmalion-350m).
- **Note:** Inference should not be done on the regular HuggingFace web UI since we need to do some prompt trickery and response parsing. To play around with the model, [try out this notebook](https://colab.research.google.com/drive/1K55_MCagEDD9EmWhjCi3Bm66vJM88m6P?usp=sharing).
- We have written a [userscript which can anonymize and dump your CharacterAI chats](./extras/characterai-dumper/), and made [a website where you can upload them](https://dump.nopanda.io/) to be used as training data for future models. If you're interested in contributing, please read through [this Rentry](https://rentry.org/f8peb) for more information.
- We released a prototype 1.3B model fine-tuned on a new dataset, which includes the anonymized CharaterAI data.
- It's hosted on HuggingFace under [Pygmalion-AI/pygmalion-1.3b](https://huggingface.co/Pygmalion-AI/pygmalion-1.3b).
- We've already received feedback from several users (thank you everyone who took the time to test out the model and write to us!) and identified several shortcomings in it.
## Next Steps
- We're on the lookout for more high-quality data sources, and we still welcome [new CharacterAI dumps](https://dump.nopanda.io/).
- We plan on training a new 1.3B model, but only after brainstorming and making changes to our data processing pipeline in an attempt to improve on the problems we've seen on the current 1.3B.
- Feel free to join the Matrix server if you want to join in on the discussions.
- Once we have a decently performing 1.3B model, we plan on setting up some sort of way for people to rate/rank bot responses and send that data to us, which will then be used to train a reward model to be used for a PPO fine-tune, similar to what OpenAI did for ChatGPT. We might join forces with other communities for this step, as well.
Hello! We've moved to the [PygmalionAI organization on GitHub](https://github.com/PygmalionAI). Please go check that out for information about the project instead.

View File

View File

@ -1,3 +1,7 @@
# Important Notice
Hello! We're migrating the CAI userscript over to a [repository under my personal GitHub account](https://github.com/0x000011b/characterai-dumper). If anyone sent you here, please let them know so they can update their links!
# CharacterAI Dumper Userscript
This userscript allows you to download your saved messages with any bot you've ever talked to, given you can reach their chat history page. If you're a bot creator, it also allows you to separately download your bot's definitions.

