sm64pc/src/engine/surface_load.c

798 lines
21 KiB
C
Raw Normal View History

2019-08-25 06:46:40 +02:00
#include <ultra64.h>
#include "prevent_bss_reordering.h"
#include "sm64.h"
#include "game/ingame_menu.h"
#include "graph_node.h"
#include "behavior_script.h"
#include "behavior_data.h"
#include "game/memory.h"
#include "game/object_helpers.h"
#include "game/macro_special_objects.h"
#include "surface_collision.h"
#include "game/mario.h"
#include "game/object_list_processor.h"
#include "surface_load.h"
s32 unused8038BE90;
/**
* Partitions for course and object surfaces. The arrays represent
* the 16x16 cells that each level is split into.
*/
SpatialPartitionCell gStaticSurfacePartition[16][16];
SpatialPartitionCell gDynamicSurfacePartition[16][16];
/**
* Pools of data to contain either surface nodes or surfaces.
*/
struct SurfaceNode *sSurfaceNodePool;
struct Surface *sSurfacePool;
/**
* The size of the surface pool (2300).
*/
s16 sSurfacePoolSize;
u8 unused8038EEA8[0x30];
/**
* Allocate the part of the surface node pool to contain a surface node.
*/
static struct SurfaceNode *alloc_surface_node(void) {
struct SurfaceNode *node = &sSurfaceNodePool[gSurfaceNodesAllocated];
gSurfaceNodesAllocated++;
node->next = NULL;
//! A bounds check! If there's more surface nodes than 7000 allowed,
// we, um...
// Perhaps originally just debug feedback?
if (gSurfaceNodesAllocated >= 7000) {
}
return node;
}
/**
* Allocate the part of the surface pool to contain a surface and
* initialize the surface.
*/
static struct Surface *alloc_surface(void) {
struct Surface *surface = &sSurfacePool[gSurfacesAllocated];
gSurfacesAllocated++;
//! A bounds check! If there's more surfaces than the 2300 allowed,
// we, um...
// Perhaps originally just debug feedback?
if (gSurfacesAllocated >= sSurfacePoolSize) {
}
surface->type = 0;
surface->force = 0;
surface->flags = 0;
surface->room = 0;
surface->object = NULL;
return surface;
}
/**
* Iterates through the entire partition, clearing the surfaces.
*/
static void clear_spatial_partition(SpatialPartitionCell *cells) {
register s32 i = 16 * 16;
while (i--) {
(*cells)[SPATIAL_PARTITION_FLOORS].next = NULL;
(*cells)[SPATIAL_PARTITION_CEILS].next = NULL;
(*cells)[SPATIAL_PARTITION_WALLS].next = NULL;
cells++;
}
}
/**
* Clears the static (level) surface partitions for new use.
*/
static void clear_static_surfaces(void) {
clear_spatial_partition(&gStaticSurfacePartition[0][0]);
}
/**
* Add a surface to the correct cell list of surfaces.
2020-04-03 20:57:26 +02:00
* @param dynamic Determines whether the surface is static or dynamic
* @param cellX The X position of the cell in which the surface resides
* @param cellZ The Z position of the cell in which the surface resides
* @param surface The surface to add
2019-08-25 06:46:40 +02:00
*/
static void add_surface_to_cell(s16 dynamic, s16 cellX, s16 cellZ, struct Surface *surface) {
struct SurfaceNode *newNode = alloc_surface_node();
struct SurfaceNode *list;
s16 surfacePriority;
s16 priority;
s16 sortDir;
s16 listIndex;
if (surface->normal.y > 0.01) {
listIndex = SPATIAL_PARTITION_FLOORS;
sortDir = 1; // highest to lowest, then insertion order
} else if (surface->normal.y < -0.01) {
listIndex = SPATIAL_PARTITION_CEILS;
sortDir = -1; // lowest to highest, then insertion order
} else {
listIndex = SPATIAL_PARTITION_WALLS;
sortDir = 0; // insertion order
if (surface->normal.x < -0.707 || surface->normal.x > 0.707) {
surface->flags |= SURFACE_FLAG_X_PROJECTION;
}
}
//! (Surface Cucking) Surfaces are sorted by the height of their first
// vertex. Since vertices aren't ordered by height, this causes many
// lower triangles to be sorted higher. This worsens surface cucking since
// many functions only use the first triangle in surface order that fits,
// missing higher surfaces.
