forked from minhngoc25a/freetype2
[sdf] Add essential math functions.
* src/sdf/ftsdf.c (cube_root, arc_cos) [!USE_NEWTON_FOR_CONIC]: New auxiliary functions. * src/sdf/ftsdf.c (solve_quadratic_equation, solve_cubic_equation) [!USE_NEWTON_FOR_CONIC]: New functions.
This commit is contained in:
parent
cd4138458a
commit
a255125fe4
10
ChangeLog
10
ChangeLog
|
@ -1,3 +1,13 @@
|
|||
2020-08-18 Anuj Verma <anujv@iitbhilai.ac.in>
|
||||
|
||||
[sdf] Add essential math functions.
|
||||
|
||||
* src/sdf/ftsdf.c (cube_root, arc_cos) [!USE_NEWTON_FOR_CONIC]: New
|
||||
auxiliary functions.
|
||||
|
||||
* src/sdf/ftsdf.c (solve_quadratic_equation, solve_cubic_equation)
|
||||
[!USE_NEWTON_FOR_CONIC]: New functions.
|
||||
|
||||
2020-08-18 Anuj Verma <anujv@iitbhilai.ac.in>
|
||||
|
||||
[sdf] Add utility functions for contours.
|
||||
|
|
244
src/sdf/ftsdf.c
244
src/sdf/ftsdf.c
|
@ -1312,4 +1312,248 @@
|
|||
return error;
|
||||
}
|
||||
|
||||
|
||||
/**************************************************************************
|
||||
*
|
||||
* math functions
|
||||
*
|
||||
*/
|
||||
|
||||
#if !USE_NEWTON_FOR_CONIC
|
||||
|
||||
/* [NOTE]: All the functions below down until rasterizer */
|
||||
/* can be avoided if we decide to subdivide the */
|
||||
/* curve into lines. */
|
||||
|
||||
/* This function uses Newton's iteration to find */
|
||||
/* the cube root of a fixed-point integer. */
|
||||
static FT_16D16
|
||||
cube_root( FT_16D16 val )
|
||||
{
|
||||
/* [IMPORTANT]: This function is not good as it may */
|
||||
/* not break, so use a lookup table instead. Or we */
|
||||
/* can use an algorithm similar to `square_root`. */
|
||||
|
||||
FT_Int v, g, c;
|
||||
|
||||
|
||||
if ( val == 0 ||
|
||||
val == -FT_INT_16D16( 1 ) ||
|
||||
val == FT_INT_16D16( 1 ) )
|
||||
return val;
|
||||
|
||||
v = val < 0 ? -val : val;
|
||||
g = square_root( v );
|
||||
c = 0;
|
||||
|
||||
while ( 1 )
|
||||
{
|
||||
c = FT_MulFix( FT_MulFix( g, g ), g ) - v;
|
||||
c = FT_DivFix( c, 3 * FT_MulFix( g, g ) );
|
||||
|
||||
g -= c;
|
||||
|
||||
if ( ( c < 0 ? -c : c ) < 30 )
|
||||
break;
|
||||
}
|
||||
|
||||
return val < 0 ? -g : g;
|
||||
}
|
||||
|
||||
|
||||
/* Calculate the perpendicular by using '1 - base^2'. */
|
||||
/* Then use arctan to compute the angle. */
|
||||
static FT_16D16
|
||||
arc_cos( FT_16D16 val )
|
||||
{
|
||||
FT_16D16 p;
|
||||
FT_16D16 b = val;
|
||||
FT_16D16 one = FT_INT_16D16( 1 );
|
||||
|
||||
|
||||
if ( b > one )
|
||||
b = one;
|
||||
if ( b < -one )
|
||||
b = -one;
|
||||
|
||||
p = one - FT_MulFix( b, b );
|
||||
p = square_root( p );
|
||||
|
||||
return FT_Atan2( b, p );
|
||||
}
|
||||
|
||||
|
||||
/* Compute roots of a quadratic polynomial, assign them to `out`, */
|
||||
/* and return number of real roots. */
|
||||
/* */
|
||||
/* The procedure can be found at */
|
||||
/* */
|
||||
/* https://mathworld.wolfram.com/QuadraticFormula.html */
|
||||
static FT_UShort
|
||||
solve_quadratic_equation( FT_26D6 a,
|
||||
FT_26D6 b,
|
||||
FT_26D6 c,
|
||||
FT_16D16 out[2] )
|
||||
{
|
||||
FT_16D16 discriminant = 0;
|
||||
|
||||
|
||||
a = FT_26D6_16D16( a );
|
||||
b = FT_26D6_16D16( b );
|
||||
c = FT_26D6_16D16( c );
|
||||
|
||||
if ( a == 0 )
|
||||
{
|
||||
if ( b == 0 )
|
||||
return 0;
|
||||
else
|
||||
{
|
||||
out[0] = FT_DivFix( -c, b );
|
||||
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
discriminant = FT_MulFix( b, b ) - 4 * FT_MulFix( a, c );