761
pdm.lock
View File

@ -1,761 +0,0 @@
[[package]]
name = "astroid"
version = "2.12.13"
requires_python = ">=3.7.2"
summary = "An abstract syntax tree for Python with inference support."
dependencies = [
"lazy-object-proxy>=1.4.0",
"wrapt<2,>=1.11; python_version < \"3.11\"",
"wrapt<2,>=1.14; python_version >= \"3.11\"",
]
[[package]]
name = "colorama"
version = "0.4.6"
requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
summary = "Cross-platform colored terminal text."
[[package]]
name = "dill"
version = "0.3.6"
requires_python = ">=3.7"
summary = "serialize all of python"
[[package]]
name = "fancycompleter"
version = "0.9.1"
summary = "colorful TAB completion for Python prompt"
dependencies = [
"pyreadline; platform_system == \"Windows\"",
"pyrepl>=0.8.2",
]
[[package]]
name = "ijson"
version = "3.1.4"
summary = "Iterative JSON parser with standard Python iterator interfaces"
[[package]]
name = "isort"
version = "5.10.1"
requires_python = ">=3.6.1,<4.0"
summary = "A Python utility / library to sort Python imports."
[[package]]
name = "joblib"
version = "1.2.0"
requires_python = ">=3.7"
summary = "Lightweight pipelining with Python functions"
[[package]]
name = "lazy-object-proxy"
version = "1.8.0"
requires_python = ">=3.7"
summary = "A fast and thorough lazy object proxy."
[[package]]
name = "mashumaro"
version = "3.2"
requires_python = ">=3.7"
summary = "Fast serialization framework on top of dataclasses"
dependencies = [
"typing-extensions>=4.1.0",
]
[[package]]
name = "mccabe"
version = "0.7.0"
requires_python = ">=3.6"
summary = "McCabe checker, plugin for flake8"
[[package]]
name = "mypy"
version = "0.991"
requires_python = ">=3.7"
summary = "Optional static typing for Python"
dependencies = [
"mypy-extensions>=0.4.3",
"tomli>=1.1.0; python_version < \"3.11\"",
"typing-extensions>=3.10",
]
[[package]]
name = "mypy-extensions"
version = "0.4.3"
summary = "Experimental type system extensions for programs checked with the mypy typechecker."
[[package]]
name = "numpy"
version = "1.24.1"
requires_python = ">=3.8"
summary = "Fundamental package for array computing in Python"
[[package]]
name = "pandas"
version = "1.5.2"
requires_python = ">=3.8"
summary = "Powerful data structures for data analysis, time series, and statistics"
dependencies = [
"numpy>=1.21.0; python_version >= \"3.10\"",
"numpy>=1.23.2; python_version >= \"3.11\"",
"python-dateutil>=2.8.1",
"pytz>=2020.1",
]
[[package]]
name = "pdbpp"
version = "0.10.3"
summary = "pdb++, a drop-in replacement for pdb"
dependencies = [
"fancycompleter>=0.8",
"pygments",
"wmctrl",
]
[[package]]
name = "platformdirs"
version = "2.6.0"
requires_python = ">=3.7"
summary = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"."
[[package]]
name = "pyarrow"
version = "10.0.1"
requires_python = ">=3.7"
summary = "Python library for Apache Arrow"
dependencies = [
"numpy>=1.16.6",
]
[[package]]
name = "pygments"
version = "2.13.0"
requires_python = ">=3.6"
summary = "Pygments is a syntax highlighting package written in Python."
[[package]]
name = "pylint"
version = "2.15.8"
requires_python = ">=3.7.2"
summary = "python code static checker"
dependencies = [
"astroid<=2.14.0-dev0,>=2.12.13",
"colorama>=0.4.5; sys_platform == \"win32\"",
"dill>=0.2",
"isort<6,>=4.2.5",
"mccabe<0.8,>=0.6",
"platformdirs>=2.2.0",
"tomli>=1.1.0; python_version < \"3.11\"",
"tomlkit>=0.10.1",
]
[[package]]
name = "pyreadline"
version = "2.1"
summary = "A python implmementation of GNU readline."
[[package]]
name = "pyrepl"
version = "0.9.0"
summary = "A library for building flexible command line interfaces"
[[package]]
name = "python-dateutil"
version = "2.8.2"
requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
summary = "Extensions to the standard Python datetime module"
dependencies = [
"six>=1.5",
]
[[package]]
name = "pytz"
version = "2022.7"
summary = "World timezone definitions, modern and historical"
[[package]]
name = "regex"
version = "2022.10.31"
requires_python = ">=3.6"
summary = "Alternative regular expression module, to replace re."
[[package]]
name = "scikit-learn"
version = "1.2.0"
requires_python = ">=3.8"
summary = "A set of python modules for machine learning and data mining"
dependencies = [
"joblib>=1.1.1",
"numpy>=1.17.3",
"scipy>=1.3.2",
"threadpoolctl>=2.0.0",
]
[[package]]
name = "scipy"
version = "1.9.3"
requires_python = ">=3.8"
summary = "Fundamental algorithms for scientific computing in Python"
dependencies = [
"numpy<1.26.0,>=1.18.5",
]
[[package]]
name = "six"
version = "1.16.0"
requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
summary = "Python 2 and 3 compatibility utilities"
[[package]]
name = "threadpoolctl"
version = "3.1.0"
requires_python = ">=3.6"
summary = "threadpoolctl"
[[package]]
name = "toml"
version = "0.10.2"
requires_python = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*"
summary = "Python Library for Tom's Obvious, Minimal Language"
[[package]]
name = "tomli"
version = "2.0.1"
requires_python = ">=3.7"
summary = "A lil' TOML parser"
[[package]]
name = "tomlkit"
version = "0.11.6"
requires_python = ">=3.6"
summary = "Style preserving TOML library"
[[package]]
name = "typing-extensions"
version = "4.4.0"
requires_python = ">=3.7"
summary = "Backported and Experimental Type Hints for Python 3.7+"
[[package]]
name = "wmctrl"
version = "0.4"
summary = "A tool to programmatically control windows inside X"
[[package]]
name = "wrapt"
version = "1.14.1"
requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7"
summary = "Module for decorators, wrappers and monkey patching."
[[package]]
name = "yapf"
version = "0.32.0"
summary = "A formatter for Python code."
[metadata]
lock_version = "4.1"
content_hash = "sha256:aa0b9b7cd9f3e3c7efc158026b644f929570a80393a02eda7d8e3a46181bfc07"
[metadata.files]
"astroid 2.12.13" = [
{url = "https://files.pythonhosted.org/packages/61/d0/e7cfca72ec7d6c5e0da725c003db99bb056e9b6c2f4ee6fae1145adf28a6/astroid-2.12.13.tar.gz", hash = "sha256:1493fe8bd3dfd73dc35bd53c9d5b6e49ead98497c47b2307662556a5692d29d7"},
{url = "https://files.pythonhosted.org/packages/b1/61/42e075b7d29ed4d452d91cbaaca142710d50d04e68eb7161ce5807a00a30/astroid-2.12.13-py3-none-any.whl", hash = "sha256:10e0ad5f7b79c435179d0d0f0df69998c4eef4597534aae44910db060baeb907"},
]
"colorama 0.4.6" = [
{url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"},
{url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
]
"dill 0.3.6" = [
{url = "https://files.pythonhosted.org/packages/7c/e7/364a09134e1062d4d5ff69b853a56cf61c223e0afcc6906b6832bcd51ea8/dill-0.3.6.tar.gz", hash = "sha256:e5db55f3687856d8fbdab002ed78544e1c4559a130302693d839dfe8f93f2373"},
{url = "https://files.pythonhosted.org/packages/be/e3/a84bf2e561beed15813080d693b4b27573262433fced9c1d1fea59e60553/dill-0.3.6-py3-none-any.whl", hash = "sha256:a07ffd2351b8c678dfc4a856a3005f8067aea51d6ba6c700796a4d9e280f39f0"},
]
"fancycompleter 0.9.1" = [
{url = "https://files.pythonhosted.org/packages/38/ef/c08926112034d017633f693d3afc8343393a035134a29dfc12dcd71b0375/fancycompleter-0.9.1-py3-none-any.whl", hash = "sha256:dd076bca7d9d524cc7f25ec8f35ef95388ffef9ef46def4d3d25e9b044ad7080"},
{url = "https://files.pythonhosted.org/packages/a9/95/649d135442d8ecf8af5c7e235550c628056423c96c4bc6787348bdae9248/fancycompleter-0.9.1.tar.gz", hash = "sha256:09e0feb8ae242abdfd7ef2ba55069a46f011814a80fe5476be48f51b00247272"},
]
"ijson 3.1.4" = [
{url = "https://files.pythonhosted.org/packages/14/7b/6d311267dde18bf3d85136640103401eb69e76e25da9ee191038fea1d0df/ijson-3.1.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:09c9d7913c88a6059cd054ff854958f34d757402b639cf212ffbec201a705a0d"},
{url = "https://files.pythonhosted.org/packages/17/a3/818d6cd2e589fad41453fe75618b43baa09ddfeee611c7b1d208847a3e8a/ijson-3.1.4-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:fa10a1d88473303ec97aae23169d77c5b92657b7fb189f9c584974c00a79f383"},
{url = "https://files.pythonhosted.org/packages/18/9c/0b810105154bf88e925f2f19b469a319b11741d61147be14962a60eb1a30/ijson-3.1.4-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:93455902fdc33ba9485c7fae63ac95d96e0ab8942224a357113174bbeaff92e9"},
{url = "https://files.pythonhosted.org/packages/19/8d/1b513b2fe104252f17ca5ba8c13e00d5815ebd48a3d10ef8cd5ba5a5e355/ijson-3.1.4-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:297f26f27a04cd0d0a2f865d154090c48ea11b239cabe0a17a6c65f0314bd1ca"},
{url = "https://files.pythonhosted.org/packages/1b/f0/19fba62b20d2601cf086b24525309a42fec96727dad9d9170a1bb2943de3/ijson-3.1.4-pp36-pypy36_pp73-win32.whl", hash = "sha256:6774ec0a39647eea70d35fb76accabe3d71002a8701c0545b9120230c182b75b"},
{url = "https://files.pythonhosted.org/packages/1e/16/96cc42667bd2ef9146c3efc41a6f7a04839bf442dd9bb397bfaf10ce0f7e/ijson-3.1.4-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:5a2f40c053c837591636dc1afb79d85e90b9a9d65f3d9963aae31d1eb11bfed2"},
{url = "https://files.pythonhosted.org/packages/20/8d/bf09bb894eaa5c62de061bdbd1bfe386c4b4635498dcd85af69b9782dd5f/ijson-3.1.4-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:6c1a777096be5f75ffebb335c6d2ebc0e489b231496b7f2ca903aa061fe7d381"},
{url = "https://files.pythonhosted.org/packages/23/64/f78cee4c59d9a43b689bed9f6fbf177e41e4c0902b03edbaf873d058f2b0/ijson-3.1.4-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:9a5bf5b9d8f2ceaca131ee21fc7875d0f34b95762f4f32e4d65109ca46472147"},
{url = "https://files.pythonhosted.org/packages/29/68/08f6b9a1f94e5d9f185cf01455b20419e9a3a6201a7431b2a32d1004bfbc/ijson-3.1.4-cp38-cp38-win_amd64.whl", hash = "sha256:a5965c315fbb2dc9769dfdf046eb07daf48ae20b637da95ec8d62b629be09df4"},
{url = "https://files.pythonhosted.org/packages/30/a0/a9a4b3788a98d97914af7a18633ba5d50a23a9c1fd11d022be1e16a32f6d/ijson-3.1.4-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:15507de59d74d21501b2a076d9c49abf927eb58a51a01b8f28a0a0565db0a99f"},
{url = "https://files.pythonhosted.org/packages/32/0c/db5b557842b0af75434202707559f8d6ffafdfed7228704aa655d02e47cc/ijson-3.1.4-cp38-cp38-manylinux1_i686.whl", hash = "sha256:702ba9a732116d659a5e950ee176be6a2e075998ef1bcde11cbf79a77ed0f717"},
{url = "https://files.pythonhosted.org/packages/35/2a/823dc36948350bf333d09bf3bcda28bd7b844846a008ec0db14fa5b1a925/ijson-3.1.4-pp27-pypy_73-manylinux1_x86_64.whl", hash = "sha256:a72eb0359ebff94754f7a2f00a6efe4c57716f860fc040c606dedcb40f49f233"},
{url = "https://files.pythonhosted.org/packages/37/be/640cfe9072c9abfa53e676eaa4674063fff8f7264735778734fcc00ad84c/ijson-3.1.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b8ee7dbb07cec9ba29d60cfe4954b3cc70adb5f85bba1f72225364b59c1cf82b"},
{url = "https://files.pythonhosted.org/packages/39/15/a64545c687f9e23e5382591b12ddd036487b109c574f50e2c74cb4c04bd0/ijson-3.1.4-cp36-cp36m-win32.whl", hash = "sha256:4c53cc72f79a4c32d5fc22efb85aa22f248e8f4f992707a84bdc896cc0b1ecf9"},
{url = "https://files.pythonhosted.org/packages/3e/38/6124b9c1bb3f77c1aaf4ab8958e3d376acce29365d088a51516c41c1fd14/ijson-3.1.4-pp36-pypy36_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2844d4a38d27583897ed73f7946e205b16926b4cab2525d1ce17e8b08064c706"},
{url = "https://files.pythonhosted.org/packages/3f/82/8b47a05a1fd81165d99b0c4ed29613ae46aa14e9e2744b0e55999d4ad928/ijson-3.1.4-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:667841591521158770adc90793c2bdbb47c94fe28888cb802104b8bbd61f3d51"},
{url = "https://files.pythonhosted.org/packages/4a/04/f78a68e2ac104f69bce6512e1c82b06f166cd49376caf22e9e4df1bb37eb/ijson-3.1.4-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:475fc25c3d2a86230b85777cae9580398b42eed422506bf0b6aacfa936f7bfcd"},
{url = "https://files.pythonhosted.org/packages/4a/2c/16ca0f98ada413e1719ac94a0fe5c1b941fdafc5cd134b3cb4f9282b1d70/ijson-3.1.4-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:068c692efba9692406b86736dcc6803e4a0b6280d7f0b7534bff3faec677ff38"},
{url = "https://files.pythonhosted.org/packages/4f/ce/83894833708a901c17145fb312df40f7f7bc537eda2fd62cbba038884023/ijson-3.1.4-cp35-cp35m-macosx_10_9_x86_64.whl", hash = "sha256:3b98861a4280cf09d267986cefa46c3bd80af887eae02aba07488d80eb798afa"},
{url = "https://files.pythonhosted.org/packages/5c/39/b5fb82d14929a724d5e7e9476fb9dc09326ec0bb1ff1c6f1a41d56ba3bd6/ijson-3.1.4-pp36-pypy36_pp73-manylinux1_x86_64.whl", hash = "sha256:252defd1f139b5fb8c764d78d5e3a6df81543d9878c58992a89b261369ea97a7"},
{url = "https://files.pythonhosted.org/packages/60/78/d48d78314ac955fd034422cf325242bb0470ee2f673ee31967638916dde1/ijson-3.1.4-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:179ed6fd42e121d252b43a18833df2de08378fac7bce380974ef6f5e522afefa"},
{url = "https://files.pythonhosted.org/packages/66/3a/c4939bc66928b80f8a61f6907ab716b891638bd008442593f9ec357c0397/ijson-3.1.4-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:81cc8cee590c8a70cca3c9aefae06dd7cb8e9f75f3a7dc12b340c2e332d33a2a"},
{url = "https://files.pythonhosted.org/packages/68/a4/bd5d2b8edb4c0e2d1c17cbd64ca038d3dc86fae9ed788879d83b93f601cb/ijson-3.1.4-cp36-cp36m-win_amd64.whl", hash = "sha256:ac9098470c1ff6e5c23ec0946818bc102bfeeeea474554c8d081dc934be20988"},
{url = "https://files.pythonhosted.org/packages/73/a5/e9d34d5069acdc92881676d8224a9b4271bcc509da81e71c2fd9b0b8c010/ijson-3.1.4-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:86884ac06ac69cea6d89ab7b84683b3b4159c4013e4a20276d3fc630fe9b7588"},
{url = "https://files.pythonhosted.org/packages/78/1a/c48ae8a129ea4b8fe6ed9def0416d19466f0584c386f0cfd1715e239c0ed/ijson-3.1.4-pp36-pypy36_pp73-manylinux2010_x86_64.whl", hash = "sha256:15d5356b4d090c699f382c8eb6a2bcd5992a8c8e8b88c88bc6e54f686018328a"},
{url = "https://files.pythonhosted.org/packages/89/ff/5c908dbbdcb8387d11632904af0f9b60b8508a2655070a0baf511f0cec06/ijson-3.1.4-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:2e6bd6ad95ab40c858592b905e2bbb4fe79bbff415b69a4923dafe841ffadcb4"},
{url = "https://files.pythonhosted.org/packages/8d/44/c30dd1a23b80efefe6cfd1942131faba7fa1a97d932d464afade148e0613/ijson-3.1.4-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:2a64c66a08f56ed45a805691c2fd2e1caef00edd6ccf4c4e5eff02cd94ad8364"},
{url = "https://files.pythonhosted.org/packages/8d/f4/5b255d8e532be19c0d7e920083ce0f1cb921e16114a652e456914b81e971/ijson-3.1.4-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:454918f908abbed3c50a0a05c14b20658ab711b155e4f890900e6f60746dd7cc"},
{url = "https://files.pythonhosted.org/packages/97/3d/a7a04cb7d69bc11944d429558dccef127799446a794498d8298c19db1876/ijson-3.1.4-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:41e5886ff6fade26f10b87edad723d2db14dcbb1178717790993fcbbb8ccd333"},
{url = "https://files.pythonhosted.org/packages/99/04/1f261a4bc3643cd8de48e0c1ca03283b6f2f2a2511eed2a23033abdf379c/ijson-3.1.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f11da15ec04cc83ff0f817a65a3392e169be8d111ba81f24d6e09236597bb28c"},
{url = "https://files.pythonhosted.org/packages/9b/8e/68485ba0f98b791476e179ba88d16d602d6833f343044a82703d41c43dd4/ijson-3.1.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dcd6f04df44b1945b859318010234651317db2c4232f75e3933f8bb41c4fa055"},
{url = "https://files.pythonhosted.org/packages/9c/1b/c9e619809d8ea50657c8f75bec764fa58f62df550286d17d6a48596b1172/ijson-3.1.4-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:68e295bb12610d086990cedc89fb8b59b7c85740d66e9515aed062649605d0bf"},
{url = "https://files.pythonhosted.org/packages/9e/db/9c662895c964968791f2894aee6fb4c2d3145dc7ff87a721bb9278c1f36b/ijson-3.1.4-pp37-pypy37_pp73-manylinux1_x86_64.whl", hash = "sha256:ee13ceeed9b6cf81b3b8197ef15595fc43fd54276842ed63840ddd49db0603da"},
{url = "https://files.pythonhosted.org/packages/a0/7c/335ead3d5c74f3a4b8e3e4ff078f8d3a1467d7a5ca972f0db057ea2990f8/ijson-3.1.4-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:df641dd07b38c63eecd4f454db7b27aa5201193df160f06b48111ba97ab62504"},
{url = "https://files.pythonhosted.org/packages/a6/78/dd78b32ac81a261ee4cf32d1e73844be3b60fbf86cc3f22f3be0da86bc4e/ijson-3.1.4-cp39-cp39-win_amd64.whl", hash = "sha256:6bf2b64304321705d03fa5e403ec3f36fa5bb27bf661849ad62e0a3a49bc23e3"},
{url = "https://files.pythonhosted.org/packages/a6/b7/2bfba0fc44e54213e2edd222571cf54569423a3ac8f9e5c4d3aea1f53ea9/ijson-3.1.4-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:f91c75edd6cf1a66f02425bafc59a22ec29bc0adcbc06f4bfd694d92f424ceb3"},
{url = "https://files.pythonhosted.org/packages/a7/ce/f392043cbed30a1f2cb4799bdfd7be4542f89a888f3e5bd6b4961c16e46b/ijson-3.1.4-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:339b2b4c7bbd64849dd69ef94ee21e29dcd92c831f47a281fdd48122bb2a715a"},
{url = "https://files.pythonhosted.org/packages/a8/da/f4b5fda308b60c6c31aa4203f20133a3b5b472e41c0907bc14b7c555cde2/ijson-3.1.4.tar.gz", hash = "sha256:1d1003ae3c6115ec9b587d29dd136860a81a23c7626b682e2b5b12c9fd30e4ea"},
{url = "https://files.pythonhosted.org/packages/aa/5e/46ce46d2b0386c42b02a640141bd9f2554137c880e1c6e0ff5abab4a2683/ijson-3.1.4-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d17fd199f0d0a4ab6e0d541b4eec1b68b5bd5bb5d8104521e22243015b51049b"},
{url = "https://files.pythonhosted.org/packages/aa/b2/492cdeaebf0671c82e7db6935381ac84fd6171e58a131b46293e78e0af4e/ijson-3.1.4-cp37-cp37m-win32.whl", hash = "sha256:26a6a550b270df04e3f442e2bf0870c9362db4912f0e7bdfd300f30ea43115a2"},
{url = "https://files.pythonhosted.org/packages/ab/ba/a965d0a771400e61c88a3b055be35c66556398cf2c01bded67802b33a6d1/ijson-3.1.4-cp35-cp35m-win32.whl", hash = "sha256:fa9a25d0bd32f9515e18a3611690f1de12cb7d1320bd93e9da835936b41ad3ff"},
{url = "https://files.pythonhosted.org/packages/ac/fe/1958d71fc76efd507486cc88f92bf2accc0469207ad1971bf6a90efe7346/ijson-3.1.4-cp35-cp35m-manylinux2014_aarch64.whl", hash = "sha256:13f80aad0b84d100fb6a88ced24bade21dc6ddeaf2bba3294b58728463194f50"},
{url = "https://files.pythonhosted.org/packages/ae/ed/894c8c2a53ea3b8d1e0dc44a5c1bd93a0bfc6742ac74e15098828e706b88/ijson-3.1.4-pp37-pypy37_pp73-manylinux2010_x86_64.whl", hash = "sha256:97e4df67235fae40d6195711223520d2c5bf1f7f5087c2963fcde44d72ebf448"},
{url = "https://files.pythonhosted.org/packages/b2/1f/7014377e7e1b1af3c7dd3e4ccb2a91a90a647e93f0deccb51b5629b608d9/ijson-3.1.4-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4ea5fc50ba158f72943d5174fbc29ebefe72a2adac051c814c87438dc475cf78"},
{url = "https://files.pythonhosted.org/packages/b3/0c/e3b7bf52e23345d5f9a6a3ff6de0cad419c96491893ab60cbbe9161644a8/ijson-3.1.4-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:387c2ec434cc1bc7dc9bd33ec0b70d95d443cc1e5934005f26addc2284a437ab"},
{url = "https://files.pythonhosted.org/packages/be/f8/ca57db856f63d8a100532f29fe87e6eec6c79feb8bb31749f2a7e8bbbcc5/ijson-3.1.4-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:9348e7d507eb40b52b12eecff3d50934fcc3d2a15a2f54ec1127a36063b9ba8f"},
{url = "https://files.pythonhosted.org/packages/c4/cd/a271745e66983d5d660ebad355dafc188fa00244e7ce3eaea725c9d5d004/ijson-3.1.4-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:f50337e3b8e72ec68441b573c2848f108a8976a57465c859b227ebd2a2342901"},
{url = "https://files.pythonhosted.org/packages/cb/71/a3b3e9c31675b5fb806b61d1af45abb71cb0f03d581511b2f3fd03e53f7c/ijson-3.1.4-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:9239973100338a4138d09d7a4602bd289861e553d597cd67390c33bfc452253e"},
{url = "https://files.pythonhosted.org/packages/d3/fc/ea957e287a07340c3e5c7c56bb32832def3e811ac5ae0399c7d4cbcaa458/ijson-3.1.4-cp39-cp39-manylinux1_i686.whl", hash = "sha256:d9e01c55d501e9c3d686b6ee3af351c9c0c8c3e45c5576bd5601bee3e1300b09"},
{url = "https://files.pythonhosted.org/packages/d6/51/5733fe6cca98ac8be44283a8afa3679260528e24683b63bf4845d05d2fe5/ijson-3.1.4-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:f587699b5a759e30accf733e37950cc06c4118b72e3e146edcea77dded467426"},
{url = "https://files.pythonhosted.org/packages/d6/59/9b3f841597002c13e95ea011ba52381814ec57bbebe65454a8895e2a7779/ijson-3.1.4-pp27-pypy_73-manylinux2010_x86_64.whl", hash = "sha256:28fc168f5faf5759fdfa2a63f85f1f7a148bbae98f34404a6ba19f3d08e89e87"},
{url = "https://files.pythonhosted.org/packages/d9/48/f36948b4b6b708385cbc434ab70329f5b6eef7f91b0995b42192e3e5bda4/ijson-3.1.4-pp37-pypy37_pp73-win32.whl", hash = "sha256:3d10eee52428f43f7da28763bb79f3d90bbbeea1accb15de01e40a00885b6e89"},
{url = "https://files.pythonhosted.org/packages/dc/93/849cf95be7d3cf5bc91e2dad2a00ade074a55de5b72534f5592afb4d884c/ijson-3.1.4-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:3997a2fdb28bc04b9ab0555db5f3b33ed28d91e9d42a3bf2c1842d4990beb158"},
{url = "https://files.pythonhosted.org/packages/dd/76/e73b17044e099c3a620db111f167009136e7a52760669d92f9884d7e0917/ijson-3.1.4-cp37-cp37m-win_amd64.whl", hash = "sha256:ff8cf7507d9d8939264068c2cff0a23f99703fa2f31eb3cb45a9a52798843586"},
{url = "https://files.pythonhosted.org/packages/dd/eb/81bd5aec3797b9d88a03938db42bda810f433b97449f6ef8524d4c91b394/ijson-3.1.4-cp39-cp39-win32.whl", hash = "sha256:70ee3c8fa0eba18c80c5911639c01a8de4089a4361bad2862a9949e25ec9b1c8"},
{url = "https://files.pythonhosted.org/packages/df/52/9f63f4a4de8d8238f4fc6e862563ad18517a87da4df35cb180b13b0942d0/ijson-3.1.4-pp27-pypy_73-macosx_10_9_x86_64.whl", hash = "sha256:5d7e3fcc3b6de76a9dba1e9fc6ca23dad18f0fa6b4e6499415e16b684b2e9af1"},
{url = "https://files.pythonhosted.org/packages/e3/35/7b0c374b55c94a2ae4b2cdbf56915d2eca57d8d982d5395f9c311b7b0d22/ijson-3.1.4-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:24b58933bf777d03dc1caa3006112ec7f9e6f6db6ffe1f5f5bd233cb1281f719"},
{url = "https://files.pythonhosted.org/packages/e3/e0/2f1ff2ff6d8b556d370f66ae3f19a1468c0f2bb1f079a6909d91eed9d8e6/ijson-3.1.4-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:f0f2a87c423e8767368aa055310024fa28727f4454463714fef22230c9717f64"},
{url = "https://files.pythonhosted.org/packages/e6/9e/be876654c61be71a88e71e8d9207bb78f9134fe4d25d3c66c061c9b08a62/ijson-3.1.4-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:446ef8980504da0af8d20d3cb6452c4dc3d8aa5fd788098985e899b913191fe6"},
{url = "https://files.pythonhosted.org/packages/ec/68/82803c001c92d54e1ac63193dacd3fc01bb7f9f28767147b3b1ce30f8f95/ijson-3.1.4-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:3bb461352c0f0f2ec460a4b19400a665b8a5a3a2da663a32093df1699642ee3f"},