// upperY would be a better sort method.
surfacePriority = surface->vertex1[1] * sortDir;
newNode->surface = surface;
if (dynamic) {
list = &gDynamicSurfacePartition[cellZ][cellX][listIndex];
} else {
list = &gStaticSurfacePartition[cellZ][cellX][listIndex];
}
// Loop until we find the appropriate place for the surface in the list.
while (list->next != NULL) {
priority = list->next->surface->vertex1[1] * sortDir;
if (surfacePriority > priority) {
break;
}
list = list->next;
}
newNode->next = list->next;
list->next = newNode;
}
/**
* Returns the lowest of three values.
*/
static s16 min_3(s16 a0, s16 a1, s16 a2) {
if (a1 < a0) {
a0 = a1;
}
if (a2 < a0) {
a0 = a2;
}
return a0;
}
/**
* Returns the highest of three values.
*/
static s16 max_3(s16 a0, s16 a1, s16 a2) {
if (a1 > a0) {
a0 = a1;
}
if (a2 > a0) {
a0 = a2;
}
return a0;
}
/**
* Every level is split into 16 * 16 cells of surfaces (to limit computing
* time). This function determines the lower cell for a given x/z position.
2020-04-03 20:57:26 +02:00
* @param coord The coordinate to test
2019-08-25 06:46:40 +02:00
*/
2020-04-03 20:57:26 +02:00
static s16 lower_cell_index(s16 coord) {
2019-08-25 06:46:40 +02:00
s16 index;
// Move from range [-0x2000, 0x2000) to [0, 0x4000)
2020-04-03 20:57:26 +02:00
coord += 0x2000;
if (coord < 0) {
coord = 0;
2019-08-25 06:46:40 +02:00
}
// [0, 16)
2020-04-03 20:57:26 +02:00
index = coord / 0x400;
2019-08-25 06:46:40 +02:00
// Include extra cell if close to boundary
//! Some wall checks are larger than the buffer, meaning wall checks can
// miss walls that are near a cell border.
2020-04-03 20:57:26 +02:00
if (coord % 0x400 < 50) {
2019-08-25 06:46:40 +02:00
index -= 1;
}
if (index < 0) {
index = 0;
}
// Potentially > 15, but since the upper index is <= 15, not exploitable
return index;
}
/**
* Every level is split into 16 * 16 cells of surfaces (to limit computing
* time). This function determines the upper cell for a given x/z position.
2020-04-03 20:57:26 +02:00
* @param coord The coordinate to test
2019-08-25 06:46:40 +02:00
*/
2020-04-03 20:57:26 +02:00
static s16 upper_cell_index(s16 coord) {
2019-08-25 06:46:40 +02:00
s16 index;
// Move from range [-0x2000, 0x2000) to [0, 0x4000)
2020-04-03 20:57:26 +02:00
coord += 0x2000;
if (coord < 0) {
coord = 0;
2019-08-25 06:46:40 +02:00
}
// [0, 16)
2020-04-03 20:57:26 +02:00
index = coord / 0x400;
2019-08-25 06:46:40 +02:00
// Include extra cell if close to boundary
//! Some wall checks are larger than the buffer, meaning wall checks can
// miss walls that are near a cell border.
2020-04-03 20:57:26 +02:00
if (coord % 0x400 > 0x400 - 50) {
2019-08-25 06:46:40 +02:00
index += 1;
}
if (index > 15) {
index = 15;
}
// Potentially < 0, but since lower index is >= 0, not exploitable
return index;
}
/**
* Every level is split into 16x16 cells, this takes a surface, finds
* the appropriate cells (with a buffer), and adds the surface to those
* cells.
2020-04-03 20:57:26 +02:00
* @param surface The surface to check
* @param dynamic Boolean determining whether the surface is static or dynamic
2019-08-25 06:46:40 +02:00
*/
static void add_surface(struct Surface *surface, s32 dynamic) {
// minY/maxY maybe? s32 instead of s16, though.
UNUSED s32 unused1, unused2;
s16 minX, minZ, maxX, maxZ;
s16 minCellX, minCellZ, maxCellX, maxCellZ;
s16 cellZ, cellX;
// cellY maybe? s32 instead of s16, though.
