/* * Copyright (c) 2011 Apple Inc. All rights reserved. * * @APPLE_APACHE_LICENSE_HEADER_START@ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * @APPLE_APACHE_LICENSE_HEADER_END@ */ /* File: matrix_dec.c Contains: ALAC mixing/matrixing decode routines. Copyright: (c) 2004-2011 Apple, Inc. */ #include "matrixlib.h" #include "ALACAudioTypes.h" // up to 24-bit "offset" macros for the individual bytes of a 20/24-bit word #if TARGET_RT_BIG_ENDIAN #define LBYTE 2 #define MBYTE 1 #define HBYTE 0 #else #define LBYTE 0 #define MBYTE 1 #define HBYTE 2 #endif /* There is no plain middle-side option; instead there are various mixing modes including middle-side, each lossless, as embodied in the mix() and unmix() functions. These functions exploit a generalized middle-side transformation: u := [(rL + (m-r)R)/m]; v := L - R; where [ ] denotes integer floor. The (lossless) inverse is L = u + v - [rV/m]; R = L - v; */ // 16-bit routines void unmix16( int32_t * u, int32_t * v, int16_t * out, uint32_t stride, int32_t numSamples, int32_t mixbits, int32_t mixres ) { int16_t * op = out; int32_t j; if ( mixres != 0 ) { /* matrixed stereo */ for ( j = 0; j < numSamples; j++ ) { int32_t l, r; l = u[j] + v[j] - ((mixres * v[j]) >> mixbits); r = l - v[j]; op[0] = (int16_t) l; op[1] = (int16_t) r; op += stride; } } else { /* Conventional separated stereo. */ for ( j = 0; j < numSamples; j++ ) { op[0] = (int16_t) u[j]; op[1] = (int16_t) v[j]; op += stride; } } } // 20-bit routines // - the 20 bits of data are left-justified in 3 bytes of storage but right-aligned for input/output predictor buffers void unmix20( int32_t * u, int32_t * v, uint8_t * out, uint32_t stride, int32_t numSamples, int32_t mixbits, int32_t mixres ) { uint8_t * op = out; int32_t j; if ( mixres != 0 ) { /* matrixed stereo */ for ( j = 0; j < numSamples; j++ ) { int32_t l, r; l = u[j] + v[j] - ((mixres * v[j]) >> mixbits); r = l - v[j]; l <<= 4; r <<= 4; op[HBYTE] = (uint8_t)((l >> 16) & 0xffu); op[MBYTE] = (uint8_t)((l >> 8) & 0xffu); op[LBYTE] = (uint8_t)((l >> 0) & 0xffu); op += 3; op[HBYTE] = (uint8_t)((r >> 16) & 0xffu); op[MBYTE] = (uint8_t)((r >> 8) & 0xffu); op[LBYTE] = (uint8_t)((r >> 0) & 0xffu); op += (stride - 1) * 3; } } else { /* Conventional separated stereo. */ for ( j = 0; j < numSamples; j++ ) { int32_t val; val = u[j] << 4; op[HBYTE] = (uint8_t)((val >> 16) & 0xffu); op[MBYTE] = (uint8_t)((val >> 8) & 0xffu); op[LBYTE] = (uint8_t)((val >> 0) & 0xffu); op += 3; val = v[j] << 4; op[HBYTE] = (uint8_t)((val >> 16) & 0xffu); op[MBYTE] = (uint8_t)((val >> 8) & 0xffu); op[LBYTE] = (uint8_t)((val >> 0) & 0xffu); op += (stride - 1) * 3; } } } // 24-bit routines // - the 24 bits of data are right-justified in the input/output predictor buffers void unmix24( int32_t * u, int32_t * v, uint8_t * out, uint32_t stride, int32_t numSamples, int32_t mixbits, int32_t mixres, uint16_t * shiftUV, int32_t bytesShifted ) { uint8_t * op = out; int32_t shift = bytesShifted * 8; int32_t l, r; int32_t j, k; if ( mixres != 0 ) { /* matrixed stereo */ if ( bytesShifted != 0 ) { for ( j = 0, k = 0; j < numSamples; j++, k += 2 ) { l = u[j] + v[j] - ((mixres * v[j]) >> mixbits); r = l - v[j]; l = (l << shift) | (uint32_t) shiftUV[k + 0]; r = (r << shift) | (uint32_t) shiftUV[k + 1]; op[HBYTE] = (uint8_t)((l >> 16) & 0xffu); op[MBYTE] = (uint8_t)((l >> 8) & 0xffu); op[LBYTE] = (uint8_t)((l >> 0) & 0xffu); op += 3; op[HBYTE] = (uint8_t)((r >> 16) & 0xffu); op[MBYTE] = (uint8_t)((r >> 8) & 0xffu); op[LBYTE] = (uint8_t)((r >> 0) & 0xffu); op += (stride - 1) * 3; } } else { for ( j = 0; j < numSamples; j++ ) { l = u[j] + v[j] - ((mixres * v[j]) >> mixbits); r = l - v[j]; op[HBYTE] = (uint8_t)((l >> 16) & 0xffu); op[MBYTE] = (uint8_t)((l >> 8) & 0xffu); op[LBYTE] = (uint8_t)((l >> 0) & 0xffu); op += 3; op[HBYTE] = (uint8_t)((r >> 16) & 0xffu); op[MBYTE] = (uint8_t)((r >> 8) & 0xffu); op[LBYTE] = (uint8_t)((r >> 0) & 0xffu); op += (stride - 1) * 3; } } } else { /* Conventional separated stereo. */ if ( bytesShifted != 0 ) { for ( j = 0, k = 0; j < numSamples; j++, k += 2 ) { l = u[j]; r = v[j]; l = (l << shift) | (uint32_t) shiftUV[k + 0]; r = (r << shift) | (uint32_t) shiftUV[k + 1]; op[HBYTE] = (uint8_t)((l >> 16) & 0xffu); op[MBYTE] = (uint8_t)((l >> 8) & 0xffu); op[LBYTE] = (uint8_t)((l >> 0) & 0xffu); op += 3; op[HBYTE] = (uint8_t)((r >> 16) & 0xffu); op[MBYTE] = (uint8_t)((r >> 8) & 0xffu); op[LBYTE] = (uint8_t)((r >> 0) & 0xffu); op += (stride - 1) * 3; } } else { for ( j = 0; j < numSamples; j++ ) { int32_t val; val = u[j]; op[HBYTE] = (uint8_t)((val >> 16) & 0xffu); op[MBYTE] = (uint8_t)((val >> 8) & 0xffu); op[LBYTE] = (uint8_t)((val >> 0) & 0xffu); op += 3; val = v[j]; op[HBYTE] = (uint8_t)((val >> 16) & 0xffu); op[MBYTE] = (uint8_t)((val >> 8) & 0xffu); op[LBYTE] = (uint8_t)((val >> 0) & 0xffu); op += (stride - 1) * 3; } } } } // 32-bit routines // - note that these really expect the internal data width to be < 32 but the arrays are 32-bit // - otherwise, the calculations might overflow into the 33rd bit and be lost // - therefore, these routines deal with the specified "unused lower" bytes in the "shift" buffers void unmix32( int32_t * u, int32_t * v, int32_t * out, uint32_t stride, int32_t numSamples, int32_t mixbits, int32_t mixres, uint16_t * shiftUV, int32_t bytesShifted ) { int32_t * op = out; int32_t shift = bytesShifted * 8; int32_t l, r; int32_t j, k; if ( mixres != 0 ) { //Assert( bytesShifted != 0 ); /* matrixed stereo with shift */ for ( j = 0, k = 0; j < numSamples; j++, k += 2 ) { int32_t lt, rt; lt = u[j]; rt = v[j]; l = lt + rt - ((mixres * rt) >> mixbits); r = l - rt; op[0] = (l << shift) | (uint32_t) shiftUV[k + 0]; op[1] = (r << shift) | (uint32_t) shiftUV[k + 1]; op += stride; } } else { if ( bytesShifted == 0 ) { /* interleaving w/o shift */ for ( j = 0; j < numSamples; j++ ) { op[0] = u[j]; op[1] = v[j]; op += stride; } } else { /* interleaving with shift */ for ( j = 0, k = 0; j < numSamples; j++, k += 2 ) { op[0] = (u[j] << shift) | (uint32_t) shiftUV[k + 0]; op[1] = (v[j] << shift) | (uint32_t) shiftUV[k + 1]; op += stride; } } } } // 20/24-bit <-> 32-bit helper routines (not really matrixing but convenient to put here) void copyPredictorTo24( int32_t * in, uint8_t * out, uint32_t stride, int32_t numSamples ) { uint8_t * op = out; int32_t j; for ( j = 0; j < numSamples; j++ ) { int32_t val = in[j]; op[HBYTE] = (uint8_t)((val >> 16) & 0xffu); op[MBYTE] = (uint8_t)((val >> 8) & 0xffu); op[LBYTE] = (uint8_t)((val >> 0) & 0xffu); op += (stride * 3); } } void copyPredictorTo24Shift( int32_t * in, uint16_t * shift, uint8_t * out, uint32_t stride, int32_t numSamples, int32_t bytesShifted ) { uint8_t * op = out; int32_t shiftVal = bytesShifted * 8; int32_t j; //Assert( bytesShifted != 0 ); for ( j = 0; j < numSamples; j++ ) { int32_t val = in[j]; val = (val << shiftVal) | (uint32_t) shift[j]; op[HBYTE] = (uint8_t)((val >> 16) & 0xffu); op[MBYTE] = (uint8_t)((val >> 8) & 0xffu); op[LBYTE] = (uint8_t)((val >> 0) & 0xffu); op += (stride * 3); } } void copyPredictorTo20( int32_t * in, uint8_t * out, uint32_t stride, int32_t numSamples ) { uint8_t * op = out; int32_t j; // 32-bit predictor values are right-aligned but 20-bit output values should be left-aligned // in the 24-bit output buffer for ( j = 0; j < numSamples; j++ ) { int32_t val = in[j]; op[HBYTE] = (uint8_t)((val >> 12) & 0xffu); op[MBYTE] = (uint8_t)((val >> 4) & 0xffu); op[LBYTE] = (uint8_t)((val << 4) & 0xffu); op += (stride * 3); } } void copyPredictorTo32( int32_t * in, int32_t * out, uint32_t stride, int32_t numSamples ) { int32_t i, j; // this is only a subroutine to abstract the "iPod can only output 16-bit data" problem for ( i = 0, j = 0; i < numSamples; i++, j += stride ) out[j] = in[i]; } void copyPredictorTo32Shift( int32_t * in, uint16_t * shift, int32_t * out, uint32_t stride, int32_t numSamples, int32_t bytesShifted ) { int32_t * op = out; uint32_t shiftVal = bytesShifted * 8; int32_t j; //Assert( bytesShifted != 0 ); // this is only a subroutine to abstract the "iPod can only output 16-bit data" problem for ( j = 0; j < numSamples; j++ ) { op[0] = (in[j] << shiftVal) | (uint32_t) shift[j]; op += stride; } }