{url = "https://files.pythonhosted.org/packages/f0/c3/298ac7fd901537c2dfe2db444da3a127ab49f697e6da7e4ba6c4a465962d/ijson-3.1.4-cp35-cp35m-win_amd64.whl", hash = "sha256:c4c1bf98aaab4c8f60d238edf9bcd07c896cfcc51c2ca84d03da22aad88957c5"},
{url = "https://files.pythonhosted.org/packages/fd/2c/773bf37ae1ba7a22774c716c60a37384ee666973a3e42119de54cf5bd390/ijson-3.1.4-cp38-cp38-win32.whl", hash = "sha256:5b725f2e984ce70d464b195f206fa44bebbd744da24139b61fec72de77c03a16"},
]
"isort 5.10.1" = [
{url = "https://files.pythonhosted.org/packages/ab/e9/964cb0b2eedd80c92f5172f1f8ae0443781a9d461c1372a3ce5762489593/isort-5.10.1.tar.gz", hash = "sha256:e8443a5e7a020e9d7f97f1d7d9cd17c88bcb3bc7e218bf9cf5095fe550be2951"},
{url = "https://files.pythonhosted.org/packages/b8/5b/f18e227df38b94b4ee30d2502fd531bebac23946a2497e5595067a561274/isort-5.10.1-py3-none-any.whl", hash = "sha256:6f62d78e2f89b4500b080fe3a81690850cd254227f27f75c3a0c491a1f351ba7"},
]
"joblib 1.2.0" = [
{url = "https://files.pythonhosted.org/packages/45/dd/a5435a6902d6315241c48a5343e6e6675b007e05d3738ed97a7a47864e53/joblib-1.2.0.tar.gz", hash = "sha256:e1cee4a79e4af22881164f218d4311f60074197fb707e082e803b61f6d137018"},
{url = "https://files.pythonhosted.org/packages/91/d4/3b4c8e5a30604df4c7518c562d4bf0502f2fa29221459226e140cf846512/joblib-1.2.0-py3-none-any.whl", hash = "sha256:091138ed78f800342968c523bdde947e7a305b8594b910a0fea2ab83c3c6d385"},
]
"lazy-object-proxy 1.8.0" = [
{url = "https://files.pythonhosted.org/packages/0a/68/5839136508651d813c1adce568e2f7417bb66083dc8d604a69d465ee53c0/lazy_object_proxy-1.8.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6850e4aeca6d0df35bb06e05c8b934ff7c533734eb51d0ceb2d63696f1e6030c"},
{url = "https://files.pythonhosted.org/packages/30/c3/81c176ce53d9107947d355b273f9661a4f4cad6d56d1daf1c9d6969902e8/lazy_object_proxy-1.8.0-cp310-cp310-win32.whl", hash = "sha256:b70d6e7a332eb0217e7872a73926ad4fdc14f846e85ad6749ad111084e76df25"},
{url = "https://files.pythonhosted.org/packages/34/c5/1ef17ab530068f7a5549ab376726f83fe2221db592dbdfd4f8fd4662e45d/lazy_object_proxy-1.8.0-cp311-cp311-win32.whl", hash = "sha256:e20bfa6db17a39c706d24f82df8352488d2943a3b7ce7d4c22579cb89ca8896e"},
{url = "https://files.pythonhosted.org/packages/46/35/55c3650f29858869596871b7fedf4a6b211b61dcc4dd8e8d5702eb85370e/lazy_object_proxy-1.8.0-cp39-cp39-win32.whl", hash = "sha256:8f6ce2118a90efa7f62dd38c7dbfffd42f468b180287b748626293bf12ed468f"},
{url = "https://files.pythonhosted.org/packages/60/c1/bf324cf9a0577b0e3781b1a38696405235ac784c4a6d889f97a36dcedc70/lazy_object_proxy-1.8.0-cp37-cp37m-win32.whl", hash = "sha256:5b51d6f3bfeb289dfd4e95de2ecd464cd51982fe6f00e2be1d0bf94864d58acd"},
{url = "https://files.pythonhosted.org/packages/64/ed/ad47931e7780a5c39f7439de9124438794137840ffdb5f3ffd2995228071/lazy_object_proxy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:eb329f8d8145379bf5dbe722182410fe8863d186e51bf034d2075eb8d85ee25b"},
{url = "https://files.pythonhosted.org/packages/65/08/836c9e4e6edf3a267e5b1d0c03923a70ee1a233baf6eb00bfab88d795c51/lazy_object_proxy-1.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4e2d9f764f1befd8bdc97673261b8bb888764dfdbd7a4d8f55e4fbcabb8c3fb7"},
{url = "https://files.pythonhosted.org/packages/74/37/591f89e8a09ae4574391bdf8a5eecd34a3dbe545917333e625c9de9a66b0/lazy-object-proxy-1.8.0.tar.gz", hash = "sha256:c219a00245af0f6fa4e95901ed28044544f50152840c5b6a3e7b2568db34d156"},
{url = "https://files.pythonhosted.org/packages/7c/0f/60db0efe9a1d61fc830cfd2806d54c5fb64761e8009b9d163bf0ede5b12d/lazy_object_proxy-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4fd031589121ad46e293629b39604031d354043bb5cdf83da4e93c2d7f3389fe"},
{url = "https://files.pythonhosted.org/packages/80/aa/71f82fd17211767419d6b1fc3dc00ba4641c11f9c9358f7acc5222e693b9/lazy_object_proxy-1.8.0-cp38-cp38-win32.whl", hash = "sha256:d176f392dbbdaacccf15919c77f526edf11a34aece58b55ab58539807b85436f"},
{url = "https://files.pythonhosted.org/packages/95/97/44ee4e0247754bcb878886baf2e06856ff268b0d67e86f1d750f251e3c87/lazy_object_proxy-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c1c7c0433154bb7c54185714c6929acc0ba04ee1b167314a779b9025517eada"},
{url = "https://files.pythonhosted.org/packages/9d/23/7e78292a5b72121a8bdfff128fcfb8d3630af74336855d3e527f73eaa4c0/lazy_object_proxy-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:71d9ae8a82203511a6f60ca5a1b9f8ad201cac0fc75038b2dc5fa519589c9288"},
{url = "https://files.pythonhosted.org/packages/9d/d1/6dd90b049748d02d9120a496c3649220ac4f6803dd74c9ae48f2bb001239/lazy_object_proxy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:eac3a9a5ef13b332c059772fd40b4b1c3d45a3a2b05e33a361dee48e54a4dad0"},
{url = "https://files.pythonhosted.org/packages/b9/a2/e6b92d1ce6da768a1570d436616f4c565420fcf1c4b2b5246cf77624fe36/lazy_object_proxy-1.8.0-pp37-pypy37_pp73-any.whl", hash = "sha256:ae032743794fba4d171b5b67310d69176287b5bf82a21f588282406a79498891"},
{url = "https://files.pythonhosted.org/packages/d7/8a/7bf9154dd7e6e9bda733a105e3baca3636abe72091cd1dcbf636979b667f/lazy_object_proxy-1.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:14010b49a2f56ec4943b6cf925f597b534ee2fe1f0738c84b3bce0c1a11ff10d"},
{url = "https://files.pythonhosted.org/packages/e0/d3/0cdabfa685eb152a9f4d179fa95f121b3810171f246e8e51f45d100b345c/lazy_object_proxy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:afcaa24e48bb23b3be31e329deb3f1858f1f1df86aea3d70cb5c8578bfe5261c"},
{url = "https://files.pythonhosted.org/packages/e3/90/4c8d2ce638791874f48894761e305afa2bf6f85f315f1d51946eb1e2b18f/lazy_object_proxy-1.8.0-pp38-pypy38_pp73-any.whl", hash = "sha256:7e1561626c49cb394268edd00501b289053a652ed762c58e1081224c8d881cec"},
{url = "https://files.pythonhosted.org/packages/f5/dc/11168f6697ed68ec29a4f0887308c0d7836d96148a81eb0abb7b8e77b8e8/lazy_object_proxy-1.8.0-pp39-pypy39_pp73-any.whl", hash = "sha256:ce58b2b3734c73e68f0e30e4e725264d4d6be95818ec0a0be4bb6bf9a7e79aa8"},
{url = "https://files.pythonhosted.org/packages/f6/71/e0dbe4172135aca4b4f657cf15fefd34247b5392ae42cf2ca2583dfa332f/lazy_object_proxy-1.8.0-cp37-cp37m-win_amd64.whl", hash = "sha256:6f593f26c470a379cf7f5bc6db6b5f1722353e7bf937b8d0d0b3fba911998858"},
]
"mashumaro 3.2" = [
{url = "https://files.pythonhosted.org/packages/46/37/45d7871fa7d5dba5e84e1b852b71cf2298361fa1524bc7bb7d39122deca2/mashumaro-3.2-py3-none-any.whl", hash = "sha256:1e0bb20277151e1d3e39ce5df26fb734be76e177f5bfc291c3c5c0efd1bd32f0"},
{url = "https://files.pythonhosted.org/packages/de/4c/9c5a03ec5e1d862ea1099ecdf1f510615c05a38fcf6b144fc592a0207318/mashumaro-3.2.tar.gz", hash = "sha256:5b12b56556373d2a907d54b3d61f59f5a1f3670a98040721aff19b8c476fd994"},
]
"mccabe 0.7.0" = [
{url = "https://files.pythonhosted.org/packages/27/1a/1f68f9ba0c207934b35b86a8ca3aad8395a3d6dd7921c0686e23853ff5a9/mccabe-0.7.0-py2.py3-none-any.whl", hash = "sha256:6c2d30ab6be0e4a46919781807b4f0d834ebdd6c6e3dca0bda5a15f863427b6e"},
{url = "https://files.pythonhosted.org/packages/e7/ff/0ffefdcac38932a54d2b5eed4e0ba8a408f215002cd178ad1df0f2806ff8/mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"},
]
"mypy 0.991" = [
{url = "https://files.pythonhosted.org/packages/0e/5c/fbe112ca73d4c6a9e65336f48099c60800514d8949b4129c093a84a28dc8/mypy-0.991.tar.gz", hash = "sha256:3c0165ba8f354a6d9881809ef29f1a9318a236a6d81c690094c5df32107bde06"},
{url = "https://files.pythonhosted.org/packages/14/05/5a4206e269268f4aecb1096bf2375a231c959987ccf3e31313221b8bc153/mypy-0.991-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37bd02ebf9d10e05b00d71302d2c2e6ca333e6c2a8584a98c00e038db8121f05"},
{url = "https://files.pythonhosted.org/packages/28/9c/e1805f2fea93a92671f33b00dd577119f37e4a8b859d6f6ea62d3e9129fa/mypy-0.991-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1c8cd4fb70e8584ca1ed5805cbc7c017a3d1a29fb450621089ffed3e99d1857f"},
{url = "https://files.pythonhosted.org/packages/33/20/c4c15c9e9b7929ef44e35e83c0bcc254c8bf5998bbef0954ae658288e8c6/mypy-0.991-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b86ce2c1866a748c0f6faca5232059f881cda6dda2a893b9a8373353cfe3715a"},
{url = "https://files.pythonhosted.org/packages/39/05/7a7d58afc7d00e819e553ad2485a29141e14575e3b0c43b9da6f869ede4c/mypy-0.991-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc9ec663ed6c8f15f4ae9d3c04c989b744436c16d26580eaa760ae9dd5d662eb"},
{url = "https://files.pythonhosted.org/packages/44/d0/81d47bffc80d0cff84174aab266adc3401e735e13c5613418e825c146986/mypy-0.991-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7d17e0a9707d0772f4a7b878f04b4fd11f6f5bcb9b3813975a9b13c9332153ab"},
{url = "https://files.pythonhosted.org/packages/49/83/34d682a10604845d77a0e7dbde1d0e70f3784d0f67b0df11d2eaf7bb8360/mypy-0.991-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a12c56bf73cdab116df96e4ff39610b92a348cc99a1307e1da3c3768bbb5b135"},
{url = "https://files.pythonhosted.org/packages/4b/98/125e5d14222de8e92f44314f8df21a9c351b531b37c551526acd67486a7d/mypy-0.991-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:26efb2fcc6b67e4d5a55561f39176821d2adf88f2745ddc72751b7890f3194ad"},
{url = "https://files.pythonhosted.org/packages/5d/c8/fc9b7cd600330e8c9dbd52b499a76eeaf4b48969a605fb50415a9d361d5b/mypy-0.991-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:652b651d42f155033a1967739788c436491b577b6a44e4c39fb340d0ee7f0d70"},
{url = "https://files.pythonhosted.org/packages/6b/22/5e19d1a6f8e029296e7b2fa462d8753fb4365126684c2f840dcb1447e6e8/mypy-0.991-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6d7464bac72a85cb3491c7e92b5b62f3dcccb8af26826257760a552a5e244aa5"},
{url = "https://files.pythonhosted.org/packages/80/23/76e56e004acca691b4da4086a8c38bd67b7ae73536848dcab76cfed5c188/mypy-0.991-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4307270436fd7694b41f913eb09210faff27ea4979ecbcd849e57d2da2f65305"},
{url = "https://files.pythonhosted.org/packages/87/ec/62fd00fa5d8ead3ecafed3eb99ee805911f41b11536c5940df1bcb2c845d/mypy-0.991-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0c8f3be99e8a8bd403caa8c03be619544bc2c77a7093685dcf308c6b109426c6"},
{url = "https://files.pythonhosted.org/packages/89/76/7159258fdbf26a5ceef100b80a82d2f79b9066725a5daeb6383a8f773910/mypy-0.991-cp311-cp311-win_amd64.whl", hash = "sha256:3a700330b567114b673cf8ee7388e949f843b356a73b5ab22dd7cff4742a5297"},
{url = "https://files.pythonhosted.org/packages/90/a5/3a2c0c02e99a845318cc25556097d96eb8eb85fe53619ac8ff37b44acc46/mypy-0.991-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:3d80e36b7d7a9259b740be6d8d906221789b0d836201af4234093cae89ced0cd"},
{url = "https://files.pythonhosted.org/packages/91/27/716b1cfce990cb58dc92f6601852141bc25e1524c06b3f3a39b0de6d9210/mypy-0.991-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c9166b3f81a10cdf9b49f2d594b21b31adadb3d5e9db9b834866c3258b695be3"},
{url = "https://files.pythonhosted.org/packages/97/e3/1da0f08c60f555c04b93eff4016611fa1858ea53111dbdc757a37c234042/mypy-0.991-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:641411733b127c3e0dab94c45af15fea99e4468f99ac88b39efb1ad677da5711"},
{url = "https://files.pythonhosted.org/packages/9b/b1/0d5f1549c2894fd9af744e886156870d98ea0b1784952989f10e51eb0030/mypy-0.991-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1f7d1a520373e2272b10796c3ff721ea1a0712288cafaa95931e66aa15798813"},
{url = "https://files.pythonhosted.org/packages/ac/a6/e4d6dca539c637735d0d93f1eee3ac35cedfd9c047da7386b3a59e93f35b/mypy-0.991-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5e80e758243b97b618cdf22004beb09e8a2de1af481382e4d84bc52152d1c476"},
{url = "https://files.pythonhosted.org/packages/af/9a/ee3b76f36e90ecb5e44dd2827bf5992d02c127192366a4c7864cfeab95b6/mypy-0.991-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0cca5adf694af539aeaa6ac633a7afe9bbd760df9d31be55ab780b77ab5ae8bf"},
{url = "https://files.pythonhosted.org/packages/b1/30/24a92552a7c3df25db5a2e56ae359b4aa9bba6aebc8f0e25523a94e5c1e7/mypy-0.991-cp37-cp37m-win_amd64.whl", hash = "sha256:e62ebaad93be3ad1a828a11e90f0e76f15449371ffeecca4a0a0b9adc99abcef"},
{url = "https://files.pythonhosted.org/packages/b8/ab/aa2e02fce8ee8885fe98ee2a0549290e9de5caa28febc0cf243bfab020e7/mypy-0.991-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d13674f3fb73805ba0c45eb6c0c3053d218aa1f7abead6e446d474529aafc372"},
{url = "https://files.pythonhosted.org/packages/bc/b2/6e71e47b259992dcd99d257ce452c0de3f711be713d048fe8f0fda9a9996/mypy-0.991-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:98e781cd35c0acf33eb0295e8b9c55cdbef64fcb35f6d3aa2186f289bed6e80d"},
{url = "https://files.pythonhosted.org/packages/ca/0d/da98f81e7c13a60111dc10a16cbf1b48dc8500df90a1fc959878a5981f49/mypy-0.991-cp39-cp39-win_amd64.whl", hash = "sha256:74e259b5c19f70d35fcc1ad3d56499065c601dfe94ff67ae48b85596b9ec1461"},
{url = "https://files.pythonhosted.org/packages/d7/f4/dcab9f3c5ed410caca1b9374dbb2b2caa778d225e32f174e266e20291edf/mypy-0.991-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0714258640194d75677e86c786e80ccf294972cc76885d3ebbb560f11db0003d"},
{url = "https://files.pythonhosted.org/packages/df/bb/3cf400e05e30939a0fc58b34e0662d8abe8e206464665065b56cf2ca9a62/mypy-0.991-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:209ee89fbb0deed518605edddd234af80506aec932ad28d73c08f1400ef80a33"},
{url = "https://files.pythonhosted.org/packages/e3/84/188ddeaebfc8b5bbdcc3c7f05c09b61758540b2df84aad0146263d66960a/mypy-0.991-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ac6e503823143464538efda0e8e356d871557ef60ccd38f8824a4257acc18d93"},
{url = "https://files.pythonhosted.org/packages/e7/a1/c503a15ad69ff133a76c159b8287f0eadc1f521d9796bf81f935886c98f6/mypy-0.991-py3-none-any.whl", hash = "sha256:de32edc9b0a7e67c2775e574cb061a537660e51210fbf6006b0b36ea695ae9bb"},
{url = "https://files.pythonhosted.org/packages/e9/7e/cc2de45afb46fee694bf285f91df3e227a3b0c671f775524814549c26556/mypy-0.991-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8472f736a5bfb159a5e36740847808f6f5b659960115ff29c7cecec1741c648"},
{url = "https://files.pythonhosted.org/packages/f3/1d/cc67a674f1cd7f1c10619487a4245185f6f8f14cbd685b60709318e9ac27/mypy-0.991-cp310-cp310-win_amd64.whl", hash = "sha256:901c2c269c616e6cb0998b33d4adbb4a6af0ac4ce5cd078afd7bc95830e62c1c"},
{url = "https://files.pythonhosted.org/packages/f7/3a/19c01d59d24f1f36fabdeb61a286b4fc5e0456bf6211f5159ad5ebb5f735/mypy-0.991-cp38-cp38-win_amd64.whl", hash = "sha256:4175593dc25d9da12f7de8de873a33f9b2b8bdb4e827a7cae952e5b1a342e243"},
]
"mypy-extensions 0.4.3" = [
{url = "https://files.pythonhosted.org/packages/5c/eb/975c7c080f3223a5cdaff09612f3a5221e4ba534f7039db34c35d95fa6a5/mypy_extensions-0.4.3-py2.py3-none-any.whl", hash = "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d"},
{url = "https://files.pythonhosted.org/packages/63/60/0582ce2eaced55f65a4406fc97beba256de4b7a95a0034c6576458c6519f/mypy_extensions-0.4.3.tar.gz", hash = "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8"},
]
"numpy 1.24.1" = [
{url = "https://files.pythonhosted.org/packages/01/a8/de4f84ccbbe0b616b4c36bd74dd21ddcac9f0d69466b91a60e3b8647d5ca/numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ed5fb71d79e771ec930566fae9c02626b939e37271ec285e9efaf1b5d4370e7d"},
{url = "https://files.pythonhosted.org/packages/06/5c/d43e4b9eefc95bed55128cc08c535dfb0047cbeac5b7b3cd835a7a531974/numpy-1.24.1-cp39-cp39-win32.whl", hash = "sha256:87a118968fba001b248aac90e502c0b13606721b1343cdaddbc6e552e8dfb56f"},
{url = "https://files.pythonhosted.org/packages/0b/73/7db81acb8b9b2dfa24ca51de6b84db878fd216865b7acb75f27e79105680/numpy-1.24.1-cp38-cp38-win_amd64.whl", hash = "sha256:6ec0c021cd9fe732e5bab6401adea5a409214ca5592cd92a114f7067febcba0c"},
{url = "https://files.pythonhosted.org/packages/14/1f/935ce638d37f8762aafb3962c8b14bf715c3db21a9b30f0cec4b228e7387/numpy-1.24.1-cp38-cp38-win32.whl", hash = "sha256:dae46bed2cb79a58d6496ff6d8da1e3b95ba09afeca2e277628171ca99b99db1"},
{url = "https://files.pythonhosted.org/packages/14/5d/df640c8bc151c742d5166aecfc394134bf92bba432472bfa7d606badd0fc/numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:26089487086f2648944f17adaa1a97ca6aee57f513ba5f1c0b7ebdabbe2b9954"},
{url = "https://files.pythonhosted.org/packages/24/c1/44f013eba432b5f18a044b587f96aa76964ea4eacbf512bd6c947a9f78c9/numpy-1.24.1-cp310-cp310-win32.whl", hash = "sha256:b31da69ed0c18be8b77bfce48d234e55d040793cebb25398e2a7d84199fbc7e2"},
{url = "https://files.pythonhosted.org/packages/37/15/5667b269bf2c3473133823733fc0cd8fa44850e4c1d61b45bccc798a3e5a/numpy-1.24.1-cp39-cp39-win_amd64.whl", hash = "sha256:ddc7ab52b322eb1e40521eb422c4e0a20716c271a306860979d450decbb51b8e"},
{url = "https://files.pythonhosted.org/packages/39/5d/21ea2da2aa6f419a7e48a582b7f5c99ba62822dcd173a6e5a58b22748a36/numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b09804ff570b907da323b3d762e74432fb07955701b17b08ff1b5ebaa8cfe6a9"},
{url = "https://files.pythonhosted.org/packages/3b/2b/75d7ed116b17202a89e6cf1eba7e91ba83abb79ece7924d5b2c820f59025/numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b0677a52f5d896e84414761531947c7a330d1adc07c3a4372262f25d84af7bf7"},
{url = "https://files.pythonhosted.org/packages/3d/17/2cc40e1ed44f37b0bab7d62e0c6ba88362da23f48e52833ffdd1b9dfc220/numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e3463e6ac25313462e04aea3fb8a0a30fb906d5d300f58b3bc2c23da6a15398"},
{url = "https://files.pythonhosted.org/packages/43/55/fea3342371187dea4044521c0ba82b90fb5a42fb92446be019b316dd3320/numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef85cf1f693c88c1fd229ccd1055570cb41cdf4875873b7728b6301f12cd05bf"},
{url = "https://files.pythonhosted.org/packages/49/47/12ef5c22217e16afdf1ba1e7cbf6bc36b5df2e0ddee3f5557bc1e41c9e41/numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad2925567f43643f51255220424c23d204024ed428afc5aad0f86f3ffc080086"},
{url = "https://files.pythonhosted.org/packages/6e/77/7b69133bf0f3a6b0000cdb6133ff5292734182ca0cd107ad7ff4c46e7bc1/numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:179a7ef0889ab769cc03573b6217f54c8bd8e16cef80aad369e1e8185f994cd7"},
{url = "https://files.pythonhosted.org/packages/73/39/f104eb30cc3da44d1e10622418c5e6eb5ac224f0f20c97dba44cf2de2af9/numpy-1.24.1-cp311-cp311-win_amd64.whl", hash = "sha256:de92efa737875329b052982e37bd4371d52cabf469f83e7b8be9bb7752d67e51"},
{url = "https://files.pythonhosted.org/packages/81/3a/faa8aa531ec3001ff3b215892de791142e01516105da4c5e40a5686edca2/numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:28bc9750ae1f75264ee0f10561709b1462d450a4808cd97c013046073ae64ab6"},
{url = "https://files.pythonhosted.org/packages/85/92/4a280c9d31ec4950b0de759722b9feb9cc9d680726da3578f6b993ae6236/numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e274f0f6c7efd0d577744f52032fdd24344f11c5ae668fe8d01aac0422611df1"},
{url = "https://files.pythonhosted.org/packages/a0/a6/44d97c9d6ec619f0ff3a5a8471e5a1283a0ff492348214d512a79f32e9e4/numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f1b739841821968798947d3afcefd386fa56da0caf97722a5de53e07c4ccedc7"},
{url = "https://files.pythonhosted.org/packages/ad/9a/98490aee9ca665cd04291658dd76e19c9b9d17680404aa9a122d5ef6ff79/numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e669fbdcdd1e945691079c2cae335f3e3a56554e06bbd45d7609a6cf568c700"},
{url = "https://files.pythonhosted.org/packages/af/74/070f80c41427f41a48bd4c873768f4989aacac7b8c0a3060566402339ce9/numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:84e789a085aabef2f36c0515f45e459f02f570c4b4c4c108ac1179c34d475ed7"},
{url = "https://files.pythonhosted.org/packages/b8/a9/993477a7d6a3fdb1b7bb2287333d027303b9af7643d90088a4c74a15dc1d/numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:28e418681372520c992805bb723e29d69d6b7aa411065f48216d8329d02ba032"},
{url = "https://files.pythonhosted.org/packages/c5/f7/df97e91bf7f4125ce7fa24296f4dfb6f1fc172c08413146b456f5b1299f1/numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:caf65a396c0d1f9809596be2e444e3bd4190d86d5c1ce21f5fc4be60a3bc5b36"},
{url = "https://files.pythonhosted.org/packages/cd/9b/0398b0638ccdda7167d407f50494406560d6e4b7f4e23c33588704e2928b/numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7094891dcf79ccc6bc2a1f30428fa5edb1e6fb955411ffff3401fb4ea93780a8"},
{url = "https://files.pythonhosted.org/packages/ce/b8/c170db50ec49d5845bd771bc5549fe734ee73083c5c52791915f95d8e2bc/numpy-1.24.1.tar.gz", hash = "sha256:2386da9a471cc00a1f47845e27d916d5ec5346ae9696e01a8a34760858fe9dd2"},
{url = "https://files.pythonhosted.org/packages/d7/18/4491cefc090909c3615315722fd09864b791c34a1f174845d41716278d23/numpy-1.24.1-cp311-cp311-win32.whl", hash = "sha256:442feb5e5bada8408e8fcd43f3360b78683ff12a4444670a7d9e9824c1817d36"},
{url = "https://files.pythonhosted.org/packages/db/24/5343241cabd04224e4fc4f2cf12b35146a90a83f53bef9b541c439a7dada/numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0044f7d944ee882400890f9ae955220d29b33d809a038923d88e4e01d652acd9"},
{url = "https://files.pythonhosted.org/packages/ee/70/c9055fe381e9e5103222e2f5efeb0cfb4524ab3c7d75b4eedc330380f9f5/numpy-1.24.1-cp310-cp310-win_amd64.whl", hash = "sha256:b07b40f5fb4fa034120a5796288f24c1fe0e0580bbfff99897ba6267af42def2"},
{url = "https://files.pythonhosted.org/packages/f9/03/94ee2d37561d77538e9f2c933a8b22ff234f15404420517b3f51cc3a0749/numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:cfa1161c6ac8f92dea03d625c2d0c05e084668f4a06568b77a25a89111621566"},
{url = "https://files.pythonhosted.org/packages/fa/c2/00bed438bc58fd80429b7ea2b28382f99156659ebc6dfa750d1520df59d6/numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b162ac10ca38850510caf8ea33f89edcb7b0bb0dfa5592d59909419986b72407"},
]
"pandas 1.5.2" = [
{url = "https://files.pythonhosted.org/packages/0c/13/a1b217a8665099b9a069f726178e86bd4c01aee37576f19936793b436f85/pandas-1.5.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2552bffc808641c6eb471e55aa6899fa002ac94e4eebfa9ec058649122db5824"},
{url = "https://files.pythonhosted.org/packages/16/ca/83e8a97e1a66f2bcc09e24ddec32755ddfe5d2a162c1eb493ee02a0f77a3/pandas-1.5.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e9dbacd22555c2d47f262ef96bb4e30880e5956169741400af8b306bbb24a273"},
{url = "https://files.pythonhosted.org/packages/24/c3/8182eb4e261e9fd24a992f78a6895b4b60b6a353ff03b83da748b8c7c03c/pandas-1.5.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9608000a5a45f663be6af5c70c3cbe634fa19243e720eb380c0d378666bc7702"},