UNUSED s32 unused3 = 0;
minX = min_3(surface->vertex1[0], surface->vertex2[0], surface->vertex3[0]);
minZ = min_3(surface->vertex1[2], surface->vertex2[2], surface->vertex3[2]);
maxX = max_3(surface->vertex1[0], surface->vertex2[0], surface->vertex3[0]);
maxZ = max_3(surface->vertex1[2], surface->vertex2[2], surface->vertex3[2]);
minCellX = lower_cell_index(minX);
maxCellX = upper_cell_index(maxX);
minCellZ = lower_cell_index(minZ);
maxCellZ = upper_cell_index(maxZ);
for (cellZ = minCellZ; cellZ <= maxCellZ; cellZ++) {
for (cellX = minCellX; cellX <= maxCellX; cellX++) {
add_surface_to_cell(dynamic, cellX, cellZ, surface);
}
}
}
2020-04-03 20:57:26 +02:00
static void stub_surface_load_1(void) {
2019-08-25 06:46:40 +02:00
}
/**
2020-04-03 20:57:26 +02:00
* Initializes a Surface struct using the given vertex data
* @param vertexData The raw data containing vertex positions
* @param vertexIndices Helper which tells positions in vertexData to start reading vertices
2019-08-25 06:46:40 +02:00
*/
static struct Surface *read_surface_data(s16 *vertexData, s16 **vertexIndices) {
struct Surface *surface;
register s32 x1, y1, z1;
register s32 x2, y2, z2;
register s32 x3, y3, z3;
s32 maxY, minY;
f32 nx, ny, nz;
f32 mag;
s16 offset1, offset2, offset3;
offset1 = 3 * (*vertexIndices)[0];
offset2 = 3 * (*vertexIndices)[1];
offset3 = 3 * (*vertexIndices)[2];
x1 = *(vertexData + offset1 + 0);
y1 = *(vertexData + offset1 + 1);
z1 = *(vertexData + offset1 + 2);
x2 = *(vertexData + offset2 + 0);
y2 = *(vertexData + offset2 + 1);
z2 = *(vertexData + offset2 + 2);
x3 = *(vertexData + offset3 + 0);
y3 = *(vertexData + offset3 + 1);
z3 = *(vertexData + offset3 + 2);
// (v2 - v1) x (v3 - v2)
nx = (y2 - y1) * (z3 - z2) - (z2 - z1) * (y3 - y2);
ny = (z2 - z1) * (x3 - x2) - (x2 - x1) * (z3 - z2);
nz = (x2 - x1) * (y3 - y2) - (y2 - y1) * (x3 - x2);
mag = sqrtf(nx * nx + ny * ny + nz * nz);
// Could have used min_3 and max_3 for this...
minY = y1;
2019-09-01 21:50:50 +02:00
if (y2 < minY) {
2019-08-25 06:46:40 +02:00
minY = y2;
2019-09-01 21:50:50 +02:00
}
if (y3 < minY) {
2019-08-25 06:46:40 +02:00
minY = y3;
2019-09-01 21:50:50 +02:00
}
2019-08-25 06:46:40 +02:00
maxY = y1;
2019-09-01 21:50:50 +02:00
if (y2 > maxY) {
2019-08-25 06:46:40 +02:00
maxY = y2;
2019-09-01 21:50:50 +02:00
}
if (y3 > maxY) {
2019-08-25 06:46:40 +02:00
maxY = y3;
2019-09-01 21:50:50 +02:00
}
2019-08-25 06:46:40 +02:00
// Checking to make sure no DIV/0
if (mag < 0.0001) {
return NULL;
}
mag = (f32)(1.0 / mag);
nx *= mag;
ny *= mag;
nz *= mag;
surface = alloc_surface();
surface->vertex1[0] = x1;
surface->vertex2[0] = x2;
surface->vertex3[0] = x3;
surface->vertex1[1] = y1;
surface->vertex2[1] = y2;
surface->vertex3[1] = y3;
surface->vertex1[2] = z1;
surface->vertex2[2] = z2;
surface->vertex3[2] = z3;
surface->normal.x = nx;
surface->normal.y = ny;
surface->normal.z = nz;
surface->originOffset = -(nx * x1 + ny * y1 + nz * z1);
surface->lowerY = minY - 5;
surface->upperY = maxY + 5;
return surface;
}
/**
* Returns whether a surface has exertion/moves Mario
* based on the surface type.
