[sdf] Added function to find shortest distance from a point to a cubic.

This commit is contained in:
Anuj Verma 2020-07-03 16:25:57 +05:30 committed by anujverma
parent 5baa2cefc6
commit ddf631729e
2 changed files with 260 additions and 0 deletions

View File

@ -1,3 +1,16 @@
2020-07-03 Anuj Verma <anujv@iitbhilai.ac.in>
[sdf] Added function to find shortest distance from a
point to a cubic bezier. Now the sdf module can render
all types of fonts, but still has some issues.
* src/sdf/ftsdf.c (get_min_distance_cubic): The function
calculates shortest distance from a point to a cubic
bezier curve.
* src/sdf/ftsdf.c (sdf_edge_get_min_distance): Add the
`get_min_distance_cubic' function call.
2020-07-03 Anuj Verma <anujv@iitbhilai.ac.in>
* src/sdf/ftsdf.c (resolve_corner): [Bug] Remove the

View File

@ -1494,6 +1494,7 @@
FT_UShort iterations;
FT_UShort steps;
if ( !conic || !out )
{
error = FT_THROW( Invalid_Argument );
@ -1617,6 +1618,250 @@
#endif
/**************************************************************************
*
* @Function:
* get_min_distance_cubic
*
* @Description:
* This function find the shortest distance from the `cubic' bezier
* curve to a given `point' and assigns it to `out'. Only use it for
* cubic curves.
* [Note]: The function uses Newton's approximation to find the shortest
* distance. Another way would be to divide the cubic into conic
* or subdivide the curve into lines.
*
* @Input:
* [TODO]
*
* @Return:
* [TODO]
*/
static FT_Error
get_min_distance_cubic( SDF_Edge* cubic,
FT_26D6_Vec point,
SDF_Signed_Distance* out )
{
/* the procedure to find the shortest distance from a point to */
/* a cubic bezier curve is similar to a quadratic curve. */
/* The only difference is that while calculating the factor */
/* `t', instead of a cubic polynomial equation we have to find */
/* the roots of a 5th degree polynomial equation. */
/* But since solving a 5th degree polynomial equation require */
/* significant amount of time and still the results may not be */
/* accurate, we are going to directly approximate the value of */
/* `t' using Newton-Raphson method */
/* */
/* p0 = first endpoint */
/* p1 = first control point */
/* p2 = second control point */
/* p3 = second endpoint */
/* p = point from which shortest distance is to be calculated */
/* ----------------------------------------------------------- */
/* => the equation of a cubic bezier curve can be written as: */
/* B( t ) = ( ( 1 - t )^3 )p0 + 3( ( 1 - t )^2 )tp1 + */
/* 3( 1 - t )( t^2 )p2 + ( t^3 )p3 */
/* The equation can be expanded and written as: */
/* B( t ) = ( t^3 )( -p0 + 3p1 - 3p2 + p3 ) + */
/* 3( t^2 )( p0 - 2p1 + p2 ) + 3t( -p0 + p1 ) + p0 */
/* */
/* Now let A = ( -p0 + 3p1 - 3p2 + p3 ), */
/* B = 3( p0 - 2p1 + p2 ), C = 3( -p0 + p1 ) */
/* B( t ) = t^3( A ) + t^2( B ) + tC + p0 */
/* */
/* => the derivative of the above equation is written as */
/* B`( t ) = 3t^2( A ) + 2t( B ) + C */
/* */
/* => further derivative of the above equation is written as */
/* B``( t ) = 6t( A ) + 2B */
/* */
/* => the equation of distance from point `p' to the curve */
/* P( t ) can be written as */
/* P( t ) = t^3( A ) + t^2( B ) + tC + p0 - p */
/* Now let D = ( p0 - p ) */
/* P( t ) = t^3( A ) + t^2( B ) + tC + D */
/* */
/* => finally the equation of angle between curve B( t ) and */
/* point to curve distance P( t ) can be written as */
/* Q( t ) = P( t ).B`( t ) */
/* */
/* => now our task is to find a value of t such that the above */
/* equation Q( t ) becomes zero. in other words the point */
/* to curve vector makes 90 degree with curve. this is done */
/* by Newton-Raphson's method. */
/* */
/* => we first assume a arbitary value of the factor `t' and */
/* then we improve it using Newton's equation such as */
/* */
/* t -= Q( t ) / Q`( t ) */
/* putting value of Q( t ) from the above equation gives */
/* */
/* t -= P( t ).B`( t ) / derivative( P( t ).B`( t ) ) */
/* t -= P( t ).B`( t ) / */
/* ( P`( t )B`( t ) + P( t ).B``( t ) ) */
/* */
/* P`( t ) is noting but B`( t ) because the constant are */
/* gone due to derivative */
/* */
/* => finally we get the equation to improve the factor as */
/* t -= P( t ).B`( t ) / */