{url = "https://files.pythonhosted.org/packages/24/fa/7786bedc2d2b2c84787553800c85d7d2b165c51f03922b441594d1b67f8d/pandas-1.5.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b4f5a82afa4f1ff482ab8ded2ae8a453a2cdfde2001567b3ca24a4c5c5ca0db3"},
{url = "https://files.pythonhosted.org/packages/36/bd/3e73defb8b643d9dacde5d875319287d960a86e62e721140961773f22910/pandas-1.5.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c009a92e81ce836212ce7aa98b219db7961a8b95999b97af566b8dc8c33e9519"},
{url = "https://files.pythonhosted.org/packages/44/d3/e9df2f568692647fe5c3b02506610829d004a00b3ba5c7fd92d382f8d511/pandas-1.5.2-cp39-cp39-win32.whl", hash = "sha256:e7469271497960b6a781eaa930cba8af400dd59b62ec9ca2f4d31a19f2f91090"},
{url = "https://files.pythonhosted.org/packages/4d/07/c4d69e1acb7723ca49d24fc60a89aa07a914dfb8e7a07fdbb9d8646630cd/pandas-1.5.2.tar.gz", hash = "sha256:220b98d15cee0b2cd839a6358bd1f273d0356bf964c1a1aeb32d47db0215488b"},
{url = "https://files.pythonhosted.org/packages/51/e3/7627c324661db1c891a6814c343be6c6a238d13868dd8f01a6d4f388dab0/pandas-1.5.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:375262829c8c700c3e7cbb336810b94367b9c4889818bbd910d0ecb4e45dc261"},
{url = "https://files.pythonhosted.org/packages/5b/7c/afc4ed0a1d289bfbdb728fa51b418d8600ddfa84a4bdfda17fff38924b6c/pandas-1.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a40dd1e9f22e01e66ed534d6a965eb99546b41d4d52dbdb66565608fde48203f"},
{url = "https://files.pythonhosted.org/packages/5e/ed/5c9cdaa5d48c7194bef4335eab3cdc2f8afa868a5546027e018ea9deb4c3/pandas-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:344021ed3e639e017b452aa8f5f6bf38a8806f5852e217a7594417fb9bbfa00e"},
{url = "https://files.pythonhosted.org/packages/60/e3/d90929366de6562529cd98f81b5735bd71230c99764e19dd26bfd99c0e33/pandas-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0d8fd58df5d17ddb8c72a5075d87cd80d71b542571b5f78178fb067fa4e9c72"},
{url = "https://files.pythonhosted.org/packages/67/16/5b7621255df6c0851b1f03052d48fd9f229c414dd366f6fda51da47cb96c/pandas-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0183cb04a057cc38fde5244909fca9826d5d57c4a5b7390c0cc3fa7acd9fa883"},
{url = "https://files.pythonhosted.org/packages/67/a3/903393efaae5be8c11cd01ea5b950bc9950096574ef9ca79466779840b63/pandas-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e2b83abd292194f350bb04e188f9379d36b8dfac24dd445d5c87575f3beaf789"},
{url = "https://files.pythonhosted.org/packages/76/4f/a59a029fd3000e2a5e5075eca9d6a8022aec23f60088df79f0a989d00702/pandas-1.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:c218796d59d5abd8780170c937b812c9637e84c32f8271bbf9845970f8c1351f"},
{url = "https://files.pythonhosted.org/packages/7f/73/8ac702651edb2282ba059575ad73e3eba0f129df72c7c2d417af8b528896/pandas-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:315e19a3e5c2ab47a67467fc0362cb36c7c60a93b6457f675d7d9615edad2ebe"},
{url = "https://files.pythonhosted.org/packages/82/d9/f550aa2c6ceb89c6b1b2cc5491b605568624cbc53c86a05f350be9f0d583/pandas-1.5.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:457d8c3d42314ff47cc2d6c54f8fc0d23954b47977b2caed09cd9635cb75388b"},
{url = "https://files.pythonhosted.org/packages/94/c1/a1f4662c585a820dc85c6c8251af89b80d1326bcfd3b341a878ed009e997/pandas-1.5.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e18bc3764cbb5e118be139b3b611bc3fbc5d3be42a7e827d1096f46087b395eb"},
{url = "https://files.pythonhosted.org/packages/99/98/52103c91ee1a483ba3403afb38c5e506ef2873192f7cf727a3511cf1dd5f/pandas-1.5.2-cp38-cp38-win32.whl", hash = "sha256:530948945e7b6c95e6fa7aa4be2be25764af53fba93fe76d912e35d1c9ee46f5"},
{url = "https://files.pythonhosted.org/packages/9c/6c/3bfce7f343360c1b537fb59ecbf6865e21d5c8d9e07a632bc6725744e919/pandas-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ae7e989f12628f41e804847a8cc2943d362440132919a69429d4dea1f164da0"},
{url = "https://files.pythonhosted.org/packages/af/25/4cbf835f48366ac1007ca959781d1ac770caa36cd27af148dacdde18d397/pandas-1.5.2-cp311-cp311-win_amd64.whl", hash = "sha256:82ae615826da838a8e5d4d630eb70c993ab8636f0eff13cb28aafc4291b632b5"},
{url = "https://files.pythonhosted.org/packages/b3/e9/177dae31a2e3c75a3bfdb63136b72bb036d9de0817d8fbbd7c33c37ce07e/pandas-1.5.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:71f510b0efe1629bf2f7c0eadb1ff0b9cf611e87b73cd017e6b7d6adb40e2b3a"},
{url = "https://files.pythonhosted.org/packages/b6/ba/a5ed09e4044c683fab1dec7a18fb139db0afde61def7a4d8fa2848a2d9c8/pandas-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6257b314fc14958f8122779e5a1557517b0f8e500cfb2bd53fa1f75a8ad0af2"},
{url = "https://files.pythonhosted.org/packages/b7/a4/f40c5a989c2b9381ebe3a19be28a15469a9233c83a82ca86f8abe455f41b/pandas-1.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fc87eac0541a7d24648a001d553406f4256e744d92df1df8ebe41829a915028"},
{url = "https://files.pythonhosted.org/packages/b8/cb/9fd77ef44900d29993d0a51ae7c552fb4e4953358fcbb1a676c64d05ce04/pandas-1.5.2-cp38-cp38-win_amd64.whl", hash = "sha256:73f219fdc1777cf3c45fde7f0708732ec6950dfc598afc50588d0d285fddaefc"},
{url = "https://files.pythonhosted.org/packages/bc/3a/4ee3bd4daac874ae484161802f3c8ecdafa68b3b97685e93ef1ef9e3814d/pandas-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc3cd122bea268998b79adebbb8343b735a5511ec14efb70a39e7acbc11ccbdc"},
{url = "https://files.pythonhosted.org/packages/f3/a5/6ef3a6ccf1f0962fa378b3d0842060ba6288ddc036b230c190849dcdad08/pandas-1.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8092a368d3eb7116e270525329a3e5c15ae796ccdf7ccb17839a73b4f5084a39"},
{url = "https://files.pythonhosted.org/packages/ff/2f/f7a9deb154eabd2e99cf1bcccefb3c7529d126cb2b551070dc8226a96282/pandas-1.5.2-cp310-cp310-win_amd64.whl", hash = "sha256:4aed257c7484d01c9a194d9a94758b37d3d751849c05a0050c087a358c41ad1f"},
]
"pdbpp 0.10.3" = [
{url = "https://files.pythonhosted.org/packages/1f/a3/c4bd048256fd4b7d28767ca669c505e156f24d16355505c62e6fce3314df/pdbpp-0.10.3.tar.gz", hash = "sha256:d9e43f4fda388eeb365f2887f4e7b66ac09dce9b6236b76f63616530e2f669f5"},
{url = "https://files.pythonhosted.org/packages/93/ee/491e63a57fffa78b9de1c337b06c97d0cd0753e88c00571c7b011680332a/pdbpp-0.10.3-py2.py3-none-any.whl", hash = "sha256:79580568e33eb3d6f6b462b1187f53e10cd8e4538f7d31495c9181e2cf9665d1"},
]
"platformdirs 2.6.0" = [
{url = "https://files.pythonhosted.org/packages/87/69/cd019a9473bcdfb38983e2d550ccb239264fc4c2fc32c42ac1b1cc2506b6/platformdirs-2.6.0-py3-none-any.whl", hash = "sha256:1a89a12377800c81983db6be069ec068eee989748799b946cce2a6e80dcc54ca"},
{url = "https://files.pythonhosted.org/packages/ec/4c/9af851448e55c57b30a13a72580306e628c3b431d97fdae9e0b8d4fa3685/platformdirs-2.6.0.tar.gz", hash = "sha256:b46ffafa316e6b83b47489d240ce17173f123a9b9c83282141c3daf26ad9ac2e"},
]
"pyarrow 10.0.1" = [
{url = "https://files.pythonhosted.org/packages/11/71/dd884e86aa92b2d602ee2064a485106ce5b447f8cae644f1a6f6a2e72016/pyarrow-10.0.1.tar.gz", hash = "sha256:1a14f57a5f472ce8234f2964cd5184cccaa8df7e04568c64edc33b23eb285dd5"},
{url = "https://files.pythonhosted.org/packages/12/30/7e924599750474544ad2b01cf8d13edf80d8444a51b68c03761f6486d05e/pyarrow-10.0.1-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:61f4c37d82fe00d855d0ab522c685262bdeafd3fbcb5fe596fe15025fbc7341b"},
{url = "https://files.pythonhosted.org/packages/1e/6e/915b7dfb7cfd2efd092b9b4d6579cb5848ba1dced3543bdd963df59ee2b5/pyarrow-10.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:254017ca43c45c5098b7f2a00e995e1f8346b0fb0be225f042838323bb55283c"},
{url = "https://files.pythonhosted.org/packages/26/02/62c918edc87e91bf07fd003f7ed8468d45130471b415754b27cf4db95896/pyarrow-10.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6f7a7dbe2f7f65ac1d0bd3163f756deb478a9e9afc2269557ed75b1b25ab3610"},
{url = "https://files.pythonhosted.org/packages/33/15/b62e72b04f48de27cc97a874c0f466cda8731444e380b75c58272a9fc649/pyarrow-10.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:7b4ede715c004b6fc535de63ef79fa29740b4080639a5ff1ea9ca84e9282f349"},
{url = "https://files.pythonhosted.org/packages/61/a7/c6b4ce8fefda1a89083dc25bbd8da0200194779640e146b18abe742551d7/pyarrow-10.0.1-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:f2d00aa481becf57098e85d99e34a25dba5a9ade2f44eb0b7d80c80f2984fc03"},
{url = "https://files.pythonhosted.org/packages/6a/d3/cdaa61af13c323d33d2950126ecab641524174d71474a2b8450ab6f15ef6/pyarrow-10.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:efa59933b20183c1c13efc34bd91efc6b2997377c4c6ad9272da92d224e3beb1"},
{url = "https://files.pythonhosted.org/packages/6b/7d/dfde28d33a2dd22c95529d361203b6dc0cbdf87d82988f7d03224de35fcf/pyarrow-10.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:0ec7587d759153f452d5263dbc8b1af318c4609b607be2bd5127dcda6708cdb1"},
{url = "https://files.pythonhosted.org/packages/6d/fa/470b9d156eba452c67d681059f0876fb7bad74e387a37fe1d146aeac6bcd/pyarrow-10.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:d1bc6e4d5d6f69e0861d5d7f6cf4d061cf1069cb9d490040129877acf16d4c2a"},
{url = "https://files.pythonhosted.org/packages/7d/75/e799c76223b446b461a76420766ead8a2483e21272d4de9a5b5d260851ff/pyarrow-10.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:443eb9409b0cf78df10ced326490e1a300205a458fbeb0767b6b31ab3ebae6b2"},
{url = "https://files.pythonhosted.org/packages/81/53/385279a985567a8a909bf9365cd15fc87c26ebe7db60a7220e4eeb407c87/pyarrow-10.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abb57334f2c57979a49b7be2792c31c23430ca02d24becd0b511cbe7b6b08649"},
{url = "https://files.pythonhosted.org/packages/85/37/c66886e2b479018d1a5ed11c77913325f5482f60e5217c2f4182b15a5d25/pyarrow-10.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b1fc226d28c7783b52a84d03a66573d5a22e63f8a24b841d5fc68caeed6784d4"},
{url = "https://files.pythonhosted.org/packages/86/7a/299b7b966be9c61e7337ddbff4e9e530093ef2ad935e52944b8ce19ba92f/pyarrow-10.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf26f809926a9d74e02d76593026f0aaeac48a65b64f1bb17eed9964bfe7ae1a"},
{url = "https://files.pythonhosted.org/packages/89/b4/04ae9d39130d0dc40803eb6fbe84873c247f9c8e8111ac9b2cb30c35b515/pyarrow-10.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:668e00e3b19f183394388a687d29c443eb000fb3fe25599c9b4762a0afd37775"},
{url = "https://files.pythonhosted.org/packages/90/69/9e0ea39bed0d281e84cc3cd4a693ebc86266b705d910af9cc939e66c5d03/pyarrow-10.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:1765a18205eb1e02ccdedb66049b0ec148c2a0cb52ed1fb3aac322dfc086a6ee"},
{url = "https://files.pythonhosted.org/packages/a4/48/19c8b4892d2d574dfbefa7065600aa4d7d8e8b864f7be5f58105c3fc0448/pyarrow-10.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94fb4a0c12a2ac1ed8e7e2aa52aade833772cf2d3de9dde685401b22cec30002"},
{url = "https://files.pythonhosted.org/packages/b2/d2/77f002c442ed75f0cd19b744e34894544d25fc34bbdc8efeb33bd52d8de0/pyarrow-10.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db0c5986bf0808927f49640582d2032a07aa49828f14e51f362075f03747d198"},
{url = "https://files.pythonhosted.org/packages/b6/14/208f66e1c2f213ffc053e3d37b10ba41d0580654501dcd620ad5d32d056e/pyarrow-10.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b069602eb1fc09f1adec0a7bdd7897f4d25575611dfa43543c8b8a75d99d6874"},
{url = "https://files.pythonhosted.org/packages/b9/46/0050ff96706f27b766497d63ad60f8bace6a4e61565594bd8079b33e81af/pyarrow-10.0.1-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:42ba7c5347ce665338f2bc64685d74855900200dac81a972d49fe127e8132f75"},
{url = "https://files.pythonhosted.org/packages/da/8a/9fa72ef41bd47816f11e6c3c5b68c0a913d2005a3e1aa327dfaa936debb9/pyarrow-10.0.1-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:e00174764a8b4e9d8d5909b6d19ee0c217a6cf0232c5682e31fdfbd5a9f0ae52"},
{url = "https://files.pythonhosted.org/packages/db/9f/ef33d4f60089bbe32a5620e599cb485cfd9306bd1663bc603354759c28eb/pyarrow-10.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba71e6fc348c92477586424566110d332f60d9a35cb85278f42e3473bc1373da"},
{url = "https://files.pythonhosted.org/packages/ef/87/a0849cd20c75dd832683fdad0b321e6428281f3f3053e01c588269ae5b89/pyarrow-10.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70acca1ece4322705652f48db65145b5028f2c01c7e426c5d16a30ba5d739c24"},
{url = "https://files.pythonhosted.org/packages/f3/95/34b43f8b12f8366daba56ba46de354fd93e33b7535558d18173be2df60d2/pyarrow-10.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e141a65705ac98fa52a9113fe574fdaf87fe0316cde2dffe6b94841d3c61544c"},
{url = "https://files.pythonhosted.org/packages/f8/fe/4e2d2cd7e0d544018d7c7fee3dcee80303e16111605716592dd5333a2212/pyarrow-10.0.1-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:e3fe5049d2e9ca661d8e43fab6ad5a4c571af12d20a57dffc392a014caebef65"},
{url = "https://files.pythonhosted.org/packages/fd/3e/9f538cc3e048ae2de171ae4bb326c5482ba2bd63978c56bd29110e65ba09/pyarrow-10.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb627673cb98708ef00864e2e243f51ba7b4c1b9f07a1d821f98043eccd3f585"},
]
"pygments 2.13.0" = [
{url = "https://files.pythonhosted.org/packages/4f/82/672cd382e5b39ab1cd422a672382f08a1fb3d08d9e0c0f3707f33a52063b/Pygments-2.13.0-py3-none-any.whl", hash = "sha256:f643f331ab57ba3c9d89212ee4a2dabc6e94f117cf4eefde99a0574720d14c42"},
{url = "https://files.pythonhosted.org/packages/e0/ef/5905cd3642f2337d44143529c941cc3a02e5af16f0f65f81cbef7af452bb/Pygments-2.13.0.tar.gz", hash = "sha256:56a8508ae95f98e2b9bdf93a6be5ae3f7d8af858b43e02c5a2ff083726be40c1"},
]
"pylint 2.15.8" = [
{url = "https://files.pythonhosted.org/packages/0d/03/3a96bda38c4b3c77394d9769bda4a35411103849d66f9db790d30a00f258/pylint-2.15.8-py3-none-any.whl", hash = "sha256:ea82cd6a1e11062dc86d555d07c021b0fb65afe39becbe6fe692efd6c4a67443"},
{url = "https://files.pythonhosted.org/packages/1e/fa/690c4dcf3ade9ae0497413c788267eafa36228394099708bb0fd0b8a6949/pylint-2.15.8.tar.gz", hash = "sha256:ec4a87c33da054ab86a6c79afa6771dc8765cb5631620053e727fcf3ef8cbed7"},
]
"pyreadline 2.1" = [
{url = "https://files.pythonhosted.org/packages/bc/7c/d724ef1ec3ab2125f38a1d53285745445ec4a8f19b9bb0761b4064316679/pyreadline-2.1.zip", hash = "sha256:4530592fc2e85b25b1a9f79664433da09237c1a270e4d78ea5aa3a2c7229e2d1"},
]
"pyrepl 0.9.0" = [
{url = "https://files.pythonhosted.org/packages/05/1b/ea40363be0056080454cdbabe880773c3c5bd66d7b13f0c8b8b8c8da1e0c/pyrepl-0.9.0.tar.gz", hash = "sha256:292570f34b5502e871bbb966d639474f2b57fbfcd3373c2d6a2f3d56e681a775"},
]
"python-dateutil 2.8.2" = [
{url = "https://files.pythonhosted.org/packages/36/7a/87837f39d0296e723bb9b62bbb257d0355c7f6128853c78955f57342a56d/python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"},
{url = "https://files.pythonhosted.org/packages/4c/c4/13b4776ea2d76c115c1d1b84579f3764ee6d57204f6be27119f13a61d0a9/python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"},
]
"pytz 2022.7" = [
{url = "https://files.pythonhosted.org/packages/3d/19/4de17f0d5cf5a0d87aa67532d4c2fa75e6e7d8df13c27635ff40fa6f4b76/pytz-2022.7-py2.py3-none-any.whl", hash = "sha256:93007def75ae22f7cd991c84e02d434876818661f8df9ad5df9e950ff4e52cfd"},
{url = "https://files.pythonhosted.org/packages/6d/37/54f2d7c147e42dc85ffbc6910862bb4f141fb3fc14d9a88efaa1a76c7df2/pytz-2022.7.tar.gz", hash = "sha256:7ccfae7b4b2c067464a6733c6261673fdb8fd1be905460396b97a073e9fa683a"},
]
"regex 2022.10.31" = [
{url = "https://files.pythonhosted.org/packages/00/7e/ab5a54f60e36f4de0610850866b848839a7b02ad4f05755bce429fbc1a5a/regex-2022.10.31-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:763b64853b0a8f4f9cfb41a76a4a85a9bcda7fdda5cb057016e7706fde928e66"},
{url = "https://files.pythonhosted.org/packages/00/92/25b0b709d591ecd27e1bfb48c64d813a4ed4be0feb0321ea0b55db012099/regex-2022.10.31-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ae1e96785696b543394a4e3f15f3f225d44f3c55dafe3f206493031419fedf95"},
{url = "https://files.pythonhosted.org/packages/01/b3/a01602507224e611caa3c0f2a4aa96f4c03fdce482fa4527de61678a3018/regex-2022.10.31-cp37-cp37m-win_amd64.whl", hash = "sha256:8e0caeff18b96ea90fc0eb6e3bdb2b10ab5b01a95128dfeccb64a7238decf5f0"},
{url = "https://files.pythonhosted.org/packages/04/de/e8ed731b334e5f962ef035a32f151fffb2f839eccfba40c3ebdac9b26e03/regex-2022.10.31-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a5f9505efd574d1e5b4a76ac9dd92a12acb2b309551e9aa874c13c11caefbe4f"},
{url = "https://files.pythonhosted.org/packages/07/ba/7021c60d02f7fe7c3e4ee9636d8a2d93bd894a5063c2b5f35e2e31b1f3ad/regex-2022.10.31-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:44a6c2f6374e0033873e9ed577a54a3602b4f609867794c1a3ebba65e4c93ee7"},
{url = "https://files.pythonhosted.org/packages/08/28/f038ff3c5cfd30760bccefbe0b98d51cf61192ec8d3d55dd51564bf6c6b8/regex-2022.10.31-cp311-cp311-win32.whl", hash = "sha256:d8716f82502997b3d0895d1c64c3b834181b1eaca28f3f6336a71777e437c2af"},
{url = "https://files.pythonhosted.org/packages/08/cb/0445a970e755eb806945a166729210861391f645223187aa11fcbbb606ce/regex-2022.10.31-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:50921c140561d3db2ab9f5b11c5184846cde686bb5a9dc64cae442926e86f3af"},
{url = "https://files.pythonhosted.org/packages/08/e2/94af654d5fdfdad3a05991e104df66c42945650d31713fe290cd446178f1/regex-2022.10.31-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4bdd56ee719a8f751cf5a593476a441c4e56c9b64dc1f0f30902858c4ef8771d"},
{url = "https://files.pythonhosted.org/packages/08/ef/96ef949ee331d39489799b44f2d5aa8a252a2d7aa4a96edbb05425d344f6/regex-2022.10.31-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6a9a19bea8495bb419dc5d38c4519567781cd8d571c72efc6aa959473d10221a"},
{url = "https://files.pythonhosted.org/packages/09/d3/70714b99c25bac40f81eaf3fe06eb016c5b9b9ac88815145dc6aa7d06b68/regex-2022.10.31-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8ca88da1bd78990b536c4a7765f719803eb4f8f9971cc22d6ca965c10a7f2c4c"},
{url = "https://files.pythonhosted.org/packages/0a/cd/4dfdfddca4478ad0ebb6053b2c2923eef1a8660ceb9f495e7a6abb62da15/regex-2022.10.31-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:659175b2144d199560d99a8d13b2228b85e6019b6e09e556209dfb8c37b78a11"},
{url = "https://files.pythonhosted.org/packages/0b/cc/4f2cacc95e20cdef6421072b896bfea9cb9c54a78c4ea1253eb25a699782/regex-2022.10.31-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:0653d012b3bf45f194e5e6a41df9258811ac8fc395579fa82958a8b76286bea4"},
{url = "https://files.pythonhosted.org/packages/10/13/95d658ca010507b5a179d7fe8376d37d20c22f9be5abdd301832618463a8/regex-2022.10.31-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:4919899577ba37f505aaebdf6e7dc812d55e8f097331312db7f1aab18767cce8"},
{url = "https://files.pythonhosted.org/packages/10/1c/9b6827dd3be88b39d0ecce25abb27ad2a8104b1816da262c3ffd38311ea3/regex-2022.10.31-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b30bddd61d2a3261f025ad0f9ee2586988c6a00c780a2fb0a92cea2aa702c54"},
{url = "https://files.pythonhosted.org/packages/18/9c/b52170b2dc8d65a69f3369d0bd1a3102df295edfccfef1b41e82b6aef796/regex-2022.10.31-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:5ff525698de226c0ca743bfa71fc6b378cda2ddcf0d22d7c37b1cc925c9650a5"},
{url = "https://files.pythonhosted.org/packages/1a/1a/e7ae9a041d3e103f98c9a79d8abb235cca738b7bd6da3fb5e4066d30e4d7/regex-2022.10.31-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4b4b1fe58cd102d75ef0552cf17242705ce0759f9695334a56644ad2d83903fe"},
{url = "https://files.pythonhosted.org/packages/1d/d9/a70219b39be741af8a831b98dee154091115bc0e3770e28e006d86511619/regex-2022.10.31-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:22e7ebc231d28393dfdc19b185d97e14a0f178bedd78e85aad660e93b646604e"},
{url = "https://files.pythonhosted.org/packages/1f/f3/895ba11bc0243becd38f8b7560d2e329c465ead247cfb815611c347d7fc1/regex-2022.10.31-cp38-cp38-win_amd64.whl", hash = "sha256:5e6a5567078b3eaed93558842346c9d678e116ab0135e22eb72db8325e90b453"},
{url = "https://files.pythonhosted.org/packages/21/1f/f54c156ac95a89d33113d78a18c03db8c00600392d6d6c5a18249c563c58/regex-2022.10.31-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20f61c9944f0be2dc2b75689ba409938c14876c19d02f7585af4460b6a21403e"},
{url = "https://files.pythonhosted.org/packages/23/8d/1df5d30ce1e5ae3edfb775b892c93882d13ba93991314871fec569f16829/regex-2022.10.31-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:7db345956ecce0c99b97b042b4ca7326feeec6b75facd8390af73b18e2650ffc"},
{url = "https://files.pythonhosted.org/packages/27/b5/92d404279fd5f4f0a17235211bb0f5ae7a0d9afb7f439086ec247441ed28/regex-2022.10.31.tar.gz", hash = "sha256:a3a98921da9a1bf8457aeee6a551948a83601689e5ecdd736894ea9bbec77e83"},
{url = "https://files.pythonhosted.org/packages/28/9c/e392e9aac4d4c10d81e0991e31e50755bd5f15a924284de4fac1d728b145/regex-2022.10.31-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:370f6e97d02bf2dd20d7468ce4f38e173a124e769762d00beadec3bc2f4b3bc4"},
{url = "https://files.pythonhosted.org/packages/2d/db/45ca83007d69cc594c32d7feae20b1b6067f829b2b0d27bb769d7188dfa1/regex-2022.10.31-cp310-cp310-win32.whl", hash = "sha256:44136355e2f5e06bf6b23d337a75386371ba742ffa771440b85bed367c1318d1"},
{url = "https://files.pythonhosted.org/packages/2f/38/1947b056840f27eb6f9cbb28ca70135f75fee117fe4fa546528a8962d275/regex-2022.10.31-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d26166acf62f731f50bdd885b04b38828436d74e8e362bfcb8df221d868b5d9b"},
{url = "https://files.pythonhosted.org/packages/30/eb/a28fad5b882d3e711c75414b3c99fb2954f78fa450deeed9fe9ad3bf2534/regex-2022.10.31-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0e5af9a9effb88535a472e19169e09ce750c3d442fb222254a276d77808620b"},
{url = "https://files.pythonhosted.org/packages/3c/4f/33b5cbd85fb0272e5c1dc00e3cfc89874b37705613455d7ab1c1f3ff7906/regex-2022.10.31-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:74bcab50a13960f2a610cdcd066e25f1fd59e23b69637c92ad470784a51b1347"},
{url = "https://files.pythonhosted.org/packages/3c/d1/49b9a2cb289c20888b23bb7f8f29e3ad7982785b10041477fd56ed5783c5/regex-2022.10.31-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:a3c1ebd4ed8e76e886507c9eddb1a891673686c813adf889b864a17fafcf6d66"},
{url = "https://files.pythonhosted.org/packages/3e/cf/97a89e2b798988118beed6620dbfbc9b4bd72d8177b3b4ed47d80da26df9/regex-2022.10.31-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c28d3309ebd6d6b2cf82969b5179bed5fefe6142c70f354ece94324fa11bf6a1"},