*/
static s32 surface_has_force(s16 surfaceType) {
s32 hasForce = FALSE;
switch (surfaceType) {
case SURFACE_0004: // Unused
case SURFACE_FLOWING_WATER:
case SURFACE_DEEP_MOVING_QUICKSAND:
case SURFACE_SHALLOW_MOVING_QUICKSAND:
case SURFACE_MOVING_QUICKSAND:
case SURFACE_HORIZONTAL_WIND:
case SURFACE_INSTANT_MOVING_QUICKSAND:
hasForce = TRUE;
break;
default:
break;
}
return hasForce;
}
/**
* Returns whether a surface should have the
* SURFACE_FLAG_NO_CAM_COLLISION flag.
*/
static s32 surf_has_no_cam_collision(s16 surfaceType) {
s32 flags = 0;
switch (surfaceType) {
case SURFACE_NO_CAM_COLLISION:
case SURFACE_NO_CAM_COLLISION_77: // Unused
case SURFACE_NO_CAM_COL_VERY_SLIPPERY:
case SURFACE_SWITCH:
flags = SURFACE_FLAG_NO_CAM_COLLISION;
break;
default:
break;
}
return flags;
}
/**
* Load in the surfaces for a given surface type. This includes setting the flags,
* exertion, and room.
*/
static void load_static_surfaces(s16 **data, s16 *vertexData, s16 surfaceType, s8 **surfaceRooms) {
s32 i;
s32 numSurfaces;
struct Surface *surface;
s8 room = 0;
s16 hasForce = surface_has_force(surfaceType);
s16 flags = surf_has_no_cam_collision(surfaceType);
numSurfaces = *(*data);
*data += 1;
for (i = 0; i < numSurfaces; i++) {
if (*surfaceRooms != NULL) {
room = *(*surfaceRooms);
*surfaceRooms += 1;
}
surface = read_surface_data(vertexData, data);
if (surface != NULL) {
surface->room = room;
surface->type = surfaceType;
surface->flags = (s8) flags;
if (hasForce) {
surface->force = *(*data + 3);
} else {
surface->force = 0;
}
add_surface(surface, FALSE);
}
*data += 3;
if (hasForce) {
*data += 1;
}
}
}
/**
* Read the data for vertices for reference by triangles.
*/
static s16 *read_vertex_data(s16 **data) {
s32 numVertices;
UNUSED s16 unused1[3];
UNUSED s16 unused2[3];
s16 *vertexData;
numVertices = *(*data);
(*data)++;
vertexData = *data;
*data += 3 * numVertices;
return vertexData;
}
/**
* Loads in special environmental regions, such as water,
* poison gas, and JRB fog.
*/
static void load_environmental_regions(s16 **data) {
s32 numRegions;
s32 i;
gEnvironmentRegions = *data;
numRegions = *(*data)++;
if (numRegions > 20) {
}
for (i = 0; i < numRegions; i++) {
UNUSED s16 val, loX, loZ, hiX, hiZ;
s16 height;
val = *(*data)++;
loX = *(*data)++;
hiX = *(*data)++;
loZ = *(*data)++;
hiZ = *(*data)++;
height = *(*data)++;
gEnvironmentLevels[i] = height;
}
}
/**
* Allocate some of the main pool for surfaces (2300 surf) and for surface nodes (7000 nodes).
*/
void alloc_surface_pools(void) {
sSurfacePoolSize = 2300;
sSurfaceNodePool = main_pool_alloc(7000 * sizeof(struct SurfaceNode), MEMORY_POOL_LEFT);
sSurfacePool = main_pool_alloc(sSurfacePoolSize * sizeof(struct Surface), MEMORY_POOL_LEFT);
gCCMEnteredSlide = 0;
2019-10-05 21:08:05 +02:00
reset_red_coins_collected();
2019-08-25 06:46:40 +02:00
}
2020-05-07 20:21:22 +02:00
#ifndef TARGET_N64
/**
* Get the size of the terrain data, to get the correct size when copying later.