/* ( B`( t ).B`( t ) + P( t ).B``( t ) ) */
/* */
/* [note]: B and B( t ) are different in the above equations */
FT_Error error = FT_Err_Ok;
FT_26D6_Vec aA, bB, cC, dD; /* A, B, C in the above comment */
FT_16D16_Vec nearest_point; /* point on curve nearest to `point' */
FT_16D16_Vec direction; /* direction of curve at `nearest_point' */
FT_26D6_Vec p0, p1, p2, p3; /* control points of a cubic curve */
FT_26D6_Vec p; /* `point' to which shortest distance */
FT_16D16 min = FT_INT_MAX; /* shortest distance */
FT_16D16 min_factor; /* factor at shortest distance */
FT_16D16 min_factor_sq; /* factor at shortest distance */
FT_16D16 cross; /* to determine the sign */
FT_UShort iterations;
FT_UShort steps;
if ( !cubic || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( cubic->edge_type != SDF_EDGE_CUBIC )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
/* assign the values after checking pointer */
p0 = cubic->start_pos;
p1 = cubic->control_a;
p2 = cubic->control_b;
p3 = cubic->end_pos;
p = point;
/* compute substitution coefficients */
aA.x = -p0.x + 3 * ( p1.x - p2.x ) + p3.x;
aA.y = -p0.y + 3 * ( p1.y - p2.y ) + p3.y;
bB.x = 3 * ( p0.x - 2 * p1.x + p2.x );
bB.y = 3 * ( p0.y - 2 * p1.y + p2.y );
cC.x = 3 * ( p1.x - p0.x );
cC.y = 3 * ( p1.y - p0.y );
dD.x = p0.x;
dD.y = p0.y;
for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ )
{
FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS;
FT_16D16 factor2; /* factor^2 */
FT_16D16 factor3; /* factor^3 */
FT_16D16 length;
FT_16D16_Vec curve_point; /* point on the curve */
FT_16D16_Vec dist_vector; /* `curve_point' - `p' */
FT_26D6_Vec d1; /* first derivative */
FT_26D6_Vec d2; /* second derivative */
FT_16D16 temp1;
FT_16D16 temp2;
for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ )
{
factor2 = FT_MulFix( factor, factor );
factor3 = FT_MulFix( factor2, factor );
/* B( t ) = t^3( A ) + t^2( B ) + tC + D */
curve_point.x = FT_MulFix( aA.x, factor3 ) +
FT_MulFix( bB.x, factor2 ) +
FT_MulFix( cC.x, factor ) + dD.x;
curve_point.y = FT_MulFix( aA.y, factor3 ) +
FT_MulFix( bB.y, factor2 ) +
FT_MulFix( cC.y, factor ) + dD.y;
/* convert to 16.16 */
curve_point.x = FT_26D6_16D16( curve_point.x );
curve_point.y = FT_26D6_16D16( curve_point.y );
/* P( t ) in the comment */
dist_vector.x = curve_point.x - FT_26D6_16D16( p.x );
dist_vector.y = curve_point.y - FT_26D6_16D16( p.y );
length = VECTOR_LENGTH_16D16( dist_vector );
if ( length < min )
{
min = length;
min_factor = factor;
min_factor_sq = factor2;
nearest_point = curve_point;
}
/* This the actual Newton's approximation. */
/* t -= P( t ).B`( t ) / */
/* ( B`( t ).B`( t ) + P( t ).B``( t ) ) */
/* B`( t ) = 3t^2( A ) + 2t( B ) + C */
d1.x = FT_MulFix( aA.x, 3 * factor2 ) +
FT_MulFix( bB.x, 2 * factor ) + cC.x;
d1.y = FT_MulFix( aA.y, 3 * factor2 ) +
FT_MulFix( bB.y, 2 * factor ) + cC.y;
/* B``( t ) = 6t( A ) + 2B */
d2.x = FT_MulFix( aA.x, 6 * factor ) + 2 * bB.x;
d2.y = FT_MulFix( aA.y, 6 * factor ) + 2 * bB.y;
dist_vector.x /= 1024;
dist_vector.y /= 1024;
/* temp1 = P( t ).B`( t ) */
temp1 = VEC_26D6_DOT( dist_vector, d1 );
/* temp2 = ( B`( t ).B`( t ) + P( t ).B``( t ) ) */
temp2 = VEC_26D6_DOT( d1, d1 ) +
VEC_26D6_DOT( dist_vector, d2 );
factor -= FT_DivFix( temp1, temp2 );
if ( factor < 0 || factor > FT_INT_16D16( 1 ) )
break;
}
}
/* B`( t ) = 3t^2( A ) + 2t( B ) + C */
direction.x = FT_MulFix( aA.x, 3 * min_factor_sq ) +
FT_MulFix( bB.x, 2 * min_factor ) + cC.x;
direction.y = FT_MulFix( aA.y, 3 * min_factor_sq ) +
FT_MulFix( bB.y, 2 * min_factor ) + cC.y;
/* determine the sign */
cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ), direction.y ) -
FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ), direction.x );
/* assign the values */
out->distance = min;
out->nearest_point = nearest_point;
out->sign = cross < 0 ? 1 : -1;
FT_Vector_NormLen( &direction );
out->direction = direction;
Exit:
return error;
}
/**************************************************************************
*
* @Function:
@ -1655,6 +1900,8 @@
get_min_distance_conic( edge, point, out );
break;
case SDF_EDGE_CUBIC:
get_min_distance_cubic( edge, point, out );
break;
default:
error = FT_THROW( Invalid_Argument );
}