{url = "https://files.pythonhosted.org/packages/40/54/c6f42a3bb78172493eaab818f62ac2062ab310ead0ae7ecd7f0de5ca9084/regex-2022.10.31-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef4163770525257876f10e8ece1cf25b71468316f61451ded1a6f44273eedeb5"},
{url = "https://files.pythonhosted.org/packages/42/d8/8a7131e7d0bf237f7bcd3191541a4bf21863c253fe6bee0796900a1a9a29/regex-2022.10.31-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce6910b56b700bea7be82c54ddf2e0ed792a577dfaa4a76b9af07d550af435c6"},
{url = "https://files.pythonhosted.org/packages/43/5b/6ba9b08ea991993ad61e4098d88069c86f6d6cc0e52a26fa35f6a66d90ee/regex-2022.10.31-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b683e5fd7f74fb66e89a1ed16076dbab3f8e9f34c18b1979ded614fe10cdc4d9"},
{url = "https://files.pythonhosted.org/packages/48/1e/829551abceba73e7e9b1f94a311a53e9c0f60c7deec8821633fc3b343a58/regex-2022.10.31-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9d0b68ac1743964755ae2d89772c7e6fb0118acd4d0b7464eaf3921c6b49dd4"},
{url = "https://files.pythonhosted.org/packages/48/4e/4c1e7dfab3255f4476faa11a9fcc867e03d2c4abb2e101505deb7ef790e0/regex-2022.10.31-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:7ef6b5942e6bfc5706301a18a62300c60db9af7f6368042227ccb7eeb22d0892"},
{url = "https://files.pythonhosted.org/packages/48/ea/a404ca530fd783d0b427e07451fdf847303ff3eccf851bdcb787872ab2d3/regex-2022.10.31-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7b280948d00bd3973c1998f92e22aa3ecb76682e3a4255f33e1020bd32adf443"},
{url = "https://files.pythonhosted.org/packages/4e/fa/efe2c65d2555a01c61a6522b63f98dd7f77dbfeea810e96d8f7e1d9552a3/regex-2022.10.31-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:597f899f4ed42a38df7b0e46714880fb4e19a25c2f66e5c908805466721760f5"},
{url = "https://files.pythonhosted.org/packages/54/b2/eb79f7674559f2dbb5bbba5ce5ca3e8539200c96e576ca9e0e619c2690d3/regex-2022.10.31-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:8ad241da7fac963d7573cc67a064c57c58766b62a9a20c452ca1f21050868dfa"},
{url = "https://files.pythonhosted.org/packages/55/73/f71734c0357e41673b00bff0a8675ffb67328ba18f24614ec5af2073b56f/regex-2022.10.31-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8e38472739028e5f2c3a4aded0ab7eadc447f0d84f310c7a8bb697ec417229e"},
{url = "https://files.pythonhosted.org/packages/55/c6/7235609772ee24e7f74342f7d0f7c40f043098421cc9fe9358fa98a66c79/regex-2022.10.31-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:0a069c8483466806ab94ea9068c34b200b8bfc66b6762f45a831c4baaa9e8cdd"},
{url = "https://files.pythonhosted.org/packages/56/4b/22c965c2f6847b0581a8d4407b265c04f989cb6df09ddfd7205744b14cbc/regex-2022.10.31-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5352bea8a8f84b89d45ccc503f390a6be77917932b1c98c4cdc3565137acc714"},
{url = "https://files.pythonhosted.org/packages/56/e3/351029c41f42e29d9c6ae3d217ad332761945b41dfbddb64adc31d434c6b/regex-2022.10.31-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23cbb932cc53a86ebde0fb72e7e645f9a5eec1a5af7aa9ce333e46286caef783"},
{url = "https://files.pythonhosted.org/packages/58/4e/0f0a7b674d6164809db80eac36a3a70bbd3bcf6dc8fb6f89f70f0893b85b/regex-2022.10.31-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cf0da36a212978be2c2e2e2d04bdff46f850108fccc1851332bcae51c8907cc"},
{url = "https://files.pythonhosted.org/packages/59/68/5d77731c6cb3cfcf8aece4c650cc4a601795387292e2bd61826ed75310eb/regex-2022.10.31-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d403d781b0e06d2922435ce3b8d2376579f0c217ae491e273bab8d092727d244"},
{url = "https://files.pythonhosted.org/packages/5f/7e/23ddf7d405aad0d0a8fa478ba60fc1c46f661403fe4a49e04d48ea1095b4/regex-2022.10.31-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4bf41b8b0a80708f7e0384519795e80dcb44d7199a35d52c15cc674d10b3081b"},
{url = "https://files.pythonhosted.org/packages/63/89/7035055b960428a3af1fb1bfdf805cada83a81f88459350dad82a260a08d/regex-2022.10.31-cp38-cp38-win32.whl", hash = "sha256:5a260758454580f11dd8743fa98319bb046037dfab4f7828008909d0aa5292bc"},
{url = "https://files.pythonhosted.org/packages/65/38/a5e1f46f32c453ec162eddac315d5e0d3a0f26ccd638c6f9d078e802d2aa/regex-2022.10.31-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:d0213671691e341f6849bf33cd9fad21f7b1cb88b89e024f33370733fec58742"},
{url = "https://files.pythonhosted.org/packages/69/a4/d8cb52db0a918f8a1cad766c4bc5cf968b2a00a06183aa9b5f71ff6094e3/regex-2022.10.31-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d243b36fbf3d73c25e48014961e83c19c9cc92530516ce3c43050ea6276a2ab7"},
{url = "https://files.pythonhosted.org/packages/72/cf/da36a722626572ea66ab799e7019eb9a367fa563d43e3b1ec65a934d12d3/regex-2022.10.31-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b7a8b43ee64ca8f4befa2bea4083f7c52c92864d8518244bfa6e88c751fa8fff"},
{url = "https://files.pythonhosted.org/packages/78/74/c8659c8e1b6745299df62099d162002deeb32a9a933bc7632836a3c22374/regex-2022.10.31-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e613a98ead2005c4ce037c7b061f2409a1a4e45099edb0ef3200ee26ed2a69a8"},
{url = "https://files.pythonhosted.org/packages/7c/cf/50844f62052bb858987fe3970315134e3be6167fc76e11d328e7fcf876ff/regex-2022.10.31-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5aefb84a301327ad115e9d346c8e2760009131d9d4b4c6b213648d02e2abe144"},
{url = "https://files.pythonhosted.org/packages/83/ad/defd48762ff8fb2d06667b1e8bef471c2cc71a1b3d6ead26b841bfd9da99/regex-2022.10.31-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:76c598ca73ec73a2f568e2a72ba46c3b6c8690ad9a07092b18e48ceb936e9f0c"},
{url = "https://files.pythonhosted.org/packages/84/93/67595e62890fa944da394795f0425140917340d35d9cfd49672a8dc48c1a/regex-2022.10.31-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a8ff454ef0bb061e37df03557afda9d785c905dab15584860f982e88be73015f"},
{url = "https://files.pythonhosted.org/packages/87/50/e237090e90a0b0c8eab40af7d6f2faaf1432c4dca232de9a9c789faf3154/regex-2022.10.31-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:2cdc55ca07b4e70dda898d2ab7150ecf17c990076d3acd7a5f3b25cb23a69f1c"},
{url = "https://files.pythonhosted.org/packages/88/e0/d4251593cde041f3a9b249744da5b6e53d1ac4fa2542dfe251fe8070793b/regex-2022.10.31-cp36-cp36m-win_amd64.whl", hash = "sha256:c14b63c9d7bab795d17392c7c1f9aaabbffd4cf4387725a0ac69109fb3b550c6"},
{url = "https://files.pythonhosted.org/packages/8d/50/7dd264adf08bf3ca588562bac344a825174e8e57c75ad3e5ed169aba5718/regex-2022.10.31-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1eba476b1b242620c266edf6325b443a2e22b633217a9835a52d8da2b5c051f9"},
{url = "https://files.pythonhosted.org/packages/91/4e/fb78efdac24862ef6ea8009b0b9cdb5f25968d1b262cc32abd9d483f50b1/regex-2022.10.31-cp311-cp311-win_amd64.whl", hash = "sha256:61edbca89aa3f5ef7ecac8c23d975fe7261c12665f1d90a6b1af527bba86ce61"},
{url = "https://files.pythonhosted.org/packages/92/3c/17432c77b7d3929adb73077584606b236be4ed832243d426f51f5a0f72f9/regex-2022.10.31-cp39-cp39-win_amd64.whl", hash = "sha256:957403a978e10fb3ca42572a23e6f7badff39aa1ce2f4ade68ee452dc6807692"},
{url = "https://files.pythonhosted.org/packages/9c/1a/63bcd0f28f74619190c4f6f3cf90e3fdccb4b1437aac7e19598e18b51901/regex-2022.10.31-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:543883e3496c8b6d58bd036c99486c3c8387c2fc01f7a342b760c1ea3158a318"},
{url = "https://files.pythonhosted.org/packages/a3/60/6084d08f56d424f46ecbfedebd11b2c2d7eb2f9bc36ccd8801821024262c/regex-2022.10.31-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2bde29cc44fa81c0a0c8686992c3080b37c488df167a371500b2a43ce9f026d1"},
{url = "https://files.pythonhosted.org/packages/a6/9b/b6819a467182e94e7648120cedcb6019751ceff9f5f3ef9c340e14ea7992/regex-2022.10.31-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:9c94f7cc91ab16b36ba5ce476f1904c91d6c92441f01cd61a8e2729442d6fcf5"},
{url = "https://files.pythonhosted.org/packages/ad/29/4efb589803fa476e649fcc256886837b74931c4ca1878e69cd5018f77e03/regex-2022.10.31-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:131d4be09bea7ce2577f9623e415cab287a3c8e0624f778c1d955ec7c281bd4d"},
{url = "https://files.pythonhosted.org/packages/ad/56/c6344d2f3e170229fbd9e7928f85969084905e52ea06446f4d1763c712ce/regex-2022.10.31-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a37d51fa9a00d265cf73f3de3930fa9c41548177ba4f0faf76e61d512c774690"},
{url = "https://files.pythonhosted.org/packages/b3/60/38ea6f8808bf58852b3e08faa2d7418b8887144f891284bc2a1afb7b6967/regex-2022.10.31-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:29c04741b9ae13d1e94cf93fca257730b97ce6ea64cfe1eba11cf9ac4e85afb6"},
{url = "https://files.pythonhosted.org/packages/b3/a2/1c165d7759f501184214e788dccfc0bbca068eb70d6bc4fd7999712a2674/regex-2022.10.31-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7dbdce0c534bbf52274b94768b3498abdf675a691fec5f751b6057b3030f34c1"},
{url = "https://files.pythonhosted.org/packages/b4/04/daeb6806a2b2e10e548c95b136aefb12818ef81a0aa5f865705bf19e7cd7/regex-2022.10.31-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa62a07ac93b7cb6b7d0389d8ef57ffc321d78f60c037b19dfa78d6b17c928ee"},
{url = "https://files.pythonhosted.org/packages/b5/3d/6ac9300e7b55979ad4040a4317cd14daf7689be0c09f2c49ca3070e2387a/regex-2022.10.31-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac741bf78b9bb432e2d314439275235f41656e189856b11fb4e774d9f7246d81"},
{url = "https://files.pythonhosted.org/packages/b7/0a/c865345e6ece671f16ac1fe79bf4ba771c528c2e4a56607898cdf065c285/regex-2022.10.31-cp310-cp310-win_amd64.whl", hash = "sha256:bfff48c7bd23c6e2aec6454aaf6edc44444b229e94743b34bdcdda2e35126cf5"},
{url = "https://files.pythonhosted.org/packages/bb/ba/92096d78cbdd34dce674962392a0e57ce748a9e5f737f12b0001723d959a/regex-2022.10.31-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d03fe67b2325cb3f09be029fd5da8df9e6974f0cde2c2ac6a79d2634e791dd57"},
{url = "https://files.pythonhosted.org/packages/be/d3/7e334b8bc597dea6200f7bb969fc693d4c71c4a395750e28d09c8e5a8104/regex-2022.10.31-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8a45b6514861916c429e6059a55cf7db74670eaed2052a648e3e4d04f070e001"},
{url = "https://files.pythonhosted.org/packages/c1/65/3ee862c7a78ce1f9bd748d460e379317464c2658e645a1a7c1304d36e819/regex-2022.10.31-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c27cc1e4b197092e50ddbf0118c788d9977f3f8f35bfbbd3e76c1846a3443df7"},
{url = "https://files.pythonhosted.org/packages/c1/7e/18651b654689c7e318e3e09c7f5ed56a48d7648c882ebe69ce8954d3941a/regex-2022.10.31-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75f591b2055523fc02a4bbe598aa867df9e953255f0b7f7715d2a36a9c30065c"},
{url = "https://files.pythonhosted.org/packages/c2/52/b71ff1a281f37016cab322e176e3c63fe1b5c27d68cdacdec769708e49b7/regex-2022.10.31-cp37-cp37m-win32.whl", hash = "sha256:c670f4773f2f6f1957ff8a3962c7dd12e4be54d05839b216cb7fd70b5a1df394"},
{url = "https://files.pythonhosted.org/packages/c7/6a/386254696e2ab59ccce2eeee1e014f95538004e3c840606ef817192dbf8a/regex-2022.10.31-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5217c25229b6a85049416a5c1e6451e9060a1edcf988641e309dbe3ab26d3e49"},
{url = "https://files.pythonhosted.org/packages/cc/45/1ecb7ee4f479da2bc23e16a0266a90a5ecd918e1410d9188a1ae457f7c3e/regex-2022.10.31-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:7f5a3ffc731494f1a57bd91c47dc483a1e10048131ffb52d901bfe2beb6102e8"},
{url = "https://files.pythonhosted.org/packages/cc/c2/6d41a7a9690d4543b1f438f45576af96523c4f1caeb5307fff3350ec7d0b/regex-2022.10.31-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:702d8fc6f25bbf412ee706bd73019da5e44a8400861dfff7ff31eb5b4a1276dc"},
{url = "https://files.pythonhosted.org/packages/ce/ac/519de46093b4162e154f055ec020ba2f3641ba2cf6f1ddefd1abea5043b3/regex-2022.10.31-cp39-cp39-win32.whl", hash = "sha256:395161bbdbd04a8333b9ff9763a05e9ceb4fe210e3c7690f5e68cedd3d65d8e1"},
{url = "https://files.pythonhosted.org/packages/d2/a6/2af9cc002057b75868ec7740fe3acb8f89796c9d29caf5775fefd96c3240/regex-2022.10.31-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:4fe7fda2fe7c8890d454f2cbc91d6c01baf206fbc96d89a80241a02985118c0c"},
{url = "https://files.pythonhosted.org/packages/d8/5c/40e197174793b44637dd542c1dee45a5517023d1cac5ca5a68fbe60e4105/regex-2022.10.31-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:6ffd55b5aedc6f25fd8d9f905c9376ca44fcf768673ffb9d160dd6f409bfda73"},
{url = "https://files.pythonhosted.org/packages/dd/08/67feb849ab7288465b7b577cf076c0db5244dfd64bec8740cd8f0e074897/regex-2022.10.31-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:052b670fafbe30966bbe5d025e90b2a491f85dfe5b2583a163b5e60a85a321ad"},
{url = "https://files.pythonhosted.org/packages/dd/82/2fcd88776b621ce6569ca51aa4bd33e55d49d0f594a0252bc1d97899c2d9/regex-2022.10.31-cp36-cp36m-musllinux_1_1_s390x.whl", hash = "sha256:586b36ebda81e6c1a9c5a5d0bfdc236399ba6595e1397842fd4a45648c30f35e"},
{url = "https://files.pythonhosted.org/packages/de/82/1e868572aaa6b5468f07512fd184650bf9ade15943d4f1ae83d0dc512872/regex-2022.10.31-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4f781ffedd17b0b834c8731b75cce2639d5a8afe961c1e58ee7f1f20b3af185"},
{url = "https://files.pythonhosted.org/packages/e5/7d/0b0d25b7bb9a38cdccffd3fdcbf4ad7dd124fdf6ca6067cd973edff804bc/regex-2022.10.31-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:78d680ef3e4d405f36f0d6d1ea54e740366f061645930072d39bca16a10d8c93"},
{url = "https://files.pythonhosted.org/packages/e6/4a/48779981af80558ac01f0f2c0d71c1214215bc74c9b824eb6581e94a847c/regex-2022.10.31-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4cac3405d8dda8bc6ed499557625585544dd5cbf32072dcc72b5a176cb1271c8"},
{url = "https://files.pythonhosted.org/packages/ec/26/6577862030d42967657f1132956c4600a95bb7e999741bfa32cc0c5441ff/regex-2022.10.31-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:22960019a842777a9fa5134c2364efaed5fbf9610ddc5c904bd3a400973b0eb8"},
{url = "https://files.pythonhosted.org/packages/f8/ca/105a8f6d70499f2687a857570dcd411c0621a347b06c27126cffc32e77e0/regex-2022.10.31-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8b0886885f7323beea6f552c28bff62cbe0983b9fbb94126531693ea6c5ebb90"},
{url = "https://files.pythonhosted.org/packages/fa/54/acb97b65bc556520d61262ff22ad7d4baff96e3219fa1dc5425269def873/regex-2022.10.31-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:542e3e306d1669b25936b64917285cdffcd4f5c6f0247636fec037187bd93542"},
{url = "https://files.pythonhosted.org/packages/fc/be/e2ffc7e7454a6db7650050db188af4575a5e4fc0ce6dc73a5d31c6796c34/regex-2022.10.31-cp36-cp36m-win32.whl", hash = "sha256:144486e029793a733e43b2e37df16a16df4ceb62102636ff3db6033994711066"},
{url = "https://files.pythonhosted.org/packages/fd/12/c5d64d860c2d1be211a91b2416097d5e40699b80296cb4e99a064d4b4ff2/regex-2022.10.31-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9af69f6746120998cd9c355e9c3c6aec7dff70d47247188feb4f829502be8ab4"},
{url = "https://files.pythonhosted.org/packages/fe/f2/20be658beb9ebef677550be562eae86c5433119b4b2fdb67035e9a841b0f/regex-2022.10.31-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:1ddf14031a3882f684b8642cb74eea3af93a2be68893901b2b387c5fd92a03ec"},
]
"scikit-learn 1.2.0" = [
{url = "https://files.pythonhosted.org/packages/08/b4/c122c0e7225e438ff64867e5c9eb8ec246dcd2bfe5435a9a2adb3f7e160e/scikit_learn-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5546a8894a0616e92489ef995b39a0715829f3df96e801bb55cbf196be0d9649"},
{url = "https://files.pythonhosted.org/packages/1a/30/e3f9ea2a4766a59ae4c2e1c229094d9589fb32e7027167fa9e81e080e321/scikit_learn-1.2.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:40f3ff68c505cb9d1f3693397c73991875d609da905087e00e7b4477645ec67b"},
{url = "https://files.pythonhosted.org/packages/1a/73/4aef932bc3b85afef78310ebad9cc025f20c4d979d23c42e311b25d36166/scikit_learn-1.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:da29d2e379c396a63af5ed4b671ad2005cd690ac373a23bee5a0f66504e05272"},
{url = "https://files.pythonhosted.org/packages/27/a0/95eae31ceabeb7710a694367816edfcc0ccb001c794c14b3b234c148ae50/scikit-learn-1.2.0.tar.gz", hash = "sha256:680b65b3caee469541385d2ca5b03ff70408f6c618c583948312f0d2125df680"},
{url = "https://files.pythonhosted.org/packages/44/09/1ce869919aef7996869c3c339a4531ce8db16ed8d49fb1c7acd50057203e/scikit_learn-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:23a88883ca60c571a06278e4726b3b51b3709cfa4c93cacbf5568b22ba960899"},
{url = "https://files.pythonhosted.org/packages/48/0a/b8049d5f2fb9d8f6960a0b1994d32529c17235d46cbaae2de15d6735ad36/scikit_learn-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:25ba705ee1600ffc5df1dccd8fae129d7c6836e44ffcbb52d78536c9eaf8fcf9"},
{url = "https://files.pythonhosted.org/packages/49/2c/7baa1b58d0987b1c7559250d87ed072d4b883193a36333a3b722b5f11344/scikit_learn-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1beaa631434d1f17a20b1eef5d842e58c195875d2bc11901a1a70b5fe544745b"},
{url = "https://files.pythonhosted.org/packages/4f/10/dffb594160e9edf37fafde277933aee4c2bd19849c624c6c9541bb38341c/scikit_learn-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e9535e867281ae6987bb80620ba14cf1649e936bfe45f48727b978b7a2dbe835"},
{url = "https://files.pythonhosted.org/packages/60/cf/d516a5aa2b35b6540693990452d366beec8001f37bd621c997631477c66b/scikit_learn-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd3480c982b9e616b9f76ad8587804d3f4e91b4e2a6752e7dafb8a2e1f541098"},
{url = "https://files.pythonhosted.org/packages/6a/b1/bbedcbdae2c3f67b9b14af02178996e1305cf3d064fcd32d145394d17a3b/scikit_learn-1.2.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d395730f26d8fc752321f1953ddf72647c892d8bed74fad4d7c816ec9b602dfa"},
{url = "https://files.pythonhosted.org/packages/83/b5/0436307cb4f91ba280c74746fde7c89bed7a87703a2bf6e21791f56ce6de/scikit_learn-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de897720173b26842e21bed54362f5294e282422116b61cd931d4f5d870b9855"},
{url = "https://files.pythonhosted.org/packages/92/03/02d3123d9462c6325e67731e7582f96904f514ede5b0666524c1bc25c053/scikit_learn-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0834e4cec2a2e0d8978f39cb8fe1cad3be6c27a47927e1774bf5737ea65ec228"},
{url = "https://files.pythonhosted.org/packages/a0/53/d43d4e2882499ca3492a0c2a44184e96e6e87d4f2c7c2b60e4be5967e243/scikit_learn-1.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83c772fa8c64776ad769fd764752c8452844307adcf10dee3adcc43988260f21"},
{url = "https://files.pythonhosted.org/packages/b0/73/8992b6647ca8753dbe194c3582423cd965e731e2828c3edc8de5fd64ebe6/scikit_learn-1.2.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:bc7073e025b62c1067cbfb76e69d08650c6b9d7a0e7afdfa20cb92d4afe516f6"},
{url = "https://files.pythonhosted.org/packages/b4/56/4282c0f73a49009f30b8c60b348c71b136036f608320cfba9ea744214f71/scikit_learn-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e1ea0bc1706da45589bcf2490cde6276490a1b88f9af208dbb396fdc3a0babf"},
{url = "https://files.pythonhosted.org/packages/b9/86/62738531b1db41defda03c8d065ec9f6282ec96b82309cba7715e0e263ce/scikit_learn-1.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:f17420a8e3f40129aeb7e0f5ee35822d6178617007bb8f69521a2cefc20d5f00"},
{url = "https://files.pythonhosted.org/packages/ba/8c/a211a7b42e21f525ca94630ca41c888d84e6e24f6150fb08a5f187622e79/scikit_learn-1.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:ceb0008f345188aa236e49c973dc160b9ed504a3abd7b321a0ecabcb669be0bd"},
{url = "https://files.pythonhosted.org/packages/ca/3b/07b7dbef252b8da7c6f613fa89a69dc34cc99a6bc34fd48a1f9ddc2ffc71/scikit_learn-1.2.0-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:6b63ca2b0643d30fbf9d25d93017ed3fb8351f31175d82d104bfec60cba7bb87"},
{url = "https://files.pythonhosted.org/packages/ef/bb/b625922655b063f2c2cba49b8268dac332b78b9fa7738b9e59b04909d069/scikit_learn-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:184a42842a4e698ffa4d849b6019de50a77a0aa24d26afa28fa49c9190bb144b"},
{url = "https://files.pythonhosted.org/packages/f0/1d/07b66497eb3797091944f1340698465ca4bd1a75a5a19b6bc6c865c8f40b/scikit_learn-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc0a72237f0c56780cf550df87201a702d3bdcbbb23c6ef7d54c19326fa23f19"},
{url = "https://files.pythonhosted.org/packages/fb/bc/affe1a47dc4e29f734959a53be8ae910acb627b757403f52d9c5cc2c22e4/scikit_learn-1.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:867023a044fdfe59e5014a7fec7a3086a8928f10b5dce9382eedf4135f6709a2"},
]
"scipy 1.9.3" = [
{url = "https://files.pythonhosted.org/packages/0a/2e/44795c6398e24e45fa0bb61c3e98de1cfea567b1b51efd3751e2f7ff9720/scipy-1.9.3.tar.gz", hash = "sha256:fbc5c05c85c1a02be77b1ff591087c83bc44579c6d2bd9fb798bb64ea5e1a027"},
{url = "https://files.pythonhosted.org/packages/40/0e/3ff193b6ba6a0a6f13f8d367e8976370232e769bd609c8c11d86e0353adf/scipy-1.9.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:83b89e9586c62e787f5012e8475fbb12185bafb996a03257e9675cd73d3736dd"},
{url = "https://files.pythonhosted.org/packages/42/14/d2500818b7bb7b862d70c1ae97e646a4795b068583c67720553764095024/scipy-1.9.3-cp38-cp38-win_amd64.whl", hash = "sha256:2318bef588acc7a574f5bfdff9c172d0b1bf2c8143d9582e05f878e580a3781e"},
{url = "https://files.pythonhosted.org/packages/42/81/0a64d2204c3b261380ac96c6d61f018528108b62c0e21e6153a58cebf4f6/scipy-1.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:06d2e1b4c491dc7d8eacea139a1b0b295f74e1a1a0f704c375028f8320d16e31"},
{url = "https://files.pythonhosted.org/packages/44/8a/bae77e624391b27aeea2d33a02f2ce4a8019f1378ce92faf5780f1521f2e/scipy-1.9.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:545c83ffb518094d8c9d83cce216c0c32f8c04aaf28b92cc8283eda0685162d5"},
{url = "https://files.pythonhosted.org/packages/56/af/6a2b90fe280e89466d84747054667f74b84a8304f75931a173090919991f/scipy-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cff3a5295234037e39500d35316a4c5794739433528310e117b8a9a0c76d20fc"},
{url = "https://files.pythonhosted.org/packages/59/0b/8a9acfc5c36bbf6e18d02f3a08db5b83bebba510be2df3230f53852c74a4/scipy-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d01e1dd7b15bd2449c8bfc6b7cc67d630700ed655654f0dfcf121600bad205c9"},
{url = "https://files.pythonhosted.org/packages/59/ef/d54d17c36b46a9b8f6e1d4bf039b7f7ad236504cfb13cf1872caec9cbeaa/scipy-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d644a64e174c16cb4b2e41dfea6af722053e83d066da7343f333a54dae9bc31c"},