*/
u32 get_area_terrain_size(s16 *data) {
s16 *startPos = data;
s32 end = FALSE;
s16 terrainLoadType;
s32 numVertices;
s32 numRegions;
s32 numSurfaces;
s16 hasForce;
while (!end) {
terrainLoadType = *data++;
switch (terrainLoadType) {
case TERRAIN_LOAD_VERTICES:
numVertices = *data++;
data += 3 * numVertices;
break;
case TERRAIN_LOAD_OBJECTS:
data += get_special_objects_size(data);
break;
case TERRAIN_LOAD_ENVIRONMENT:
numRegions = *data++;
data += 6 * numRegions;
break;
case TERRAIN_LOAD_CONTINUE:
continue;
case TERRAIN_LOAD_END:
end = TRUE;
break;
default:
numSurfaces = *data++;
hasForce = surface_has_force(terrainLoadType);
data += (3 + hasForce) * numSurfaces;
break;
}
}
return data - startPos;
}
#endif
2019-08-25 06:46:40 +02:00
/**
* Process the level file, loading in vertices, surfaces, some objects, and environmental
* boxes (water, gas, JRB fog).
*/
void load_area_terrain(s16 index, s16 *data, s8 *surfaceRooms, s16 *macroObjects) {
s16 terrainLoadType;
s16 *vertexData;
UNUSED s32 unused;
// Initialize the data for this.
gEnvironmentRegions = NULL;
unused8038BE90 = 0;
gSurfaceNodesAllocated = 0;
gSurfacesAllocated = 0;
clear_static_surfaces();
// A while loop interating through each section of the level data. Sections of data
// are prefixed by a terrain "type." This type is reused for surfaces as the surface
// type.
while (TRUE) {
terrainLoadType = *data;
data++;
if (TERRAIN_LOAD_IS_SURFACE_TYPE_LOW(terrainLoadType)) {
load_static_surfaces(&data, vertexData, terrainLoadType, &surfaceRooms);
} else if (terrainLoadType == TERRAIN_LOAD_VERTICES) {
vertexData = read_vertex_data(&data);
} else if (terrainLoadType == TERRAIN_LOAD_OBJECTS) {
spawn_special_objects(index, &data);
} else if (terrainLoadType == TERRAIN_LOAD_ENVIRONMENT) {
load_environmental_regions(&data);
} else if (terrainLoadType == TERRAIN_LOAD_CONTINUE) {
continue;
} else if (terrainLoadType == TERRAIN_LOAD_END) {
break;
} else if (TERRAIN_LOAD_IS_SURFACE_TYPE_HIGH(terrainLoadType)) {
load_static_surfaces(&data, vertexData, terrainLoadType, &surfaceRooms);
continue;
}
}
if (macroObjects != NULL && *macroObjects != -1) {
// If the first macro object presetID is within the range [0, 29].
// Generally an early spawning method, every object is in BBH (the first level).
if (0 <= *macroObjects && *macroObjects < 30) {
spawn_macro_objects_hardcoded(index, macroObjects);
}
// A more general version that can spawn more objects.
else {
spawn_macro_objects(index, macroObjects);
}
}
gNumStaticSurfaceNodes = gSurfaceNodesAllocated;
gNumStaticSurfaces = gSurfacesAllocated;
}
/**
* If not in time stop, clear the surface partitions.
*/
void clear_dynamic_surfaces(void) {
if (!(gTimeStopState & TIME_STOP_ACTIVE)) {
gSurfacesAllocated = gNumStaticSurfaces;
gSurfaceNodesAllocated = gNumStaticSurfaceNodes;
clear_spatial_partition(&gDynamicSurfacePartition[0][0]);
}
}
static void unused_80383604(void) {
}
/**
* Applies an object's tranformation to the object's vertices.