|
||||
|
||||
if ( discriminant < 0 )
|
||||
return 0;
|
||||
else if ( discriminant == 0 )
|
||||
{
|
||||
out[0] = FT_DivFix( -b, 2 * a );
|
||||
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
discriminant = square_root( discriminant );
|
||||
|
||||
out[0] = FT_DivFix( -b + discriminant, 2 * a );
|
||||
out[1] = FT_DivFix( -b - discriminant, 2 * a );
|
||||
|
||||
return 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Compute roots of a cubic polynomial, assign them to `out`, */
|
||||
/* and return number of real roots. */
|
||||
/* */
|
||||
/* The procedure can be found at */
|
||||
/* */
|
||||
/* https://mathworld.wolfram.com/CubicFormula.html */
|
||||
static FT_UShort
|
||||
solve_cubic_equation( FT_26D6 a,
|
||||
FT_26D6 b,
|
||||
FT_26D6 c,
|
||||
FT_26D6 d,
|
||||
FT_16D16 out[3] )
|
||||
{
|
||||
FT_16D16 q = 0; /* intermediate */
|
||||
FT_16D16 r = 0; /* intermediate */
|
||||
|
||||
FT_16D16 a2 = b; /* x^2 coefficients */
|
||||
FT_16D16 a1 = c; /* x coefficients */
|
||||
FT_16D16 a0 = d; /* constant */
|
||||
|
||||
FT_16D16 q3 = 0;
|
||||
FT_16D16 r2 = 0;
|
||||
FT_16D16 a23 = 0;
|
||||
FT_16D16 a22 = 0;
|
||||
FT_16D16 a1x2 = 0;
|
||||
|
||||
|
||||
/* cutoff value for `a` to be a cubic, otherwise solve quadratic */
|
||||
if ( a == 0 || FT_ABS( a ) < 16 )
|
||||
return solve_quadratic_equation( b, c, d, out );
|
||||
|
||||
if ( d == 0 )
|
||||
{
|
||||
out[0] = 0;
|
||||
|
||||
return solve_quadratic_equation( a, b, c, out + 1 ) + 1;
|
||||
}
|
||||
|
||||
/* normalize the coefficients; this also makes them 16.16 */
|
||||
a2 = FT_DivFix( a2, a );
|
||||
a1 = FT_DivFix( a1, a );
|
||||
a0 = FT_DivFix( a0, a );
|
||||
|
||||
/* compute intermediates */
|
||||
a1x2 = FT_MulFix( a1, a2 );
|
||||
a22 = FT_MulFix( a2, a2 );
|
||||
a23 = FT_MulFix( a22, a2 );
|
||||
|
||||
q = ( 3 * a1 - a22 ) / 9;
|
||||
r = ( 9 * a1x2 - 27 * a0 - 2 * a23 ) / 54;
|
||||
|
||||
/* [BUG]: `q3` and `r2` still cause underflow. */
|
||||
|
||||
q3 = FT_MulFix( q, q );
|
||||
q3 = FT_MulFix( q3, q );
|
||||
|
||||
r2 = FT_MulFix( r, r );
|
||||
|
||||
if ( q3 < 0 && r2 < -q3 )
|
||||
{
|
||||
FT_16D16 t = 0;
|
||||
|
||||
|
||||
q3 = square_root( -q3 );
|
||||
t = FT_DivFix( r, q3 );
|
||||
|
||||
if ( t > ( 1 << 16 ) )
|
||||
t = ( 1 << 16 );
|
||||
if ( t < -( 1 << 16 ) )
|
||||
t = -( 1 << 16 );
|
||||
|
||||
t = arc_cos( t );
|
||||
a2 /= 3;
|
||||
q = 2 * square_root( -q );
|
||||
|
||||
out[0] = FT_MulFix( q, FT_Cos( t / 3 ) ) - a2;
|
||||
out[1] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 2 ) / 3 ) ) - a2;
|
||||
out[2] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 4 ) / 3 ) ) - a2;
|
||||
|
||||
return 3;
|
||||
}
|
||||
|
||||
else if ( r2 == -q3 )
|
||||
{
|
||||
FT_16D16 s = 0;
|
||||
|
||||
|
||||
s = cube_root( r );
|
||||
a2 /= -3;
|
||||
|
||||
out[0] = a2 + ( 2 * s );
|
||||
out[1] = a2 - s;
|
||||
|
||||
return 2;
|
||||
}
|
||||
|
||||
else
|
||||
{
|
||||
FT_16D16 s = 0;
|
||||
FT_16D16 t = 0;
|
||||
FT_16D16 dis = 0;
|
||||
|
||||
|
||||
if ( q3 == 0 )
|
||||
dis = FT_ABS( r );
|
||||
else
|
||||
dis = square_root( q3 + r2 );
|
||||
|
||||
s = cube_root( r + dis );
|
||||
t = cube_root( r - dis );
|
||||
a2 /= -3;
|
||||
out[0] = ( a2 + ( s + t ) );
|
||||
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* !USE_NEWTON_FOR_CONIC */
|
||||
|
||||
|
||||
/* END */
|
||||
|
|
Loading…
Reference in New Issue