{url = "https://files.pythonhosted.org/packages/84/86/4f38fa30c112c3590954420f85d95b8cd23811ecc5cfc4bfd4d988d4db44/scipy-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5a04cd7d0d3eff6ea4719371cbc44df31411862b9646db617c99718ff68d4840"},
{url = "https://files.pythonhosted.org/packages/92/f9/7ae2c1ae200212bc84b5a8369a10d644aa8b588140fe292d59db3b4a2545/scipy-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abaf921531b5aeaafced90157db505e10345e45038c39e5d9b6c7922d68085cb"},
{url = "https://files.pythonhosted.org/packages/b5/67/c5451465ec94e654e6315cd5136961d267ae94a0f799b85d26eb9efe4c9f/scipy-1.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4db5b30849606a95dcf519763dd3ab6fe9bd91df49eba517359e450a7d80ce2e"},
{url = "https://files.pythonhosted.org/packages/bb/b7/380c9e4cd71263f03d16f8a92c0e44c9bdef38777e1a7dde1f47ba996bac/scipy-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c68db6b290cbd4049012990d7fe71a2abd9ffbe82c0056ebe0f01df8be5436b0"},
{url = "https://files.pythonhosted.org/packages/c3/3e/e40c52775a5d19abd43b1c245fbc5dee283a29acc45c830bc73bfad9468b/scipy-1.9.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:90453d2b93ea82a9f434e4e1cba043e779ff67b92f7a0e85d05d286a3625df3c"},
{url = "https://files.pythonhosted.org/packages/c8/0f/d9f8c50be8670b7ba6f002679e84cd18f46a23faf62c1590f4d1bbec0c8c/scipy-1.9.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:da8245491d73ed0a994ed9c2e380fd058ce2fa8a18da204681f2fe1f57f98f95"},
{url = "https://files.pythonhosted.org/packages/ce/28/635391e72e24bd3f4a91e374f4a186a5e4ecc95f23d8a55c9b0d25777cf7/scipy-1.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a72d885fa44247f92743fc20732ae55564ff2a519e8302fb7e18717c5355a8b"},
{url = "https://files.pythonhosted.org/packages/cf/0e/3f1685c1fcb5dfe35ec027a5fc7a29e8818c61b2cc7fa207b4fc7b959f52/scipy-1.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:68239b6aa6f9c593da8be1509a05cb7f9efe98b80f43a5861cd24c7557e98523"},
{url = "https://files.pythonhosted.org/packages/d0/96/4f6eac3fea18f836a0e403539556b1684e6f3361fa39aa5d5797dedecd75/scipy-1.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:5b88e6d91ad9d59478fafe92a7c757d00c59e3bdc3331be8ada76a4f8d683f58"},
{url = "https://files.pythonhosted.org/packages/df/75/c0254dc58d1f1b00f9d3dbda029743b71b815dd512461ed20d9b7f459e37/scipy-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b41bc822679ad1c9a5f023bc93f6d0543129ca0f37c1ce294dd9d386f0a21096"},
{url = "https://files.pythonhosted.org/packages/f4/9d/882134b1e774a9227ab855c71a39612194e1106185595417ce92f0f1e78c/scipy-1.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d54222d7a3ba6022fdf5773931b5d7c56efe41ede7f7128c7b1637700409108"},
{url = "https://files.pythonhosted.org/packages/f9/37/5cd44af74d7178a44452b17ea162bc93996d5555b4a978877d2efd56fe84/scipy-1.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83c06e62a390a9167da60bedd4575a14c1f58ca9dfde59830fc42e5197283dab"},
{url = "https://files.pythonhosted.org/packages/fb/ba/1733dbbc19f2aa07d100cfa220bcc83a3977bc5c9f0a5ad262dae1f3ab90/scipy-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1884b66a54887e21addf9c16fb588720a8309a57b2e258ae1c7986d4444d3bc0"},
]
"six 1.16.0" = [
{url = "https://files.pythonhosted.org/packages/71/39/171f1c67cd00715f190ba0b100d606d440a28c93c7714febeca8b79af85e/six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
{url = "https://files.pythonhosted.org/packages/d9/5a/e7c31adbe875f2abbb91bd84cf2dc52d792b5a01506781dbcf25c91daf11/six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
]
"threadpoolctl 3.1.0" = [
{url = "https://files.pythonhosted.org/packages/1b/c7/3d85f8b3894ba7228d0c74e16e97a36a72b2cd2b0e0f8f89b5d435d11f71/threadpoolctl-3.1.0.tar.gz", hash = "sha256:a335baacfaa4400ae1f0d8e3a58d6674d2f8828e3716bb2802c44955ad391380"},
{url = "https://files.pythonhosted.org/packages/61/cf/6e354304bcb9c6413c4e02a747b600061c21d38ba51e7e544ac7bc66aecc/threadpoolctl-3.1.0-py3-none-any.whl", hash = "sha256:8b99adda265feb6773280df41eece7b2e6561b772d21ffd52e372f999024907b"},
]
"toml 0.10.2" = [
{url = "https://files.pythonhosted.org/packages/44/6f/7120676b6d73228c96e17f1f794d8ab046fc910d781c8d151120c3f1569e/toml-0.10.2-py2.py3-none-any.whl", hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b"},
{url = "https://files.pythonhosted.org/packages/be/ba/1f744cdc819428fc6b5084ec34d9b30660f6f9daaf70eead706e3203ec3c/toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f"},
]
"tomli 2.0.1" = [
{url = "https://files.pythonhosted.org/packages/97/75/10a9ebee3fd790d20926a90a2547f0bf78f371b2f13aa822c759680ca7b9/tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"},
{url = "https://files.pythonhosted.org/packages/c0/3f/d7af728f075fb08564c5949a9c95e44352e23dee646869fa104a3b2060a3/tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
]
"tomlkit 0.11.6" = [
{url = "https://files.pythonhosted.org/packages/2b/df/971fa5db3250bb022105d17f340339370f73d502e65e687a94ca1a4c4b1f/tomlkit-0.11.6-py3-none-any.whl", hash = "sha256:07de26b0d8cfc18f871aec595fda24d95b08fef89d147caa861939f37230bf4b"},
{url = "https://files.pythonhosted.org/packages/ff/04/58b4c11430ed4b7b8f1723a5e4f20929d59361e9b17f0872d69681fd8ffd/tomlkit-0.11.6.tar.gz", hash = "sha256:71b952e5721688937fb02cf9d354dbcf0785066149d2855e44531ebdd2b65d73"},
]
"typing-extensions 4.4.0" = [
{url = "https://files.pythonhosted.org/packages/0b/8e/f1a0a5a76cfef77e1eb6004cb49e5f8d72634da638420b9ea492ce8305e8/typing_extensions-4.4.0-py3-none-any.whl", hash = "sha256:16fa4864408f655d35ec496218b85f79b3437c829e93320c7c9215ccfd92489e"},
{url = "https://files.pythonhosted.org/packages/e3/a7/8f4e456ef0adac43f452efc2d0e4b242ab831297f1bac60ac815d37eb9cf/typing_extensions-4.4.0.tar.gz", hash = "sha256:1511434bb92bf8dd198c12b1cc812e800d4181cfcb867674e0f8279cc93087aa"},
]
"wmctrl 0.4" = [
{url = "https://files.pythonhosted.org/packages/a5/48/bd9b5c4c0d865e5d143f91020600f921c37f9755c8101336d292e1de1252/wmctrl-0.4.tar.gz", hash = "sha256:66cbff72b0ca06a22ec3883ac3a4d7c41078bdae4fb7310f52951769b10e14e0"},
]
"wrapt 1.14.1" = [
{url = "https://files.pythonhosted.org/packages/00/61/04422b7469534650b622d5baa1dd335c4b91d35c8d33548b272f33060519/wrapt-1.14.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b02d65b9ccf0ef6c34cba6cf5bf2aab1bb2f49c6090bafeecc9cd81ad4ea1c1"},
{url = "https://files.pythonhosted.org/packages/03/c6/d864b8da8afa57a638b12596c3a58dfe3471acda900961c02a904010e0e9/wrapt-1.14.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:9f3e6f9e05148ff90002b884fbc2a86bd303ae847e472f44ecc06c2cd2fcdb2d"},
{url = "https://files.pythonhosted.org/packages/07/06/2b4aaaa4403f766c938f9780c700d7399726bce3dfd94f5a57c4e5b9dc68/wrapt-1.14.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:4fcc4649dc762cddacd193e6b55bc02edca674067f5f98166d7713b193932b7f"},
{url = "https://files.pythonhosted.org/packages/0a/61/330f24065b8f2fc02f94321092a24e0c30aefcbac89ab5c860e180366c9f/wrapt-1.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d52a25136894c63de15a35bc0bdc5adb4b0e173b9c0d07a2be9d3ca64a332735"},
{url = "https://files.pythonhosted.org/packages/0d/dc/3f588e42e09fb5170349924366587319e1e49d50a1a58dbe78d6046ca812/wrapt-1.14.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:2b39d38039a1fdad98c87279b48bc5dce2c0ca0d73483b12cb72aa9609278e8a"},
{url = "https://files.pythonhosted.org/packages/11/eb/e06e77394d6cf09977d92bff310cb0392930c08a338f99af6066a5a98f92/wrapt-1.14.1.tar.gz", hash = "sha256:380a85cf89e0e69b7cfbe2ea9f765f004ff419f34194018a6827ac0e3edfed4d"},
{url = "https://files.pythonhosted.org/packages/12/cd/da6611401655ac2b8496b316ad9e21a3fd4f8e62e2c3b3e3c50207770517/wrapt-1.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7b7c050ae976e286906dd3f26009e117eb000fb2cf3533398c5ad9ccc86867b1"},
{url = "https://files.pythonhosted.org/packages/1b/77/9f3660dca3d6b7079c3b1b64ad0795db3603cb9345fba3ca580ccdc3fef5/wrapt-1.14.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:903500616422a40a98a5a3c4ff4ed9d0066f3b4c951fa286018ecdf0750194ef"},
{url = "https://files.pythonhosted.org/packages/21/55/42ff84a671415db8fc87a1c301c6c7f52b978669324059bdb8dbd7d3f0ce/wrapt-1.14.1-cp35-cp35m-win_amd64.whl", hash = "sha256:b21bb4c09ffabfa0e85e3a6b623e19b80e7acd709b9f91452b8297ace2a8ab00"},
{url = "https://files.pythonhosted.org/packages/23/8b/e4de40ac2fa6d53e694310c576e160bec3db8a282fbdcd5596544f6bc69e/wrapt-1.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:642c2e7a804fcf18c222e1060df25fc210b9c58db7c91416fb055897fc27e8cc"},
{url = "https://files.pythonhosted.org/packages/2a/86/c9ef2fa4899ec069c8efe43fc92ca2ba0c5a7921cfaf83090030cf7b1487/wrapt-1.14.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:ee6acae74a2b91865910eef5e7de37dc6895ad96fa23603d1d27ea69df545015"},
{url = "https://files.pythonhosted.org/packages/30/31/c3f80ed75bec31fc3b4e3193f660b96da8fef70811f0ed67a4dc873412bc/wrapt-1.14.1-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:6b1a564e6cb69922c7fe3a678b9f9a3c54e72b469875aa8018f18b4d1dd1adf3"},
{url = "https://files.pythonhosted.org/packages/33/cd/7335d8b82ff0a442581ab37a8d275ad76b4c1f33ace63c1a4d7c23791eee/wrapt-1.14.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8c0ce1e99116d5ab21355d8ebe53d9460366704ea38ae4d9f6933188f327b456"},
{url = "https://files.pythonhosted.org/packages/36/ee/944dc7e5462662270e8a379755bcc543fc8f09029866288060dc163ed5b4/wrapt-1.14.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef3f72c9666bba2bab70d2a8b79f2c6d2c1a42a7f7e2b0ec83bb2f9e383950af"},
{url = "https://files.pythonhosted.org/packages/38/38/5b338163b3b4f1ab718306984678c3d180b85a25d72654ea4c61aa6b0968/wrapt-1.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cca3c2cdadb362116235fdbd411735de4328c61425b0aa9f872fd76d02c4e86"},
{url = "https://files.pythonhosted.org/packages/39/4d/34599a47c8a41b3ea4986e14f728c293a8a96cd6c23663fe33657c607d34/wrapt-1.14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:07f7a7d0f388028b2df1d916e94bbb40624c59b48ecc6cbc232546706fac74c2"},
{url = "https://files.pythonhosted.org/packages/39/a1/9b4d07b6836a62c6999e8bb5cefced5b34a26fb03941a19c27af98eecec0/wrapt-1.14.1-cp35-cp35m-win32.whl", hash = "sha256:dbcda74c67263139358f4d188ae5faae95c30929281bc6866d00573783c422b7"},
{url = "https://files.pythonhosted.org/packages/40/f4/7be7124a06c14b92be53912f93c8dc84247f1cb93b4003bed460a430d1de/wrapt-1.14.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8ad85f7f4e20964db4daadcab70b47ab05c7c1cf2a7c1e51087bfaa83831854c"},
{url = "https://files.pythonhosted.org/packages/49/a8/528295a24655f901148177355edb6a22b84abb2abfadacc1675643c1434a/wrapt-1.14.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d649d616e5c6a678b26d15ece345354f7c2286acd6db868e65fcc5ff7c24a77"},
{url = "https://files.pythonhosted.org/packages/4b/07/782463e367a7c6b418af231ded753e4b2dd3293a157d9b0bb010806fc0c0/wrapt-1.14.1-cp39-cp39-win32.whl", hash = "sha256:dee0ce50c6a2dd9056c20db781e9c1cfd33e77d2d569f5d1d9321c641bb903d5"},
{url = "https://files.pythonhosted.org/packages/4b/5b/3cf79a5fce7a91c0c10275835199fafdf30c1b8c7008fa671af3c4e8046c/wrapt-1.14.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:5a9a0d155deafd9448baff28c08e150d9b24ff010e899311ddd63c45c2445e28"},
{url = "https://files.pythonhosted.org/packages/4f/83/2669bf2cb4cc2b346c40799478d29749ccd17078cb4f69b4a9f95921ff6d/wrapt-1.14.1-cp310-cp310-win32.whl", hash = "sha256:a9a52172be0b5aae932bef82a79ec0a0ce87288c7d132946d645eba03f0ad8a8"},
{url = "https://files.pythonhosted.org/packages/50/d5/bf619c4d204fe8888460f65222b465c7ecfa43590fdb31864fe0e266da29/wrapt-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:02b41b633c6261feff8ddd8d11c711df6842aba629fdd3da10249a53211a72c4"},
{url = "https://files.pythonhosted.org/packages/5b/02/5ac7ea3b6722c84a2882d349ac581a9711b4047fe7a58475903832caa295/wrapt-1.14.1-cp39-cp39-win_amd64.whl", hash = "sha256:dee60e1de1898bde3b238f18340eec6148986da0455d8ba7848d50470a7a32fb"},
{url = "https://files.pythonhosted.org/packages/5c/46/b91791db2ac7cc4c186408b7aed37b994463970f2397d0548f38b2b47aca/wrapt-1.14.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:d79d7d5dc8a32b7093e81e97dad755127ff77bcc899e845f41bf71747af0c569"},
{url = "https://files.pythonhosted.org/packages/5e/d3/bd44864e0274b7e162e2a68c71fffbd8b3a7b620efd23320fd0f70333cff/wrapt-1.14.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e3fb1677c720409d5f671e39bac6c9e0e422584e5f518bfd50aa4cbbea02433f"},
{url = "https://files.pythonhosted.org/packages/67/b4/b5504dddcb2ff9486f8569953938591e0013cca09c912b28747d1d9cb04f/wrapt-1.14.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7ef58fb89674095bfc57c4069e95d7a31cfdc0939e2a579882ac7d55aadfd2a1"},
{url = "https://files.pythonhosted.org/packages/6a/12/76bbe26dc39d05f1a7be8d570d91c87bb79297e08e885148ed670ed17b7b/wrapt-1.14.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6a9a25751acb379b466ff6be78a315e2b439d4c94c1e99cb7266d40a537995d3"},
{url = "https://files.pythonhosted.org/packages/72/24/490a0bbc67135f737d2eb4b270bfc91e54cc3f0b5e97b4ceec91a44bb898/wrapt-1.14.1-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:6e743de5e9c3d1b7185870f480587b75b1cb604832e380d64f9504a0535912d1"},
{url = "https://files.pythonhosted.org/packages/79/9c/f5d1209c8e4e091e250eb3ed099056e7e1ad0ec1e9ca46f6d88389e2d6d4/wrapt-1.14.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:e2f83e18fe2f4c9e7db597e988f72712c0c3676d337d8b101f6758107c42425b"},
{url = "https://files.pythonhosted.org/packages/82/27/1eac9e63b9ef0e0929e00e17872d45de9d7d965c7f49b933e2daa22c7896/wrapt-1.14.1-cp36-cp36m-win32.whl", hash = "sha256:81b19725065dcb43df02b37e03278c011a09e49757287dca60c5aecdd5a0b8ed"},
{url = "https://files.pythonhosted.org/packages/88/ef/05655df7648752ae0a57fe2b9820e340ff025cecec9341aad7936c589a2f/wrapt-1.14.1-cp38-cp38-win32.whl", hash = "sha256:aa31fdcc33fef9eb2552cbcbfee7773d5a6792c137b359e82879c101e98584c5"},
{url = "https://files.pythonhosted.org/packages/92/b5/788b92550804405424e0d0b1a95250137cbf0e050bb5c461e8ad0fefdc86/wrapt-1.14.1-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:ee2b1b1769f6707a8a445162ea16dddf74285c3964f605877a20e38545c3c462"},
{url = "https://files.pythonhosted.org/packages/93/12/b20ae4dbefa94ef5d667ba71324763d870b86064a944c8ec9533042a41fc/wrapt-1.14.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7d2872609603cb35ca513d7404a94d6d608fc13211563571117046c9d2bcc3d7"},
{url = "https://files.pythonhosted.org/packages/93/8c/1bbba9357142e6f9bcf55c79e2aa6fd5f4066c331e731376705777a0077f/wrapt-1.14.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9736af4641846491aedb3c3f56b9bc5568d92b0692303b5a305301a95dfd38b1"},
{url = "https://files.pythonhosted.org/packages/93/b1/007fd8d5c8c366ee1c1b93a99962de5fd34f81dae679ee2bf6a6e0ffc8f0/wrapt-1.14.1-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:a85d2b46be66a71bedde836d9e41859879cc54a2a04fad1191eb50c2066f6e9d"},
{url = "https://files.pythonhosted.org/packages/94/4b/ff8d58aee32ed91744f1ff4970e590f0c8fdda3fa6d702dc82281e0309bd/wrapt-1.14.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:01c205616a89d09827986bc4e859bcabd64f5a0662a7fe95e0d359424e0e071b"},
{url = "https://files.pythonhosted.org/packages/94/56/fd707fb8e1ea86e72503d823549fb002a0f16cb4909619748996daeb3a82/wrapt-1.14.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2fe803deacd09a233e4762a1adcea5db5d31e6be577a43352936179d14d90069"},
{url = "https://files.pythonhosted.org/packages/94/59/60b2fe919ffb190cf8cae0307bafdaf1695eac8655921f59768ce3bf1084/wrapt-1.14.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:88bd7b6bd70a5b6803c1abf6bca012f7ed963e58c68d76ee20b9d751c74a3248"},
{url = "https://files.pythonhosted.org/packages/98/0f/3db7e01896b726e68fa2ba918ed0d79f3cc2da2ce928799282264d14c6f6/wrapt-1.14.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:36f582d0c6bc99d5f39cd3ac2a9062e57f3cf606ade29a0a0d6b323462f4dd87"},
{url = "https://files.pythonhosted.org/packages/a2/a7/dd6e91c68d76328d09dd61a7aadac19d49ec509a07e853173036dc05fb79/wrapt-1.14.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:1b376b3f4896e7930f1f772ac4b064ac12598d1c38d04907e696cc4d794b43d3"},
{url = "https://files.pythonhosted.org/packages/a7/0d/a52a0268c98a687785c5452324e10f9462d289e850066e281aa327505aa7/wrapt-1.14.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5901a312f4d14c59918c221323068fad0540e34324925c8475263841dbdfe68"},
{url = "https://files.pythonhosted.org/packages/b1/ca/ec539e402932bb64814a039f471d327d0deb4612199506094ca60821b94c/wrapt-1.14.1-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:00b6d4ea20a906c0ca56d84f93065b398ab74b927a7a3dbd470f6fc503f95dc3"},
{url = "https://files.pythonhosted.org/packages/bb/70/73c54e24ea69a8b06ae9649e61d5e64f2b4bdfc6f202fc7794abeac1ed20/wrapt-1.14.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:988635d122aaf2bdcef9e795435662bcd65b02f4f4c1ae37fbee7401c440b3a7"},
{url = "https://files.pythonhosted.org/packages/c0/1e/e5a5ac09e92fd112d50e1793e5b9982dc9e510311ed89dacd2e801f82967/wrapt-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:6d323e1554b3d22cfc03cd3243b5bb815a51f5249fdcbb86fda4bf62bab9e164"},
{url = "https://files.pythonhosted.org/packages/c7/1b/0cdff572d22600fcf47353e8eb1077d83cab3f161ebfb4843565c6e07e66/wrapt-1.14.1-cp38-cp38-win_amd64.whl", hash = "sha256:d1967f46ea8f2db647c786e78d8cc7e4313dbd1b0aca360592d8027b8508e24d"},
{url = "https://files.pythonhosted.org/packages/c8/03/b36a48dcb6f6332d754017b2dd617757687984a6c433e44ca59bb7fefd4c/wrapt-1.14.1-cp37-cp37m-win32.whl", hash = "sha256:60db23fa423575eeb65ea430cee741acb7c26a1365d103f7b0f6ec412b893853"},
{url = "https://files.pythonhosted.org/packages/ca/16/e79e786d930b69a20481174c7bc97e989fb67d2a181a5043e1d3c70c9b21/wrapt-1.14.1-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ddaea91abf8b0d13443f6dac52e89051a5063c7d014710dcb4d4abb2ff811a59"},
{url = "https://files.pythonhosted.org/packages/cd/ec/383d9552df0641e9915454b03139571e0c6e055f5d414d8f3d04f3892f38/wrapt-1.14.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:11871514607b15cfeb87c547a49bca19fde402f32e2b1c24a632506c0a756656"},
{url = "https://files.pythonhosted.org/packages/d9/3b/f6b760bf04d13e5ddb70d019779466c22952637cf0f606a26d5f784f27ff/wrapt-1.14.1-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:43ca3bbbe97af00f49efb06e352eae40434ca9d915906f77def219b88e85d907"},
{url = "https://files.pythonhosted.org/packages/d9/ab/3ba5816dd466ffd7242913708771d258569825ab76fd29d7fd85b9361311/wrapt-1.14.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3232822c7d98d23895ccc443bbdf57c7412c5a65996c30442ebe6ed3df335383"},
{url = "https://files.pythonhosted.org/packages/da/f4/7af9e01b6c1126b2daef72d5ba2cbf59a7229fd57c5b23166f694d758a8f/wrapt-1.14.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2cf71233a0ed05ccdabe209c606fe0bac7379fdcf687f39b944420d2a09fdb57"},
{url = "https://files.pythonhosted.org/packages/e0/20/9716fb522d17a726364c4d032c8806ffe312268773dd46a394436b2787cc/wrapt-1.14.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b9b7a708dd92306328117d8c4b62e2194d00c365f18eff11a9b53c6f923b01e3"},
{url = "https://files.pythonhosted.org/packages/e0/6a/3c660fa34c8106aa9719f2a6636c1c3ea7afd5931ae665eb197fdf4def84/wrapt-1.14.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40e7bc81c9e2b2734ea4bc1aceb8a8f0ceaac7c5299bc5d69e37c44d9081d43b"},
{url = "https://files.pythonhosted.org/packages/e0/80/af9da7379ee6df583875d0aeb80f9d5f0bd5f081dd1ee5ce06587d8bfec7/wrapt-1.14.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21ac0156c4b089b330b7666db40feee30a5d52634cc4560e1905d6529a3897ff"},
{url = "https://files.pythonhosted.org/packages/e6/57/d5673f5201ccbc287e70a574868319267735de3041e496e1e26b48d8f653/wrapt-1.14.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:833b58d5d0b7e5b9832869f039203389ac7cbf01765639c7309fd50ef619e0b1"},
{url = "https://files.pythonhosted.org/packages/e7/a1/a9596c5858c4a58be8cdd5e8b0e5f53f9c1c17f0616b47edde8de1a356fe/wrapt-1.14.1-cp37-cp37m-win_amd64.whl", hash = "sha256:709fe01086a55cf79d20f741f39325018f4df051ef39fe921b1ebe780a66184c"},
{url = "https://files.pythonhosted.org/packages/e8/f6/7e30a8c53d27ef8c1ff872dc4fb75247c99eb73d834c91a49a55d046c127/wrapt-1.14.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:5a0f54ce2c092aaf439813735584b9537cad479575a09892b8352fea5e988dc0"},
{url = "https://files.pythonhosted.org/packages/f0/db/2a9ea49cd8bdde87a85262e517563d42b9e5b760473597b9da511fcbd54d/wrapt-1.14.1-cp36-cp36m-win_amd64.whl", hash = "sha256:b014c23646a467558be7da3d6b9fa409b2c567d2110599b7cf9a0c5992b3b471"},
{url = "https://files.pythonhosted.org/packages/f1/96/d22461ba08d61a859c45cda5064b878f2baa61f142d3acfa8adabd82bf07/wrapt-1.14.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:9e0fd32e0148dd5dea6af5fee42beb949098564cc23211a88d799e434255a1f4"},
{url = "https://files.pythonhosted.org/packages/f7/92/121147bb2f9ed1aa35a8780c636d5da9c167545f97737f0860b4c6c92086/wrapt-1.14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:80bb5c256f1415f747011dc3604b59bc1f91c6e7150bd7db03b19170ee06b320"},
{url = "https://files.pythonhosted.org/packages/f8/c4/3f8130d646bfc89382966adfb3d6428f26d0f752543a7e2fd92c1e493be6/wrapt-1.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d77c85fedff92cf788face9bfa3ebaa364448ebb1d765302e9af11bf449ca36d"},
{url = "https://files.pythonhosted.org/packages/f9/3c/110e52b9da396a4ef3a0521552a1af9c7875a762361f48678c1ac272fd7e/wrapt-1.14.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:34aa51c45f28ba7f12accd624225e2b1e5a3a45206aa191f6f9aac931d9d56fe"},
{url = "https://files.pythonhosted.org/packages/fd/70/8a133c88a394394dd57159083b86a564247399440b63f2da0ad727593570/wrapt-1.14.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:257fd78c513e0fb5cdbe058c27a0624c9884e735bbd131935fd49e9fe719d310"},
]
"yapf 0.32.0" = [
{url = "https://files.pythonhosted.org/packages/47/88/843c2e68f18a5879b4fbf37cb99fbabe1ffc4343b2e63191c8462235c008/yapf-0.32.0-py2.py3-none-any.whl", hash = "sha256:8fea849025584e486fd06d6ba2bed717f396080fd3cc236ba10cb97c4c51cf32"},
{url = "https://files.pythonhosted.org/packages/c2/cd/d0d1e95b8d78b8097d90ca97af92f4af7fb2e867262a2b6e37d6f48e612a/yapf-0.32.0.tar.gz", hash = "sha256:a3f5085d37ef7e3e004c4ba9f9b3e40c54ff1901cd111f05145ae313a7c67d1b"},
]