*/
2020-02-03 06:51:26 +01:00
void transform_object_vertices(s16 **data, s16 *vertexData) {
2019-08-25 06:46:40 +02:00
register s16 *vertices;
2020-02-03 06:51:26 +01:00
register f32 vx, vy, vz;
2019-08-25 06:46:40 +02:00
register s32 numVertices;
Mat4 *objectTransform;
Mat4 m;
objectTransform = &gCurrentObject->transform;
numVertices = *(*data);
(*data)++;
vertices = *data;
if (gCurrentObject->header.gfx.throwMatrix == NULL) {
gCurrentObject->header.gfx.throwMatrix = objectTransform;
2020-03-02 04:42:52 +01:00
obj_build_transform_from_pos_and_angle(gCurrentObject, O_POS_INDEX, O_FACE_ANGLE_INDEX);
2019-08-25 06:46:40 +02:00
}
2020-03-02 04:42:52 +01:00
obj_apply_scale_to_matrix(gCurrentObject, m, *objectTransform);
2019-08-25 06:46:40 +02:00
// Go through all vertices, rotating and translating them to transform the object.
while (numVertices--) {
vx = *(vertices++);
vy = *(vertices++);
vz = *(vertices++);
//! No bounds check on vertex data
*vertexData++ = (s16)(vx * m[0][0] + vy * m[1][0] + vz * m[2][0] + m[3][0]);
*vertexData++ = (s16)(vx * m[0][1] + vy * m[1][1] + vz * m[2][1] + m[3][1]);
*vertexData++ = (s16)(vx * m[0][2] + vy * m[1][2] + vz * m[2][2] + m[3][2]);
}
*data = vertices;
}
/**
* Load in the surfaces for the gCurrentObject. This includes setting the flags,
* exertion, and room.
*/
2020-02-03 06:51:26 +01:00
void load_object_surfaces(s16 **data, s16 *vertexData) {
2019-08-25 06:46:40 +02:00
s32 surfaceType;
s32 i;
s32 numSurfaces;
s16 hasForce;
s16 flags;
s16 room;
surfaceType = *(*data);
(*data)++;
numSurfaces = *(*data);
(*data)++;
hasForce = surface_has_force(surfaceType);
flags = surf_has_no_cam_collision(surfaceType);
flags |= SURFACE_FLAG_DYNAMIC;
// The DDD warp is initially loaded at the origin and moved to the proper
// position in paintings.c and doesn't update its room, so set it here.
if (gCurrentObject->behavior == segmented_to_virtual(bhvDddWarp)) {
room = 5;
} else {
room = 0;
}
for (i = 0; i < numSurfaces; i++) {
struct Surface *surface = read_surface_data(vertexData, data);
if (surface != NULL) {
surface->object = gCurrentObject;
surface->type = surfaceType;
if (hasForce) {
surface->force = *(*data + 3);
} else {
surface->force = 0;
}
surface->flags |= flags;
surface->room = (s8) room;
add_surface(surface, TRUE);
}
if (hasForce) {
*data += 4;
} else {
*data += 3;
}
}
}
/**
* Transform an object's vertices, reload them, and render the object.
*/
void load_object_collision_model(void) {
UNUSED s32 unused;
s16 vertexData[600];
s16 *collisionData = gCurrentObject->collisionData;
f32 marioDist = gCurrentObject->oDistanceToMario;
f32 tangibleDist = gCurrentObject->oCollisionDistance;
// On an object's first frame, the distance is set to 19000.0f.
// If the distance hasn't been updated, update it now.
if (gCurrentObject->oDistanceToMario == 19000.0f) {
marioDist = dist_between_objects(gCurrentObject, gMarioObject);
}
// If the object collision is supposed to be loaded more than the
// drawing distance of 4000, extend the drawing range.
if (gCurrentObject->oCollisionDistance > 4000.0f) {
gCurrentObject->oDrawingDistance = gCurrentObject->oCollisionDistance;
}
// Update if no Time Stop, in range, and in the current room.
if (!(gTimeStopState & TIME_STOP_ACTIVE) && marioDist < tangibleDist
&& !(gCurrentObject->activeFlags & ACTIVE_FLAG_IN_DIFFERENT_ROOM)) {
collisionData++;
transform_object_vertices(&collisionData, vertexData);
// TERRAIN_LOAD_CONTINUE acts as an "end" to the terrain data.
while (*collisionData != TERRAIN_LOAD_CONTINUE) {
load_object_surfaces(&collisionData, vertexData);
}
}
if (marioDist < gCurrentObject->oDrawingDistance) {
gCurrentObject->header.gfx.node.flags |= GRAPH_RENDER_ACTIVE;
} else {
gCurrentObject->header.gfx.node.flags &= ~GRAPH_RENDER_ACTIVE;
}
}