[sdf] Added Newton's method for conic curve.

This commit is contained in:
Anuj Verma 2020-07-02 16:54:00 +05:30 committed by anujverma
parent be3b7d7945
commit 363f1e8de1
2 changed files with 258 additions and 1 deletions

View File

@ -1,3 +1,17 @@
2020-07-02 Anuj Verma <anujv@iitbhilai.ac.in>
[sdf] Added Newton's method for shortest distance
from a point to a conic.
* src/sdf/ftsdf.c (get_min_distance_conic): Created
a new function with same name which uses Newon't
iteration for finding shortest distance fom a point
to a conic curve. This dosen't causes underfow.
* src/sdf/ftsdf.c (USE_NEWTON_FOR_CONIC): This macro
can be used to toggle between Newton or analytical
cubic solving method.
2020-07-01 Anuj Verma <anujv@iitbhilai.ac.in>
* src/sdf/ftsdf.c (get_min_distance_conic): Add more

View File

@ -18,9 +18,22 @@
/* a chance of overflow and artifacts. You can safely use it upto a */
/* pixel size of 128. */
#ifndef USE_SQUARED_DISTANCES
# define USE_SQUARED_DISTANCES 0
# define USE_SQUARED_DISTANCES 1
#endif
/* If it is defined to 1 then the rasterizer will use Newton-Raphson's */
/* method for finding shortest distance from a point to a conic curve. */
/* The other method is an analytical method which find the roots of a */
/* cubic polynomial to find the shortest distance. But the analytical */
/* method has underflow as of now. So, use the Newton's method if there */
/* is any visible artifacts. */
#ifndef USE_NEWTON_FOR_CONIC
# define USE_NEWTON_FOR_CONIC 1
#endif
#define MAX_NEWTON_ITERATION 4
#define MAX_NEWTON_STEPS 4
/**************************************************************************
*
* macros
@ -1136,6 +1149,8 @@
return error;
}
#if !USE_NEWTON_FOR_CONIC
/**************************************************************************
*
* @Function:
@ -1145,6 +1160,10 @@
* This function find the shortest distance from the `conic' bezier
* curve to a given `point' and assigns it to `out'. Only use it for
* conic/quadratic curves.
* [Note]: The function uses analytical method to find shortest distance
* which is faster than the Newton-Raphson's method, but has
* underflows at the moment. Use Newton's method if you can
* see artifacts in the SDF.
*
* @Input:
* [TODO]
@ -1358,6 +1377,230 @@
return error;
}
#else
/**************************************************************************
*
* @Function:
* get_min_distance_conic
*
* @Description:
* This function find the shortest distance from the `conic' bezier
* curve to a given `point' and assigns it to `out'. Only use it for
* conic/quadratic curves.
* [Note]: The function uses Newton's approximation to find the shortest
* distance, which is a bit slower than the analytical method
* doesn't cause underflow. Use is upto your needs.
*
* @Input:
* [TODO]
*
* @Return:
* [TODO]
*/
static FT_Error
get_min_distance_conic( SDF_Edge* conic,
FT_26D6_Vec point,
SDF_Signed_Distance* out )
{
/* This method uses Newton-Raphson's approximation to find the */
/* shortest distance from a point to conic curve which does */
/* not involve solving any cubic equation, that is why there */
/* is no risk of underflow. The method is as follows: */
/* */
/* p0 = first endpoint */
/* p1 = control point */
/* p3 = second endpoint */
/* p = point from which shortest distance is to be calculated */
/* ----------------------------------------------------------- */
/* => the equation of a quadratic bezier curve can be written */
/* B( t ) = ( ( 1 - t )^2 )p0 + 2( 1 - t )tp1 + t^2p2 */
/* here t is the factor with range [0.0f, 1.0f] */
/* the above equation can be rewritten as */
/* B( t ) = t^2( p0 - 2p1 + p2 ) + 2t( p1 - p0 ) + p0 */
/* */
/* now let A = ( p0 - 2p1 + p2), B = 2( p1 - p0 ) */
/* B( t ) = t^2( A ) + t( B ) + p0 */
/* */
/* => the derivative of the above equation is written as */
/* B`( t ) = 2t( A ) + B */
/* */
/* => further derivative of the above equation is written as */
/* B``( t ) = 2A */
/* */
/* => the equation of distance from point `p' to the curve */
/* P( t ) can be written as */
/* P( t ) = t^2( A ) + t^2( B ) + p0 - p */
/* Now let C = ( p0 - p ) */
/* P( t ) = t^2( A ) + t( B ) + C */
/* */
/* => finally the equation of angle between curve B( t ) and */
/* point to curve distance P( t ) can be written as */