View File

@ -1,43 +0,0 @@
[tool.pdm]
[project]
name = "toolbox"
version = "0.1.0"
description = "Code for ingesting data from several sources, formatting it and creating a training dataset."
authors = [
{name = "0x000011b", email = "0x000011b@proton.me"},
]
requires-python = ">=3.10"
license = {text = "AGPL-3.0-only"}
dependencies = [
"ijson>=3.1.4",
"mashumaro>=3.2",
"regex>=2022.10.31",
"scikit-learn>=1.2.0",
"pandas>=1.5.2",
"pyarrow>=10.0.1",
]
[project.optional-dependencies]
dev = [
"yapf>=0.32.0",
"toml>=0.10.2",
"isort>=5.10.1",
"pylint>=2.15.8",
"mypy>=0.991",
]
debugging = [
"pdbpp>=0.10.3",
]
[tool.setuptools]
py-modules = ["toolbox"]
[tool.pdm.scripts]
lint = {shell = "pylint --jobs 0 ./toolbox/**/*.py"}
importcheck = "isort --check --diff toolbox"
stylecheck = "yapf --parallel --diff --recursive toolbox"
typecheck = "mypy --strict toolbox"
[tool.yapf]
based_on_style = "google"

View File

View File

@ -1,28 +0,0 @@
class PromptConstants:
'''String constants related to prompt engineering.'''
# Prefix for user messages.
USER_PREFIX = "You"
# Token to be replaced with the user's display name within bot messages.
USER_TOKEN = "<USER>"
# Token to be replaced by the bot's name.
BOT_TOKEN = "<BOT>"
# Should be kept in sync with the relevant model that will be trained. This
# is taken from EleutherAI's Pythia (so, GPT-NeoX).
EOS_TOKEN = "<|endoftext|>"
# Token to separate prompt trickery from actual dialogue.
CHAT_START_TOKEN = "<START>"
# Global target word count. The word count is chosen in such a way that we
# can fit all the required prompt trickery into the model's input, but still
# leave enough space for the user's input message and the inference result.
TARGET_WORD_COUNT_PER_EPISODE = 1024
@staticmethod
def pdm_prefix_for(name: str) -> str:
'''Builds the Persona Dialogue Module prefix for a given `name`.'''
return f"{name}'s Persona"

View File

@ -1,15 +0,0 @@
import typing as t
T = t.TypeVar("T")
class BaseDataset(t.Generic[T]):
'''Base dataset class.'''
def __iter__(self) -> t.Generator[T, None, None]:
'''Implements the basic iterator interface.'''
return self.generator()
def generator(self) -> t.Generator[T, None, None]:
'''Should yield individual items from the dataset.'''
raise NotImplementedError

View File

@ -1,161 +0,0 @@
import json
import logging
import os
import typing as t
from dataclasses import dataclass
from toolbox.datasets import BaseDataset
from toolbox.utils.dataset import get_data_path
logger = logging.getLogger(__name__)
@dataclass(frozen=True)
class CaiBotInfo:
name: str
title: str
description: str | None
greeting: str
# Optional because it might be private.
definitions: str | None
# Useful for when several bots have the same name - we can tell them apart
# by their external_id.
external_id: str
# There's also categories, but I'm ignoring them for now since I don't think
# they'll be of much use.
@dataclass(frozen=True)
class CaiMessage:
is_human: bool
text: str
@dataclass(frozen=True)
class CaiChat:
# First message is always the bot's greeting.
messages: list[CaiMessage]
bot: CaiBotInfo
class CharacterAiDataset(BaseDataset[CaiChat]):
'''Dataset for CharacterAI dumps.'''
def generator(self) -> t.Generator[CaiChat, None, None]:
bot_id_to_info_dict = {}
# Do a first run through all the files to load all the definitions and
# descriptions.
for data in _available_json_data():
if not _is_definition_data(data):
continue
bot_info = _bot_info_from_dict(data["character"])
bot_id_to_info_dict[bot_info.external_id] = bot_info
# Now do a second pass, to actually handle chat histories/messages.
for data in _available_json_data():
if _is_definition_data(data):
continue
# Prefer grabbing bot info from a Character Editor dump, if it
# exists. Fall back to public data otherwise.
bot_id = data["info"]["character"]["external_id"]
bot_info = bot_id_to_info_dict.get(
bot_id, _bot_info_from_dict(data["info"]["character"]))
for history_dict in data["histories"]["histories"]:
messages = _messages_from_dict(history_dict["msgs"])
yield CaiChat(bot=bot_info, messages=messages)
#
# Private helpers.
#
def _enumerate_json_files(root_path: str) -> list[str]:
'''Returns a list of files available in the given `root_path`.'''
items = os.listdir(root_path)
files: list[str] = []
for item in items:
item_path = os.path.join(root_path, item)
if not os.path.isfile(item_path) or not item_path.endswith(".json"):
# We only care about JSON files.
continue
absolute_file_path = os.path.abspath(os.path.join(root_path, item))
files.append(absolute_file_path)
return files
def _available_json_data() -> t.Generator[dict[str, t.Any], None, None]:
'''
Yields all available JSON data, parsed from the files in the CharacterAI
data folder.
'''
dataset_path = get_data_path(dataset_name="characterai")
for folder in ["public", "private"]:
folder_path = os.path.join(dataset_path, folder)
for json_file_path in _enumerate_json_files(folder_path):
with open(json_file_path, "r", encoding="utf-8") as json_file:
try:
yield json.load(json_file)
except json.decoder.JSONDecodeError as ex:
logger.error("Failed to parse %s: %s", json_file_path, ex)
def _bot_info_from_dict(info_dict: dict[str, t.Any]) -> CaiBotInfo:
'''Builds a CaiBotInfo object from the `character` field in the JSON.'''
return CaiBotInfo(
name=info_dict["name"],
title=info_dict["title"],
# This comes in as an empty string instead of `null` in the JSON when
# it's not defined for some reason, so we cast to None here for clarity.
description=info_dict["description"] or None,
greeting=info_dict["greeting"],
definitions=info_dict.get("definition"),
external_id=info_dict["external_id"],
)
def _messages_from_dict(msgs_dict: list[dict[str, t.Any]]) -> list[CaiMessage]:
'''Builds an array of messages from an entry from the `histories` JSON.'''
messages: list[CaiMessage] = []
for raw_message in msgs_dict:
message = CaiMessage(
text=raw_message["text"],
is_human=raw_message["src"]["is_human"],
)
messages.append(message)
return messages
def _is_definition_data(dict_from_json: dict[str, t.Any]) -> bool:
'''
Figures out whether the given dict (parsed from a JSON file) is a regular
dump, or a dump from the Character Editor (possibly containing definitions).
If it doesn't seem like either, raises a `ValueError` so we can discard bad
data.
'''
keys = list(dict_from_json.keys())
# Some people messed with their files so the order of the keys isn't always
# the same, so we sort for consistency.
keys.sort()
if keys == ["character"]:
return True
elif keys == ["character", "user__username"]:
return True
elif keys == ["histories", "info"]:
return False
else:
print(dict_from_json)
raise ValueError(f"Unexpected keys found in CAI dump JSON file: {keys}")

View File

@ -1,300 +0,0 @@
import json
import logging
import os
import re
import typing as t
from dataclasses import dataclass
from toolbox.core.consts import PromptConstants
from toolbox.datasets import BaseDataset
from toolbox.utils.dataset import get_data_path
# The regex used to find message variants (e.g.: `%{Hi|Hello} there!`)
KAJIWOTO_VARIANT_REGEX = re.compile(r'%{(.+?)}')
# These bots shouldn't be a part of the final dataset, for whatever reason.
BLACKLISTED_BOT_IDS = set(["WvqA"])
logger = logging.getLogger(__name__)
@dataclass(frozen=True)
class KajiwotoMessageResponsePair:
message_id: str
bot_id: str
user_message: str
bot_response: str
condition: str
@dataclass(frozen=True)
class BotMetadata:
bot_id: str
name: str
description: str
personalities: t.List[t.List[str]]
has_nsfw: bool
tags: t.List[str]
class KajiwotoDataset(BaseDataset[t.List[KajiwotoMessageResponsePair]]):
'''
The Kajiwoto dataset.
Takes care of properly handling chat history/message context.
'''
def __init__(self) -> None:
self.filepaths = _enumerate_kajiwoto_json_files()
self.cached_metadata: dict[str, BotMetadata] = {}
def get_metadata_for_bot(self, bot_id: str) -> BotMetadata:
'''Returns known medatada for the given bot ID.'''
if bot_id in self.cached_metadata:
return self.cached_metadata[bot_id]
dataset_path = get_data_path(dataset_name="kajiwoto")
metadata_filepath = os.path.join(dataset_path,
f"{bot_id}_metadata.json")
with open(metadata_filepath, "r", encoding="utf-8") as metadata_file:
metadata_dict = json.loads(
metadata_file.read())["data"]["aiTrainerGroup"]
metadata = _metadata_dict_to_dataclass(metadata_dict)
return metadata
def generator(
self
) -> t.Generator[t.List[KajiwotoMessageResponsePair], None, None]:
for filepath in self.filepaths:
with open(filepath, "r", encoding="utf-8") as file:
messages = json.loads(file.read())["data"]["aiTrainedList"]
# So, there's a tricky thing to handle in these datasets which
# is the fact that follow-up messages are saved as completely
# separate entries in the messages array. For example, if we
# have a chat log like:
#
# Human: 1
# Bot: 2
# Human: 3
# Bot: 4
#
# We will have, in the messages array, something like:
# [
# {"userMessage": "3", message: "4", "history": ["1"]},
# {"userMessage": "1", message: "2"},
# ]
#
# As far as I could tell, whenever a message has a "history"
# field, it usually doesn't make sense by itself. Or even by
# appending history. One needs to look up the original message
# and reply pair using the history field, then build up the
# sequence again manually.
#
# As such, for each file, we need to load the entire thing into
# memory to run over it and build an index to do just that
# (lookups via the history field), so here we go:
history_contents_to_original_msg_idx: dict[str, int] = {}
used_message_indexes: t.Set[int] = set()
for idx, msg in enumerate(messages):
if msg["history"]:
# Message already references an earlier message-reply
# pair. As far as I could tell, that means _this_
# specific message can't be referenced, so no point in
# saving an index for it here.
continue
history_contents_to_original_msg_idx[
msg["userMessage"]] = idx
# Now that we have the history index, let's go over _only_ the
# messages that need to be concatenated with their history.
for idx, msg in enumerate(messages):
if not msg.get("history", None):
continue
history_contents = msg["history"][0]
# Sometimes, a message seems to reference a previous one
# that does not exist. Don't know what's up with that, so
# let's just ignore.
if not history_contents in history_contents_to_original_msg_idx:
continue
# Fetch the original "history" message to use as context.
original_msg_idx = history_contents_to_original_msg_idx[
history_contents]
original_msg = messages[original_msg_idx]
# Yield the conversation episode.
yield [
_dict_to_dataclass(original_msg),
_dict_to_dataclass(msg),
]
# Save the indexes of both of these so we don't re-use them
# without the proper context.
used_message_indexes.add(idx)
used_message_indexes.add(original_msg_idx)
# Now let's go over regular, history-free messages.
for idx, msg in enumerate(messages):
if idx in used_message_indexes:
continue
yield [_dict_to_dataclass(msg)]
#
# Public helpers.
#
seen_special_tokens: set[str] = set()
seen_scenes: set[str] = set()
def replace_special_tokens_in(string: str) -> str:
'''
Replaces known special tokens (e.g.: `%{name}`) with their expected
equivalents.
'''
string = string.replace("%{name}", PromptConstants.USER_TOKEN)
string = string.replace("%{kajiname}", PromptConstants.BOT_TOKEN)
if (match := re.search(KAJIWOTO_VARIANT_REGEX, string)) is not None:
special_token = match.groups()[0]
if '|' not in special_token and special_token not in seen_special_tokens:
logger.warning("Unhandled Kajiwoto token: %s", special_token)
seen_special_tokens.add(special_token)
if (scene_match := re.search(r"#scene=(.+?)\b", string)) is not None:
seen_scene = scene_match.groups()[0]
if seen_scene not in seen_scenes:
logger.debug("Unhandled Kajiwoto scene: %s", seen_scene)
seen_scenes.add(seen_scene)
# Drop the scene marker. Maybe we can use it for something useful, but
# I can't think of anything at the moment.
string = string.replace(f"#scene={seen_scene}", "").strip()
# TODO: There's a few of these which I haven't handled yet. E.g.:
# %{pronoun} (before and after a dot, so careful with caps).
return string
def generate_variants_for(
string: str,
max_generations: int = 16,
start_counter_at: int = 0) -> t.Generator[str, None, None]:
'''
Given a string like "%{Hello|Hi} there{.|!}, this should yield:
- Hello there.
- Hello there!
- Hi there.
- Hi there!
'''
# Some bot creators went wild with the variants, which causes ridiculous
# generations if we try to exhaust all possibilities so we cap that here.
# `start_counter_at` is used for keeping track across recursive calls.
counter = start_counter_at
if (match := re.search(KAJIWOTO_VARIANT_REGEX, string)) is not None:
# Once we have a "%{X|Y|Z}" matched inside the original string, we:
# - Fetch .groups()[0] (which will give us `X|Y|Z`)
# - Split by `|` (so we have ["X", "Y", "Z"])
# - Filter out empty strings
alternatives = filter(lambda x: x.strip(), match.groups()[0].split("|"))
# Then, we break the string apart into what comes before and after the
# alternatives, that way we can re-build with "prefix + choice + sufix".
prefix = string[:match.start()]
sufix = string[match.end():]
for alternative in alternatives:
variant = f'{prefix}{alternative}{sufix}'
# However, some strings have multiple variant blocks. In that case,
# we operate on them recursively until we have just regular strings
# after generating all possible variants.
still_have_match = re.search(KAJIWOTO_VARIANT_REGEX,
variant) is not None
if still_have_match:
for inner_variant in generate_variants_for(
variant, start_counter_at=counter):
yield inner_variant
# Keep track and break after `max_generations`.
counter += 1
if max_generations is not None and counter >= max_generations:
break
else:
yield variant
# Keep track and break after `max_generations`.
counter += 1
if max_generations is not None and counter >= max_generations:
break
else:
yield string
#
# Private helpers.
#
def _enumerate_kajiwoto_json_files() -> list[str]:
'''
Returns a list of paths to all available `.json` files for the `kajiwoto`
dataset.
'''
dataset_path = get_data_path(dataset_name="kajiwoto")
items = os.listdir(dataset_path)
files: list[str] = []
for item in items:
if not item.endswith(".json"):
# Don't care about other file types.
continue
if item.endswith("_metadata.json"):
# Don't want to list metadata files here.
continue
if item.replace(".json", "") in BLACKLISTED_BOT_IDS:
# Don't want blacklisted bots being included.
continue
item_path = os.path.join(dataset_path, item)
if not os.path.isfile(item_path):
# Don't care about folders.
continue
absolute_item_path = os.path.abspath(os.path.join(dataset_path, item))
files.append(absolute_item_path)
return files
def _dict_to_dataclass(obj: dict[str, str]) -> KajiwotoMessageResponsePair:
return KajiwotoMessageResponsePair(
message_id=obj["id"],
bot_id=obj["aiTrainerGroupId"],
condition=obj["condition"],
user_message=obj["userMessage"],
bot_response=obj["message"],
)
def _metadata_dict_to_dataclass(obj: dict[str, t.Any]) -> BotMetadata:
return BotMetadata(
bot_id=obj["id"],
name=obj["name"],
description=obj["description"],
personalities=obj["personalities"],
has_nsfw=obj["nsfw"],
tags=obj["tags"],
)

View File

@ -1,61 +0,0 @@
import os
import pickle
import typing as t
from dataclasses import dataclass
import mashumaro
from toolbox.datasets import BaseDataset
from toolbox.utils.dataset import get_data_path
@dataclass(frozen=True)
class LightDialogueAgent(mashumaro.DataClassDictMixin):
name: str
persona: str
@dataclass(frozen=True)
class LightDialogueSetting(mashumaro.DataClassDictMixin):
name: str
category: str
description: str
background: str
@dataclass(frozen=True)
class LightDialogueEpisode(mashumaro.DataClassDictMixin):
agents: t.List[LightDialogueAgent]
setting: LightDialogueSetting
character: t.List[str]
context: t.List[str]
room_objects: t.List[t.List[str]]
room_agents: t.List[t.List[str]]
all_descriptions: t.Dict[str, str]
available_actions: t.List[t.List[str]]
carrying: t.List[t.List[str]]
wielding: t.List[t.List[str]]
speech: t.List[str]
emote: t.List[str]
action: t.List[str]
class LightDialogueDataset(BaseDataset[LightDialogueEpisode]):
'''
LIGHT: Learning in Interactive Games with Humans and Text
The LIGHT project is a large-scale fantasy text adventure game research
platform for training agents that can both talk and act, interacting either
with other models or with humans.
https://parl.ai/projects/light/
'''
def generator(self) -> t.Generator[LightDialogueEpisode, None, None]:
root_data_path = get_data_path("light_dialogue")
light_data_path = os.path.join(root_data_path, "light_data.pkl")
with open(light_data_path, "rb") as light_data_file:
light_data = pickle.load(light_data_file)
for episode in light_data:
yield LightDialogueEpisode.from_dict(episode)

View File

@ -1,42 +0,0 @@
import os
import pickle
import typing as t
from dataclasses import dataclass
import mashumaro
import pandas as pd
from toolbox.datasets import BaseDataset
from toolbox.utils.dataset import get_data_path
@dataclass(frozen=True)
class SodaEpisode(mashumaro.DataClassDictMixin):
narrative: str
dialogue: t.List[str]
speakers: t.List[str]
relation: str
literal: str
class SodaDataset(BaseDataset[SodaEpisode]):
'''
SODA: Million-scale Dialogue Distillation with Social Commonsense
Contextualization
https://huggingface.co/datasets/allenai/soda
'''
def generator(self) -> t.Generator[SodaEpisode, None, None]:
root_data_path = get_data_path("soda")
file_path = os.path.join(root_data_path, "test.parquet")
df = pd.read_parquet(file_path)
# Iterate through the test part of the SODA dataset
for i in df.index:
yield SodaEpisode(
narrative=df['narrative'][i],
dialogue=df['dialogue'][i],
speakers=df['speakers'][i],
relation=df['relation'][i],
literal=df['literal'][i]
)

View File

@ -1,16 +0,0 @@
import typing as t
class BaseModule:
'''Base module class.'''
def __iter__(self) -> t.Generator[list[str], None, None]:
'''Implements the basic iterator interface.'''
return self.generator()
def generator(self) -> t.Generator[list[str], None, None]:
'''
Should yield dialogue turns that will be used in the model's training /
validation / test splits.
'''
raise NotImplementedError

View File

@ -1,203 +0,0 @@
import logging
import re
import typing as t
from toolbox.core.consts import PromptConstants
from toolbox.datasets.characterai import CharacterAiDataset
from toolbox.modules import BaseModule
logger = logging.getLogger(__name__)
# Discard episodes shorter than 3 turns. These are likely not very useful for
# the model to learn to converse properly, since they only really contain one
# dialogue response (the first turn is the hardcoded greeting, and the second is
# the user's input).
MIN_EPISODE_LEN = 3
# Discard episodes where the average similarity between the bot's messages is
# higher than this value.
EPISODE_SIMILARITY_THRESHOLD = 0.55
#
# So here's a quick rundown of what needs to happen. We have a limited context
# window (of 2048 tokens, ATM) and for the Persona Dialogue Module (PDM), we
# need to fit all of the following things in there:
#
# - The bot's description/definitions/persona/whatever you want to call it
# - Last X messages of chat history/context (the more the merrier, usually)
# - The user's input message, e.g. `You: [user text here]`
# - The bot's response, e.g. `[Bot name]: [space for the bot's response]`
#
# As such, most of the code here is about taking globs of text and
# chunking/splitting them up to make the format described above fit into blocks
# of 2048-ish tokens (not exactly 2048 because the tokenizer depends on the
# model used, and I don't want to create a dependency on a specific model at the
# data processing stage at this point).
#
class CharacterAiPDM(BaseModule):
'''A Persona Dialogue Module powered by CharacterAI data.'''
def generator(self) -> t.Generator[list[str], None, None]:
for chat in CharacterAiDataset():
if len(chat.messages) < MIN_EPISODE_LEN:
logger.debug(
"Found episode shorter than minimum length (%s < %s), discarding.",
len(chat.messages), MIN_EPISODE_LEN)
continue
base_turns = []
if chat.bot.description is not None:
pdm_prefix = PromptConstants.pdm_prefix_for(chat.bot.name)
pdm_string = f"{pdm_prefix}: {chat.bot.description}"
base_turns.append(pdm_string)
if chat.bot.definitions is not None:
parsed_definitions, parsed_examples = _parse_definitions_for(
chat.bot.name, chat.bot.definitions)
base_turns.append(parsed_definitions)
# Add turn to separate persona info from messages, if
# necessary.
if len(base_turns) > 0:
base_turns.append(PromptConstants.CHAT_START_TOKEN)
# Now, start adding messages and break episodes apart if they get
# too big.
turns = base_turns.copy()
bot_messages: list[str] = []
for raw_message in chat.messages:
message_text = _process_message(raw_message.text)
if raw_message.is_human:
message = f"{PromptConstants.USER_PREFIX}: {message_text}"
else:
message = f"{chat.bot.name}: {message_text}"
bot_messages.append(message_text)
turns.append(message)
# Splitting logic.
cur_episode_len = sum([len(x.split()) for x in turns])
if cur_episode_len > PromptConstants.TARGET_WORD_COUNT_PER_EPISODE:
logger.debug(
"Episode length went over TARGET_WORD_COUNT_PER_EPISODE (%s > %s), breaking apart.",
cur_episode_len,
PromptConstants.TARGET_WORD_COUNT_PER_EPISODE)
# Calculate similarity between sequential bot message pairs
# within this episode, and drop it if it goes above the
# defined threshold.
similarity_score_matrix = _calculate_similarity_scores(
bot_messages)
average_similarity_score_for_episode = 0.0
for score in similarity_score_matrix[0]:
if score == 1:
continue
average_similarity_score_for_episode += score
average_similarity_score_for_episode /= 2
# Adding the last message made the episode go over the
# target word count, so we return the episode without it...
removed_turn = turns.pop()
if average_similarity_score_for_episode <= EPISODE_SIMILARITY_THRESHOLD:
# yield "\n".join(turns)
yield turns
else:
logger.debug(
"Ignoring episode due to high similarity between messages (%s > %s)",
average_similarity_score_for_episode,
EPISODE_SIMILARITY_THRESHOLD)
# ...and start the next episode with the message we had to
# trim out from this one.
turns = base_turns.copy()
turns.append(removed_turn)
bot_messages = []
#
# Private helpers.
#
EXAMPLE_CHAT_REGEX = re.compile(
r"({{char}}|{{random_user_\d}}): (.+?)(?:END_OF_DIALOG)", re.DOTALL)
RELAXED_EXAMPLE_CHAT_REGEX = re.compile(r"{{char}}: .+", re.DOTALL)
EXCESSIVE_ELLIPSIS_REGEX = re.compile(r"\.{4,}")
def _process_message(original_string: str) -> str:
'''
Processes a single message to clean it up and filter/replace the appropriate
special tokens.
'''
string = EXCESSIVE_ELLIPSIS_REGEX.sub("...", original_string)
string = string.replace("[NAME_IN_MESSAGE_REDACTED]",
PromptConstants.USER_TOKEN)
return string.strip()
def _calculate_similarity_scores(bot_turns: list[str]) -> t.Any:
'''
Calculates similarity scores between bot turns.
This is a roundabout way to try and _possibly_ detect the post-1.1 CAI
looping behavior so we can handle it during the data preprocessing.
'''
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
vectorizer = CountVectorizer()
x = vectorizer.fit_transform(bot_turns)
arr = x.toarray()
sims = cosine_similarity(arr)
return sims
def _parse_definitions_for(bot_name: str,
raw_definitions: str) -> t.Tuple[str, list[str]]:
'''
Parses bot definitions.
This function attempts to find example messages within the input string,
parses them accordingly and returns them separately from the rest of the
text in the original `definitions` string.
'''
definitions, examples = _parse_definitions_strict(raw_definitions)
if len(examples) == 0:
definitions, examples = _parse_definitions_relaxed(raw_definitions)
parsed_definitions = definitions.replace("{{char}}", bot_name)
parsed_examples = [x.replace("{{char}}", bot_name) for x in examples]
return parsed_definitions, parsed_examples
def _parse_definitions_strict(definitions: str) -> t.Tuple[str, list[str]]:
'''
Strict parsing of a bot's definitions string, assumes END_OF_DIALOG was used
correctly by the bot's creator.
'''
matched_example_chats = EXAMPLE_CHAT_REGEX.finditer(definitions)
examples = [
x.group().replace("END_OF_DIALOG", "").strip()
for x in matched_example_chats
]
definitions_without_examples = re.sub(EXAMPLE_CHAT_REGEX, "", definitions)
return definitions_without_examples, examples
def _parse_definitions_relaxed(definitions: str) -> t.Tuple[str, list[str]]:
'''
Same as the `_parse_definitions_strict`, but this one is much more relaxed
and should be used for when the bot creator didn't properly use
END_OF_DIALOG to delineate example chats.
'''
matched_example_chats = RELAXED_EXAMPLE_CHAT_REGEX.finditer(definitions)
examples = [x.group().strip() for x in matched_example_chats]
definitions_without_examples = re.sub(RELAXED_EXAMPLE_CHAT_REGEX, "",
definitions)
return definitions_without_examples, examples

View File

@ -1,220 +0,0 @@
'''
This module generates dialogue data from Discord dumps. Specifically, it:
- Looks for a DHT (https://github.com/chylex/Discord-History-Tracker) database
in `/data/discord/archive.dht` to parse
- Builds a list of senders who meet certain criteria (enough messages sent,
messages long enough), then
- Attempts to find uninterruped conversations between them and another person in
public channels.
Since a DHT database necessarily contains personal information, this module must
be manually enabled and populated with your own data.
'''
import logging
import os
import re
import sqlite3
import typing as t
from toolbox.modules import BaseModule
from toolbox.utils.dataset import get_data_path
# Matches user mentions, channel links, emotes and maybe other stuff.
SPECIAL_TOKENS_REGEX = re.compile(r"<[@:#].+?>")
MINIMUM_EPISODE_LENGTH = 5
logger = logging.getLogger(__name__)
class DiscordVDM(BaseModule):
'''A Vanilla Dialogue Module powered by Discord dumps.'''
def generator(self) -> t.Generator[list[str], None, None]:
root_data_path = get_data_path("discord")
db_path = os.path.join(root_data_path, "archive.dht")
db = sqlite3.connect(db_path)
db.row_factory = sqlite3.Row
cursor = db.cursor()
sender_ids = _get_filtered_sender_ids(cursor)
for sender_id in sender_ids:
last_message_id = None
while (episode_contents := _build_episode_turns(
db, sender_id,
start_after_message_id=last_message_id)) is not None:
turns, last_message_id = episode_contents
# Discard short episodes.
if len(turns) < MINIMUM_EPISODE_LENGTH:
logger.debug(
"Found short %s-turn episode (< %s), discarding.",
len(turns), MINIMUM_EPISODE_LENGTH)
continue
# Discard conversations with overly short messages.
lengths = [len(x) for x in turns]
avg = sum(lengths) / len(lengths)
if avg < 64:
logger.debug(
"Found conversation where average message length was %s, discarding.",
avg)
continue
yield turns
#
# Private helpers.
#
def _clean_string(string: str) -> str:
'''Removes user mentions, channel links and so on.'''
return re.sub(SPECIAL_TOKENS_REGEX, "", string).strip()
def _looks_like_ooc(raw_string: str) -> bool:
'''Tries to figure out whether a message looks like it's out of character.'''
string = raw_string.strip()
if string[0] == "(" and string[-1] == ")":
return True
if "OOC:" in string:
return True
return False
def _get_filtered_sender_ids(cursor: sqlite3.Cursor) -> list[int]:
'''Gets a list of sender_ids that meet the filtering criteria.'''
res = cursor.execute('''
SELECT
sender_id
FROM (
SELECT
"sender_id",
AVG(LENGTH("text")) AS average_message_length,
COUNT("sender_id") AS messages_sent
FROM
"messages"
GROUP BY
"sender_id"
ORDER BY
"average_message_length" DESC
)
WHERE
"messages_sent" > 8 AND "average_message_length" >= 32;
''').fetchall()
return [x[0] for x in res]
def _build_episode_turns(
db: sqlite3.Connection,
sender_id: int,
start_after_message_id: int | None = None
) -> tuple[list[str], int] | None:
logger.debug("Building episode for sender_id %s, starting after message %s",
sender_id, start_after_message_id)
# Fetch the first message for the episode.
if start_after_message_id:
query = """
SELECT
message_id, channel_id
FROM
messages
WHERE
sender_id = :sender_id AND message_id > :message_id;
"""
else:
query = """
SELECT
message_id, channel_id
FROM
messages
WHERE
sender_id = :sender_id LIMIT 1;
"""
cursor = db.cursor()
res = cursor.execute(query, {
"sender_id": sender_id,
"message_id": start_after_message_id,
}).fetchone()
if res is None:
logger.debug("No more suitable first messages found.")
return None
message_id, channel_id = res["message_id"], res["channel_id"]
logger.debug("Found suitable first message %s by %s.", message_id,
sender_id)
# From there, fetch that specific channel's log from that point on.
query = """
SELECT
*
FROM
messages
WHERE
channel_id = :channel_id
AND
message_id >= :message_id
;
"""
res = cursor.execute(query, {
"channel_id": channel_id,
"message_id": message_id,
})
person_a_id = sender_id
person_b_id = None
last_message_id = -1
turns: list[str] = []
while (row := res.fetchone()) is not None:
last_message_id = row["message_id"]
# Save who `sender_id` is talking to.
if person_b_id is None and row["sender_id"] != person_a_id:
person_b_id = row["sender_id"]
# Somebody else came into the conversation. Stop episode here.
if person_b_id and row["sender_id"] not in (person_a_id, person_b_id):
logger.debug(
"%s barged into a conversation between %s and %s, assuming end of episode.",
row["sender_id"],
person_a_id,
person_b_id,
)
break
cleaned_text = _clean_string(row["text"])
if not cleaned_text:
# Message was empty after cleaning it up, skip.
continue
if _looks_like_ooc(cleaned_text):
logger.debug("Dropping what _seems_ to be OOC talk: `%s`",
cleaned_text)
continue
# Get username.
# TODO(11b): Anonymize.
username_query = "SELECT name FROM users WHERE id = :user_id"
username = db.cursor().execute(username_query, {
"user_id": row["sender_id"]
}).fetchone()["name"]
# Build up the string and add it to the episode.
turn_string = f"{username}: {cleaned_text}"
turns.append(turn_string)
if len(turns) == 0:
logger.debug(
"Empty episode, assuming no more conversations from this sender.")
return None
return turns, last_message_id

View File

@ -1,48 +0,0 @@
import typing as t
from toolbox.core.consts import PromptConstants
from toolbox.datasets.kajiwoto import (KajiwotoDataset, generate_variants_for,
replace_special_tokens_in)
from toolbox.modules import BaseModule
from toolbox.utils.strings import uppercase
class KajiwotoPDM(BaseModule):
'''A Persona Dialogue Module powered by the Kajiwoto dataset.'''
def generator(self) -> t.Generator[str, None, None]:
dataset = KajiwotoDataset()
for episode in dataset:
turns: list[str] = []
metadata = dataset.get_metadata_for_bot(episode[0].bot_id)
# `metadata.personalities` is in a format like: `[["friendly", "20.32"]]`
# but we want that "phrased" closer to natural language, so we build
# `persona_string` to take care of that.
personality_descriptors = [x[0] for x in metadata.personalities]
persona_string = ". ".join(
[uppercase(x) for x in personality_descriptors]) + "."
description_string = metadata.description.replace("\n",
" ").replace(
" ", " ")
turns.append(
f"{PromptConstants.pdm_prefix_for(PromptConstants.BOT_TOKEN)}: {description_string}\n{persona_string}"
)
# Empty turn to have a line break separating description/persona
# and the actual messages.
turns.append("")
for turn in episode:
turns.append(
f"{PromptConstants.USER_PREFIX}: {turn.user_message}")
turns.append(
f"{PromptConstants.BOT_TOKEN}: {turn.bot_response}")
string = "\n".join(turns)
processed_string = replace_special_tokens_in(string)
for generated_string in generate_variants_for(processed_string):
yield generated_string

View File

@ -1,26 +0,0 @@
import typing as t
from toolbox.core.consts import PromptConstants
from toolbox.datasets.kajiwoto import (KajiwotoDataset, generate_variants_for,
replace_special_tokens_in)
from toolbox.modules import BaseModule
class KajiwotoVDM(BaseModule):
'''A Vanilla Dialogue Module powered by the Kajiwoto dataset.'''
def generator(self) -> t.Generator[list[str], None, None]:
dataset = KajiwotoDataset()
for episode in dataset:
turns: t.List[str] = []
for turn in episode:
turns.append(
f"{PromptConstants.USER_PREFIX}: {turn.user_message}")
turns.append(
f"{PromptConstants.BOT_TOKEN}: {turn.bot_response}")
string = "\n".join(turns)
processed_string = replace_special_tokens_in(string)
for generated_string in generate_variants_for(processed_string):
yield generated_string.split("\n")

View File

@ -1,51 +0,0 @@
import typing as t
from toolbox.core.consts import PromptConstants
from toolbox.datasets.light_dialogue import LightDialogueDataset
from toolbox.modules import BaseModule
from toolbox.utils.strings import normalize_string, title_case
class LightDialoguePDM(BaseModule):
'''Persona Dialogue Module based on the LIGHT dataset.'''
def generator(self) -> t.Generator[list[str], None, None]:
for episode in LightDialogueDataset():
# TODO(11b): Scenario doesn't belong in a persona dialog module.
context_message = f"Scenario: {episode.context[0]}\n"
persona_message = ""
for agent in episode.agents:
persona_message += f"{PromptConstants.pdm_prefix_for(title_case(agent.name))}: {agent.persona}\n"
episode_messages: t.List[str] = [context_message, persona_message]
turn_count = len(episode.speech)
for idx in range(turn_count):
character = title_case(episode.character[idx])
speech = normalize_string(episode.speech[idx])
# Start off with just the actual speech dialogue.
message = speech
# If there was an action performed in that turn, add it to the
# string.
#
# NOTE(11b): Disabled for now. Adding the action like this
# generates grammatically incorrect sentences.
# action = episode.action[idx]
# if action is not None:
# message += f" *{action}*"
# If there was an emote in that turn, add it to the string.
emote = episode.emote[idx]
if emote is not None:
message = f"*{emote}* {message}"
# Finally, prepend the turn character's name.
message = f"{character}: {message}"
episode_messages.append(message)
yield episode_messages

View File

@ -1,48 +0,0 @@
import typing as t
from toolbox.core.consts import PromptConstants
from toolbox.datasets.soda import SodaDataset
from toolbox.modules import BaseModule
class SodaPDM(BaseModule):
'''Persona Dialogue Module based on the SODA dataset.'''
def generator(self) -> t.Generator[list[str], None, None]:
for episode in SodaDataset():
episode_messages = []
# NOTE(TG): We determine which order the speakers go on based on whether the relation is xAttr or not.
# This is because some speakers are more abstract concepts rather than concrete names,
# which would make them much more suitable as a bot
if episode.relation == "xAttr":
bot_name = episode.speakers[0]
user_name = episode.speakers[1]
else:
user_name = episode.speakers[0]
bot_name = episode.speakers[1]
# First, we would want to set the persona.
# However, the only acceptable description of a persona would be when episode.relation is "xAttr", since that directly describes
# a person in the conversation.
if episode.relation == "xAttr":
episode_messages.append(f"{PromptConstants.pdm_prefix_for(bot_name)}: {episode.literal}")
# Next, set the scenario.
# Make sure to replace any instance of the person representing the user in the conversation with the user token
replaced_narrative = episode.narrative.replace(user_name, PromptConstants.USER_TOKEN)
scenario = f"Scenario: {replaced_narrative}"
episode_messages.append(scenario)
# Next, the start token
episode_messages.append(PromptConstants.CHAT_START_TOKEN)
# I am going to assume that the length of episode.speakers is the same as the length of episode.dialogue
# Looked pretty clean to me in the data. Fuck it, TODO: account for the possibility of that happening
for i, utterance in enumerate(episode.dialogue):
# For now, just leave bot's name unreplaced.
if episode.speakers[i] == user_name:
name = PromptConstants.USER_PREFIX
else:
name = bot_name
episode_messages.append(f"{name}: {utterance.replace(user_name, PromptConstants.USER_TOKEN)}")
yield episode_messages

View File

@ -1,217 +0,0 @@
#!/usr/bin/env python3
import argparse
import hashlib
import importlib
import json
import logging
import os
import random
import subprocess
import sys
import typing as t
from toolbox.core.consts import PromptConstants
from toolbox.modules import BaseModule
from toolbox.utils.strings import contains_suspect_unicode
# TODO(11b): Needs manual maintenance to keep up-to-date. Consider doing some
# metaprogramming trickery to build this list out instead.
DEFAULT_MODULE_LIST = [
"characterai_pdm:CharacterAiPDM",
# "discord_vdm:DiscordVDM",
# KajiwotoPDM has a bunch of garbage I need to filter, disabling in favor
# of the vanilla dialogue module for now.
# "kajiwoto_pdm:KajiwotoPDM",
# "kajiwoto_vdm:KajiwotoVDM",
# "light_dialogue_pdm:LightDialoguePDM",
]
DEFAULT_MODULES_STRING = ",".join(DEFAULT_MODULE_LIST)
def main() -> None:
random.seed(42)
parser = argparse.ArgumentParser()
parser.add_argument(
"-o",
"--output-name",
help="Path to write to. Should not include a file extension.")
parser.add_argument("-m",
"--modules",
default=DEFAULT_MODULES_STRING,
help="List of modules to use, comma-separated.")
parser.add_argument(
"-p",
"--print",
type=int,
help="If given, print this many episodes instead of writing to a file.")
parser.add_argument(
"-s",
"--skip",
type=int,
help="If given, skip over this many episodes before printing.")
parser.add_argument("-v",
"--verbose",
action="store_true",
help="Enable verbose logging.")
args = parser.parse_args()
logging.basicConfig(
format='[%(asctime)s] [%(levelname)s] %(message)s',
level=logging.DEBUG if args.verbose else logging.INFO,
)
# Sanity checks.
if args.output_name and args.print:
raise Exception("--output-name and --print are mutually exclusive.")
if args.skip and not args.print:
raise Exception("--skip can only be used in conjunction with --print.")
modules = _import_modules_from_string(args.modules)
#
# If the print argument was specified, print and exit.
#
if args.print:
idx = 0
episodes_to_skip = args.skip if args.skip is not None else None
for module in modules:
for episode in module():
if episodes_to_skip:
episodes_to_skip -= 1
continue
idx += 1
if idx > args.print:
sys.exit()
# Print a newline to visually separate different episodes.
if idx != 1:
print()
for ep in _episode_augmentations(episode):
print("---| New Episode |---")
print("---------------------")
print("\n---\n".join(ep + [PromptConstants.EOS_TOKEN]))
sys.exit()
#
# Otherwise, proceed with the writing logic.
#
# If no output name is given, we build one from the current git revision
# plus a hash of the given arguments. That way, the same dataset should
# theoretically always have the same output name, which is helpful for
# reproducibility and bailing out early (e.g. if the file already exists).
if args.output_name is None:
args_hash = hashlib.sha256(str(args).encode("utf-8")).hexdigest()[:7]
output_name = f"rev-{_get_git_revision_short_hash()}-args-{args_hash}"
else:
output_name = args.output_name
# Open the output file.
output_filename = f"{output_name}.jsonl"
if os.path.exists(output_filename):
raise Exception(f"{output_filename} already exists, aborting.")
with open(output_filename, "w", encoding="utf-8") as output_file:
# Iterate over each module sequentially, and write the data out into the
# file.
for module in modules:
for episode in module():
text = "\n".join(episode)
if contains_suspect_unicode(text):
print(
f"Skipping. Found suspect unicode contents in `{text}`")
continue
for augmented_episode in _episode_augmentations(episode):
text = "\n".join(augmented_episode +
[PromptConstants.EOS_TOKEN])
json_line = json.dumps({"text": text})
output_file.write(f"{json_line}\n")
#
# Helpers and CLI entrypoint.
#
def _episode_augmentations(
episode: list[str]) -> t.Generator[list[str], None, None]:
'''
Generates augmented data for the given episode.
The first 1.3B model had wildly unpredictable performance at the start of
conversations, which I attributed to the fact that originally we always fed
the model entire episodes to train on, so there were no examples of freshly
started conversations, in a sense.
This function takes a complete episode and yields different permutations of
it in an attempt to provide that data (e.g. with/without persona, with only
X messages in the history, X+2, X+4 and so on).
'''
permutated_episode = []
offset_idx = 0
# Don't discard the original episode.
yield episode
for turn in episode:
if "'s Persona: " in turn or "Scenario: " in turn or PromptConstants.CHAT_START_TOKEN in turn:
permutated_episode.append(turn.strip())
offset_idx += 1
continue
while len(episode) > 1 + offset_idx:
permutated_episode.append(episode.pop(offset_idx))
permutated_episode.append(episode.pop(offset_idx))
# Yielding every single instance results in too much data
# repetition, so instead we take a random sample.
should_yield = random.randint(0, 100) < 25
if should_yield:
yield permutated_episode
# Also, yield a version with _just_ dialogue if we've been yielding
# with persona/scenario data this entire time.
if offset_idx == 0:
continue
should_yield = random.randint(0, 100) < 25
if should_yield:
yield permutated_episode[offset_idx:]
def _get_git_revision_short_hash() -> str:
'''Returns the project's short git revision hash.'''
return subprocess.check_output(
["git", "rev-parse", "--short", "HEAD"],
cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "..",
"..")).decode("ascii").strip()
def _import_modules_from_string(string: str) -> t.List[t.Type[BaseModule]]:
'''Imports all the module classes from the given, comma-separated string.'''
modules: t.List[t.Type[BaseModule]] = []
for module_and_class_name in string.split(","):
qualified_module_name = "toolbox.modules"
try:
module_name, class_name = module_and_class_name.split(":")
qualified_module_name = f"toolbox.modules.{module_name}"
except ValueError:
class_name = module_and_class_name
module = importlib.import_module(qualified_module_name)
modules.append(getattr(module, class_name))
return modules
if __name__ == "__main__":
main()

View File

@ -1,19 +0,0 @@
import os
import typing as t
HERE = os.path.realpath(os.path.dirname(__file__))
def get_data_path(dataset_name: t.Optional[str] = None) -> str:
'''
Returns an absolute path to either the data folder, or a specific dataset if
`dataset_name` is supplied.
'''
if 'WAIFU_DATA_PATH' in os.environ:
return os.environ['WAIFU_DATA_PATH']
components = [HERE, "..", "..", "data"]
if dataset_name:
components.append(dataset_name)
return os.path.join(*components)

View File

@ -1,72 +0,0 @@
'''Utility functions to clean up text strings.'''
# Some of this is pasta from Meta's ParlAI. See:
# https://github.com/facebookresearch/ParlAI/blob/main/parlai/utils/strings.py
import regex
def normalize_string(text: str, version: int = 1) -> str:
'''
Standardize the capitalization and punctuation spacing of the input text.
- Version 1: Fix sentence start casing and punctuation.
- Version 2: Add trailing period, if missing.
'''
switch_list = [(' .', '.'), (' ,', ','), (' ?', '?'), (' !', '!'),
(" ' ", "'")]
# add spaces so that words and punctuation can be seaprated
new_text = text.lower()
# normalize in case of human:
for new, old in switch_list:
new_text = new_text.replace(old, new).replace(' ', ' ')
# split on punctuation to find sentence boundaries
# capitalize stuff
tokens = new_text.split(' ')
for i in range(len(tokens)):
if i == 0:
tokens[i] = uppercase(tokens[i])
elif tokens[i] in ('i', "i'm", "i've", "i'll", "i'd"):
tokens[i] = uppercase(tokens[i])
elif tokens[i] in '?.!' and i < len(tokens) - 1:
tokens[i + 1] = uppercase(tokens[i + 1])
new_text = ' '.join(tokens)
new_text = ' ' + new_text + ' '
for tup in switch_list:
new_text = new_text.replace(tup[0], tup[1])
# get rid of surrounding whitespace
new_text = new_text.strip()
new_text = new_text.replace(' ', ' ')
if version > 1 and new_text and new_text[-1] not in '!.?)"\'':
new_text += '.'
return new_text
def title_case(string: str) -> str:
'''Converts a string into Title Case.'''
return " ".join([uppercase(word) for word in string.split(" ")])
def uppercase(string: str) -> str:
'''
Makes the first character of the string uppercase, if the string is
non-empty.
'''
if len(string) == 0:
return string
else:
return string[0].upper() + string[1:]
def contains_suspect_unicode(string: str) -> bool:
'''
Returns whether the given string seems to have suspect Unicode trickery
(e.g.: Zalgo text).
'''
return regex.search(r"\pM{3,}", string) is not None