/* Q( t ) = P( t ).B`( t ) */
/* */
/* => now our task is to find a value of t such that the above */
/* equation Q( t ) becomes zero. in other words the point */
/* to curve vector makes 90 degree with curve. this is done */
/* by Newton-Raphson's method. */
/* */
/* => we first assume a arbitary value of the factor `t' and */
/* then we improve it using Newton's equation such as */
/* */
/* t -= Q( t ) / Q`( t ) */
/* putting value of Q( t ) from the above equation gives */
/* */
/* t -= P( t ).B`( t ) / derivative( P( t ).B`( t ) ) */
/* t -= P( t ).B`( t ) / */
/* ( P`( t )B`( t ) + P( t ).B``( t ) ) */
/* */
/* P`( t ) is noting but B`( t ) because the constant are */
/* gone due to derivative */
/* */
/* => finally we get the equation to improve the factor as */
/* t -= P( t ).B`( t ) / */
/* ( B`( t ).B`( t ) + P( t ).B``( t ) ) */
/* */
/* [note]: B and B( t ) are different in the above equations */
FT_Error error = FT_Err_Ok;
FT_26D6_Vec aA, bB, cC; /* A, B, C in the above comment */
FT_26D6_Vec nearest_point; /* point on curve nearest to `point' */
FT_26D6_Vec direction; /* direction of curve at `nearest_point' */
FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */
FT_26D6_Vec p; /* `point' to which shortest distance */
FT_16D16 min_factor; /* factor at `nearest_point' */
FT_16D16 cross; /* to determine the sign */
FT_16D16 min = FT_INT_MAX; /* shortest squared distance */
FT_UShort iterations;
FT_UShort steps;
if ( !conic || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( conic->edge_type != SDF_EDGE_CONIC )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
/* assign the values after checking pointer */
p0 = conic->start_pos;
p1 = conic->control_a;
p2 = conic->end_pos;
p = point;
/* compute substitution coefficients */
aA.x = p0.x - 2 * p1.x + p2.x;
aA.y = p0.y - 2 * p1.y + p2.y;
bB.x = 2 * ( p1.x - p0.x );
bB.y = 2 * ( p1.y - p0.y );
cC.x = p0.x;
cC.y = p0.y;
/* do newton's iterations */
for ( iterations = 0; iterations <= MAX_NEWTON_ITERATION; iterations++ )
{
FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_ITERATION;
FT_16D16 factor2;
FT_16D16 length;
FT_16D16_Vec curve_point; /* point on the curve */
FT_16D16_Vec dist_vector; /* `curve_point' - `p' */
FT_26D6_Vec d1; /* first derivative */
FT_26D6_Vec d2; /* second derivative */
FT_16D16 temp1;
FT_16D16 temp2;
for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ )
{
factor2 = FT_MulFix( factor, factor );
/* B( t ) = t^2( A ) + t( B ) + p0 */
curve_point.x = FT_MulFix( aA.x, factor2 ) +
FT_MulFix( bB.x, factor ) + cC.x;
curve_point.y = FT_MulFix( aA.y, factor2 ) +
FT_MulFix( bB.y, factor ) + cC.y;
/* convert to 16.16 */
curve_point.x = FT_26D6_16D16( curve_point.x );
curve_point.y = FT_26D6_16D16( curve_point.y );
/* B( t ) = t^2( A ) + t( B ) + p0 - p. P( t ) in the comment */
dist_vector.x = curve_point.x - FT_26D6_16D16( p.x );
dist_vector.y = curve_point.y - FT_26D6_16D16( p.y );
length = VECTOR_LENGTH_16D16( dist_vector );
if ( length < min )
{
min = length;
min_factor = factor;
nearest_point = curve_point;
}
/* This the actual Newton's approximation. */
/* t -= P( t ).B`( t ) / */
/* ( B`( t ).B`( t ) + P( t ).B``( t ) ) */
/* B`( t ) = 2tA + B */
d1.x = FT_MulFix( aA.x, 2 * factor ) + bB.x;
d1.y = FT_MulFix( aA.y, 2 * factor ) + bB.y;
/* B``( t ) = 2A */
d2.x = 2 * aA.x;
d2.y = 2 * aA.y;
dist_vector.x /= 1024;
dist_vector.y /= 1024;
/* temp1 = P( t ).B`( t ) */
temp1 = VEC_26D6_DOT( dist_vector, d1 );
/* temp2 = ( B`( t ).B`( t ) + P( t ).B``( t ) ) */
temp2 = VEC_26D6_DOT( d1, d1 ) +
VEC_26D6_DOT( dist_vector, d2 );
factor -= FT_DivFix( temp1, temp2 );
if ( factor < 0 || factor > FT_INT_16D16( 1 ) )
break;
}
}
/* B`( t ) = 2tA + B */
direction.x = 2 * FT_MulFix( aA.x, min_factor ) + bB.x;
direction.y = 2 * FT_MulFix( aA.y, min_factor ) + bB.y;
/* determine the sign */
cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ), direction.y ) -
FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ), direction.x );
/* assign the values */
out->distance = min;
out->nearest_point = nearest_point;
out->sign = cross < 0 ? 1 : -1;
FT_Vector_NormLen( &direction );
out->direction = direction;
Exit:
return error;
}
#endif
/**************************************************************************
*
* @Function: