premiere-libtorrent/src/storage.cpp

1764 lines
48 KiB
C++

/*
Copyright (c) 2003-2016, Arvid Norberg, Daniel Wallin
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "libtorrent/config.hpp"
#include "libtorrent/error_code.hpp"
#include "libtorrent/aux_/disable_warnings_push.hpp"
#include <ctime>
#include <algorithm>
#include <set>
#include <functional>
#include <boost/ref.hpp>
#include <boost/bind.hpp>
#include <boost/version.hpp>
#include <boost/scoped_array.hpp>
#include <boost/system/error_code.hpp>
#if defined(__APPLE__)
// for getattrlist()
#include <sys/attr.h>
#include <unistd.h>
// for statfs()
#include <sys/param.h>
#include <sys/mount.h>
#endif
#if defined(__linux__)
#include <sys/statfs.h>
#endif
#if defined(__FreeBSD__)
// for statfs()
#include <sys/param.h>
#include <sys/mount.h>
#endif
#include "libtorrent/aux_/disable_warnings_pop.hpp"
#include "libtorrent/storage.hpp"
#include "libtorrent/torrent.hpp"
#include "libtorrent/hasher.hpp"
#include "libtorrent/session.hpp"
#include "libtorrent/peer_id.hpp"
#include "libtorrent/file.hpp"
#include "libtorrent/invariant_check.hpp"
#include "libtorrent/file_pool.hpp"
#include "libtorrent/aux_/session_impl.hpp"
#include "libtorrent/disk_buffer_holder.hpp"
#include "libtorrent/alloca.hpp"
#include "libtorrent/stat_cache.hpp"
#include <cstdio>
//#define TORRENT_PARTIAL_HASH_LOG
// for convert_to_wstring and convert_to_native
#include "libtorrent/aux_/escape_string.hpp"
#define DEBUG_STORAGE 0
#define DEBUG_DELETE_FILES 0
#if __cplusplus >= 201103L || defined __clang__
#if DEBUG_STORAGE
#define DLOG(...) std::fprintf(__VA_ARGS__)
#else
#define DLOG(...) do {} while (false)
#endif
#if DEBUG_DELETE_FILES
#define DFLOG(...) std::fprintf(__VA_ARGS__)
#else
#define DFLOG(...) do {} while (false)
#endif
#else
#if DEBUG_STORAGE
#define DLOG fprintf
#else
#define DLOG TORRENT_WHILE_0 fprintf
#endif
#if DEBUG_DELETE_FILES
#define DFLOG fprintf
#else
#define DFLOG TORRENT_WHILE_0 fprintf
#endif
#endif // cplusplus
namespace libtorrent
{
int copy_bufs(file::iovec_t const* bufs, int bytes, file::iovec_t* target)
{
int size = 0;
int ret = 1;
for (;;)
{
*target = *bufs;
size += int(bufs->iov_len);
if (size >= bytes)
{
target->iov_len -= size - bytes;
return ret;
}
++bufs;
++target;
++ret;
}
}
void advance_bufs(file::iovec_t*& bufs, int bytes)
{
int size = 0;
for (;;)
{
size += int(bufs->iov_len);
if (size >= bytes)
{
bufs->iov_base = reinterpret_cast<char*>(bufs->iov_base)
+ bufs->iov_len - (size - bytes);
bufs->iov_len = size - bytes;
return;
}
++bufs;
}
}
void clear_bufs(file::iovec_t const* bufs, int num_bufs)
{
for (file::iovec_t const* i = bufs, *end(bufs + num_bufs); i < end; ++i)
std::memset(i->iov_base, 0, i->iov_len);
}
namespace {
int count_bufs(file::iovec_t const* bufs, int bytes)
{
int size = 0;
int count = 1;
if (bytes == 0) return 0;
for (file::iovec_t const* i = bufs;; ++i, ++count)
{
size += int(i->iov_len);
if (size >= bytes) return count;
}
}
#ifdef TORRENT_DISK_STATS
static std::atomic<int> event_id;
static std::mutex disk_access_mutex;
// this is opened and closed by the disk_io_thread class
FILE* g_access_log = NULL;
enum access_log_flags_t
{
op_read = 0,
op_write = 1,
op_start = 0,
op_end = 2
};
void write_access_log(boost::uint64_t offset, boost::uint32_t fileid, int flags, time_point timestamp)
{
if (g_access_log == NULL) return;
// the event format in the log is:
// uint64_t timestamp (microseconds)
// uint64_t file offset
// uint32_t file-id
// uint8_t event (0: start read, 1: start write, 2: complete read, 4: complete write)
char event[29];
char* ptr = event;
detail::write_uint64(timestamp.time_since_epoch().count(), ptr);
detail::write_uint64(offset, ptr);
detail::write_uint64(static_cast<boost::uint64_t>(event_id++), ptr);
detail::write_uint32(fileid, ptr);
detail::write_uint8(flags, ptr);
std::unique_lock<std::mutex> l(disk_access_mutex);
int const ret = int(fwrite(event, 1, sizeof(event), g_access_log));
l.unlock();
if (ret != sizeof(event))
{
std::fprintf(stderr, "ERROR writing to disk access log: (%d) %s\n"
, errno, strerror(errno));
}
}
#endif
} // anonymous namespace
struct write_fileop : fileop
{
write_fileop(default_storage& st, int flags)
: m_storage(st)
, m_flags(flags)
{}
int file_op(int const file_index
, boost::int64_t const file_offset
, int const size
, file::iovec_t const* bufs, storage_error& ec)
override final
{
if (m_storage.files().pad_file_at(file_index))
{
// writing to a pad-file is a no-op
return size;
}
int num_bufs = count_bufs(bufs, size);
if (file_index < int(m_storage.m_file_priority.size())
&& m_storage.m_file_priority[file_index] == 0)
{
m_storage.need_partfile();
error_code e;
peer_request map = m_storage.files().map_file(file_index
, file_offset, 0);
int ret = m_storage.m_part_file->writev(bufs, num_bufs
, map.piece, map.start, e);
if (e)
{
ec.ec = e;
ec.file = file_index;
ec.operation = storage_error::partfile_write;
return -1;
}
return ret;
}
// invalidate our stat cache for this file, since
// we're writing to it
m_storage.m_stat_cache.set_dirty(file_index);
file_handle handle = m_storage.open_file(file_index
, file::read_write, ec);
if (ec) return -1;
// please ignore the adjusted_offset. It's just file_offset.
boost::int64_t adjusted_offset =
#ifndef TORRENT_NO_DEPRECATE
m_storage.files().file_base_deprecated(file_index) +
#endif
file_offset;
#ifdef TORRENT_DISK_STATS
write_access_log(adjusted_offset, handle->file_id(), op_start | op_write, clock_type::now());
#endif
error_code e;
int ret = handle->writev(adjusted_offset
, bufs, num_bufs, e, m_flags);
// set this unconditionally in case the upper layer would like to treat
// short reads as errors
ec.operation = storage_error::write;
// we either get an error or 0 or more bytes read
TORRENT_ASSERT(e || ret >= 0);
#ifdef TORRENT_DISK_STATS
write_access_log(adjusted_offset + ret , handle->file_id(), op_end | op_write, clock_type::now());
#endif
TORRENT_ASSERT(ret <= bufs_size(bufs, num_bufs));
if (e)
{
ec.ec = e;
ec.file = file_index;
return -1;
}
return ret;
}
private:
default_storage& m_storage;
int m_flags;
};
struct read_fileop : fileop
{
read_fileop(default_storage& st, int const flags)
: m_storage(st)
, m_flags(flags)
{}
int file_op(int const file_index
, boost::int64_t const file_offset
, int const size
, file::iovec_t const* bufs, storage_error& ec)
override final
{
int num_bufs = count_bufs(bufs, size);
if (m_storage.files().pad_file_at(file_index))
{
// reading from a pad file yields zeroes
clear_bufs(bufs, num_bufs);
return size;
}
if (file_index < int(m_storage.m_file_priority.size())
&& m_storage.m_file_priority[file_index] == 0)
{
m_storage.need_partfile();
error_code e;
peer_request map = m_storage.files().map_file(file_index
, file_offset, 0);
int ret = m_storage.m_part_file->readv(bufs, num_bufs
, map.piece, map.start, e);
if (e)
{
ec.ec = e;
ec.file = file_index;
ec.operation = storage_error::partfile_read;
return -1;
}
return ret;
}
file_handle handle = m_storage.open_file(file_index
, file::read_only | m_flags, ec);
if (ec) return -1;
// please ignore the adjusted_offset. It's just file_offset.
boost::int64_t adjusted_offset =
#ifndef TORRENT_NO_DEPRECATE
m_storage.files().file_base_deprecated(file_index) +
#endif
file_offset;
#ifdef TORRENT_DISK_STATS
write_access_log(adjusted_offset, handle->file_id(), op_start | op_read, clock_type::now());
#endif
error_code e;
int ret = handle->readv(adjusted_offset
, bufs, num_bufs, e, m_flags);
// set this unconditionally in case the upper layer would like to treat
// short reads as errors
ec.operation = storage_error::read;
// we either get an error or 0 or more bytes read
TORRENT_ASSERT(e || ret >= 0);
#ifdef TORRENT_DISK_STATS
write_access_log(adjusted_offset + ret , handle->file_id(), op_end | op_read, clock_type::now());
#endif
TORRENT_ASSERT(ret <= bufs_size(bufs, num_bufs));
if (e)
{
ec.ec = e;
ec.file = file_index;
return -1;
}
return ret;
}
private:
default_storage& m_storage;
int const m_flags;
};
default_storage::default_storage(storage_params const& params)
: m_files(*params.files)
, m_pool(*params.pool)
, m_allocate_files(params.mode == storage_mode_allocate)
{
if (params.mapped_files) m_mapped_files.reset(new file_storage(*params.mapped_files));
if (params.priorities) m_file_priority = *params.priorities;
TORRENT_ASSERT(m_files.num_files() > 0);
m_save_path = complete(params.path);
m_part_file_name = "." + (params.info
? to_hex(params.info->info_hash().to_string())
: params.files->name()) + ".parts";
}
default_storage::~default_storage()
{
error_code ec;
if (m_part_file) m_part_file->flush_metadata(ec);
// this may be called from a different
// thread than the disk thread
m_pool.release(this);
}
void default_storage::need_partfile()
{
if (m_part_file) return;
m_part_file.reset(new part_file(
m_save_path, m_part_file_name
, m_files.num_pieces(), m_files.piece_length()));
}
void default_storage::set_file_priority(std::vector<boost::uint8_t> const& prio, storage_error& ec)
{
// extend our file priorities in case it's truncated
// the default assumed priority is 1
if (prio.size() > m_file_priority.size())
m_file_priority.resize(prio.size(), 1);
file_storage const& fs = files();
for (int i = 0; i < int(prio.size()); ++i)
{
int const old_prio = m_file_priority[i];
int new_prio = prio[i];
if (old_prio == 0 && new_prio != 0)
{
// move stuff out of the part file
file_handle f = open_file(i, file::read_write, ec);
if (ec) return;
need_partfile();
m_part_file->export_file(*f, fs.file_offset(i), fs.file_size(i), ec.ec);
if (ec)
{
ec.file = i;
ec.operation = storage_error::partfile_write;
return;
}
}
else if (old_prio != 0 && new_prio == 0)
{
// move stuff into the part file
// this is not implemented yet.
// pretend that we didn't set the priority to 0.
std::string fp = fs.file_path(i, m_save_path);
if (exists(fp))
new_prio = 1;
/*
file_handle f = open_file(i, file::read_only, ec);
if (ec.ec != boost::system::errc::no_such_file_or_directory)
{
if (ec) return;
need_partfile();
m_part_file->import_file(*f, fs.file_offset(i), fs.file_size(i), ec.ec);
if (ec)
{
ec.file = i;
ec.operation = storage_error::partfile_read;
return;
}
// remove the file
std::string p = fs.file_path(i, m_save_path);
delete_one_file(p, ec.ec);
if (ec)
{
ec.file = i;
ec.operation = storage_error::remove;
}
}
*/
}
ec.ec.clear();
m_file_priority[i] = new_prio;
}
if (m_part_file) m_part_file->flush_metadata(ec.ec);
if (ec)
{
ec.file = -1;
ec.operation = storage_error::partfile_write;
}
}
void default_storage::initialize(storage_error& ec)
{
m_stat_cache.reserve(files().num_files());
#ifdef TORRENT_WINDOWS
// don't do full file allocations on network drives
#if TORRENT_USE_WSTRING
std::wstring file_name = convert_to_wstring(m_save_path);
int drive_type = GetDriveTypeW(file_name.c_str());
#else
int drive_type = GetDriveTypeA(m_save_path.c_str());
#endif
if (drive_type == DRIVE_REMOTE)
m_allocate_files = false;
#endif
m_file_created.resize(files().num_files(), false);
// first, create all missing directories
std::string last_path;
for (int file_index = 0; file_index < files().num_files(); ++file_index)
{
// ignore files that have priority 0
if (int(m_file_priority.size()) > file_index
&& m_file_priority[file_index] == 0)
{
continue;
}
// ignore pad files
if (files().pad_file_at(file_index)) continue;
error_code err;
boost::int64_t size = m_stat_cache.get_filesize(file_index, files()
, m_save_path, err);
if (err && err != boost::system::errc::no_such_file_or_directory)
{
ec.file = file_index;
ec.operation = storage_error::stat;
ec.ec = err;
break;
}
// if the file already exists, but is larger than what
// it's supposed to be, truncate it
// if the file is empty, just create it either way.
if ((!err && size > files().file_size(file_index))
|| files().file_size(file_index) == 0)
{
std::string file_path = files().file_path(file_index, m_save_path);
std::string dir = parent_path(file_path);
if (dir != last_path)
{
last_path = dir;
create_directories(last_path, ec.ec);
if (ec.ec)
{
ec.file = file_index;
ec.operation = storage_error::mkdir;
break;
}
}
ec.ec.clear();
file_handle f = open_file(file_index, file::read_write
| file::random_access, ec);
if (ec)
{
ec.file = file_index;
ec.operation = storage_error::fallocate;
return;
}
size = files().file_size(file_index);
f->set_size(size, ec.ec);
if (ec)
{
ec.file = file_index;
ec.operation = storage_error::fallocate;
break;
}
}
ec.ec.clear();
}
// close files that were opened in write mode
m_pool.release(this);
#if defined TORRENT_DEBUG_FILE_LEAKS
print_open_files("release files", m_files.name().c_str());
#endif
}
#ifndef TORRENT_NO_DEPRECATE
void default_storage::finalize_file(int, storage_error&) {}
#endif
bool default_storage::has_any_file(storage_error& ec)
{
m_stat_cache.reserve(files().num_files());
std::string file_path;
for (int i = 0; i < files().num_files(); ++i)
{
boost::int64_t sz = m_stat_cache.get_filesize(
i, files(), m_save_path, ec.ec);
if (sz < 0)
{
if (ec && ec.ec != boost::system::errc::no_such_file_or_directory)
{
ec.file = i;
ec.operation = storage_error::stat;
m_stat_cache.clear();
return false;
}
// some files not existing is expected and not an error
ec.ec.clear();
}
if (sz > 0) return true;
}
file_status s;
stat_file(combine_path(m_save_path, m_part_file_name), &s, ec.ec);
if (!ec) return true;
// the part file not existing is expected
if (ec && ec.ec == boost::system::errc::no_such_file_or_directory)
ec.ec.clear();
if (ec)
{
ec.file = -1;
ec.operation = storage_error::stat;
return false;
}
return false;
}
void default_storage::rename_file(int index, std::string const& new_filename
, storage_error& ec)
{
if (index < 0 || index >= files().num_files()) return;
std::string old_name = files().file_path(index, m_save_path);
m_pool.release(this, index);
// if the old file doesn't exist, just succeed and change the filename
// that will be created. This shortcut is important because the
// destination directory may not exist yet, which would cause a failure
// even though we're not moving a file (yet). It's better for it to
// fail later when we try to write to the file the first time, because
// the user then will have had a chance to make the destination directory
// valid.
if (exists(old_name, ec.ec))
{
#if defined TORRENT_DEBUG_FILE_LEAKS
print_open_files("release files", m_files.name().c_str());
#endif
std::string new_path;
if (is_complete(new_filename)) new_path = new_filename;
else new_path = combine_path(m_save_path, new_filename);
std::string new_dir = parent_path(new_path);
// create any missing directories that the new filename
// lands in
create_directories(new_dir, ec.ec);
if (ec.ec)
{
ec.file = index;
ec.operation = storage_error::rename;
return;
}
rename(old_name, new_path, ec.ec);
// if old_name doesn't exist, that's not an error
// here. Once we start writing to the file, it will
// be written to the new filename
if (ec.ec == boost::system::errc::no_such_file_or_directory)
ec.ec.clear();
if (ec)
{
ec.file = index;
ec.operation = storage_error::rename;
return;
}
}
else if (ec.ec)
{
// if exists fails, report that error
ec.file = index;
ec.operation = storage_error::rename;
return;
}
// if old path doesn't exist, just rename the file
// in our file_storage, so that when it is created
// it will get the new name
if (!m_mapped_files)
{ m_mapped_files.reset(new file_storage(m_files)); }
m_mapped_files->rename_file(index, new_filename);
}
void default_storage::release_files(storage_error&)
{
if (m_part_file)
{
error_code ignore;
m_part_file->flush_metadata(ignore);
m_part_file.reset();
}
// make sure we don't have the files open
m_pool.release(this);
#if defined TORRENT_DEBUG_FILE_LEAKS
print_open_files("release files", m_files.name().c_str());
#endif
}
void default_storage::delete_one_file(std::string const& p, error_code& ec)
{
remove(p, ec);
DFLOG(stderr, "[%p] delete_one_file: %s [%s]\n", static_cast<void*>(this)
, p.c_str(), ec.message().c_str());
if (ec == boost::system::errc::no_such_file_or_directory)
ec.clear();
}
void default_storage::delete_files(int const options, storage_error& ec)
{
DFLOG(stderr, "[%p] delete_files [%x]\n", static_cast<void*>(this)
, options);
#if TORRENT_USE_ASSERTS
// this is a fence job, we expect no other
// threads to hold any references to any files
// in this file storage. Assert that that's the
// case
if (!m_pool.assert_idle_files(this))
{
#if defined TORRENT_DEBUG_FILE_LEAKS
print_open_files("delete-files idle assert failed", m_files.name().c_str());
#endif
TORRENT_ASSERT_FAIL();
}
#endif
// make sure we don't have the files open
m_pool.release(this);
// if there's a part file open, make sure to destruct it to have it
// release the underlying part file. Otherwise we may not be able to
// delete it
if (m_part_file) m_part_file.reset();
#if defined TORRENT_DEBUG_FILE_LEAKS
print_open_files("release files", m_files.name().c_str());
#endif
if (options == session::delete_files)
{
#if TORRENT_USE_ASSERTS
m_pool.mark_deleted(m_files);
#endif
// delete the files from disk
std::set<std::string> directories;
using iter_t = std::set<std::string>::iterator;
for (int i = 0; i < files().num_files(); ++i)
{
std::string const fp = files().file_path(i);
bool const complete = files().file_absolute_path(i);
std::string p = complete ? fp : combine_path(m_save_path, fp);
if (!complete)
{
std::string bp = parent_path(fp);
std::pair<iter_t, bool> ret;
ret.second = true;
while (ret.second && !bp.empty())
{
ret = directories.insert(combine_path(m_save_path, bp));
bp = parent_path(bp);
}
}
delete_one_file(p, ec.ec);
if (ec) { ec.file = i; ec.operation = storage_error::remove; }
}
// remove the directories. Reverse order to delete
// subdirectories first
for (std::set<std::string>::reverse_iterator i = directories.rbegin()
, end(directories.rend()); i != end; ++i)
{
error_code error;
delete_one_file(*i, error);
if (error && !ec) { ec.file = -1; ec.ec = error; ec.operation = storage_error::remove; }
}
}
if (options == session::delete_files
|| options == session::delete_partfile)
{
error_code error;
remove(combine_path(m_save_path, m_part_file_name), error);
DFLOG(stderr, "[%p] delete partfile %s/%s [%s]\n", static_cast<void*>(this)
, m_save_path.c_str(), m_part_file_name.c_str(), error.message().c_str());
if (error && error != boost::system::errc::no_such_file_or_directory)
{
ec.file = -1;
ec.ec = error;
ec.operation = storage_error::remove;
}
}
DFLOG(stderr, "[%p] delete_files result: %s\n", static_cast<void*>(this)
, ec.ec.message().c_str());
#if defined TORRENT_DEBUG_FILE_LEAKS
print_open_files("delete-files done", m_files.name().c_str());
#endif
}
bool default_storage::verify_resume_data(add_torrent_params const& rd
, std::vector<std::string> const* links
, storage_error& ec)
{
file_storage const& fs = files();
#ifndef TORRENT_DISABLE_MUTABLE_TORRENTS
if (links)
{
// if this is a mutable torrent, and we need to pick up some files
// from other torrents, do that now. Note that there is an inherent
// race condition here. We checked if the files existed on a different
// thread a while ago. These files may no longer exist or may have been
// moved. If so, we just fail. The user is responsible to not touch
// other torrents until a new mutable torrent has been completely
// added.
int idx = 0;
for (std::vector<std::string>::const_iterator i = links->begin();
i != links->end(); ++i, ++idx)
{
if (i->empty()) continue;
error_code err;
std::string file_path = fs.file_path(idx, m_save_path);
hard_link(*i, file_path, err);
// if the file already exists, that's not an error
// TODO: 2 is this risky? The upper layer will assume we have the
// whole file. Perhaps we should verify that at least the size
// of the file is correct
if (!err || err == boost::system::errc::file_exists)
continue;
ec.ec = err;
ec.file = idx;
ec.operation = storage_error::hard_link;
return false;
}
}
#endif // TORRENT_DISABLE_MUTABLE_TORRENTS
bool const seed = rd.have_pieces.all_set();
// parse have bitmask. Verify that the files we expect to have
// actually do exist
for (int i = 0; i < rd.have_pieces.size(); ++i)
{
if (rd.have_pieces.get_bit(i) == false) continue;
std::vector<file_slice> f = fs.map_block(i, 0, 1);
TORRENT_ASSERT(!f.empty());
int const file_index = f[0].file_index;
error_code error;
boost::int64_t const size = m_stat_cache.get_filesize(f[0].file_index
, fs, m_save_path, error);
if (size < 0)
{
if (error != boost::system::errc::no_such_file_or_directory)
{
ec.ec = error;
ec.file = file_index;
ec.operation = storage_error::stat;
return false;
}
else
{
ec.ec = errors::mismatching_file_size;
ec.file = file_index;
ec.operation = storage_error::stat;
return false;
}
}
if (seed && size != fs.file_size(file_index))
{
// the resume data indicates we're a seed, but this file has
// the wrong size. Reject the resume data
ec.ec = errors::mismatching_file_size;
ec.file = file_index;
ec.operation = storage_error::check_resume;
return false;
}
// OK, this file existed, good. Now, skip all remaining pieces in
// this file. We're just sanity-checking whether the files exist
// or not.
peer_request const pr = fs.map_file(file_index, 0
, fs.file_size(file_index) + 1);
i = (std::max)(i + 1, pr.piece);
}
return true;
}
int default_storage::move_storage(std::string const& sp, int const flags
, storage_error& ec)
{
int ret = piece_manager::no_error;
std::string const save_path = complete(sp);
// check to see if any of the files exist
file_storage const& f = files();
if (flags == fail_if_exist)
{
file_status s;
error_code err;
stat_file(save_path, &s, err);
if (err != boost::system::errc::no_such_file_or_directory)
{
// the directory exists, check all the files
for (int i = 0; i < f.num_files(); ++i)
{
// files moved out to absolute paths are ignored
if (f.file_absolute_path(i)) continue;
stat_file(f.file_path(i, save_path), &s, err);
if (err != boost::system::errc::no_such_file_or_directory)
{
ec.ec = err;
ec.file = i;
ec.operation = storage_error::stat;
return piece_manager::file_exist;
}
}
}
}
{
file_status s;
error_code err;
stat_file(save_path, &s, err);
if (err == boost::system::errc::no_such_file_or_directory)
{
err.clear();
create_directories(save_path, err);
if (err)
{
ec.ec = err;
ec.file = -1;
ec.operation = storage_error::mkdir;
return piece_manager::fatal_disk_error;
}
}
else if (err)
{
ec.ec = err;
ec.file = -1;
ec.operation = storage_error::stat;
return piece_manager::fatal_disk_error;
}
}
m_pool.release(this);
#if defined TORRENT_DEBUG_FILE_LEAKS
print_open_files("release files", m_files.name().c_str());
#endif
int i;
error_code e;
for (i = 0; i < f.num_files(); ++i)
{
// files moved out to absolute paths are not moved
if (f.file_absolute_path(i)) continue;
std::string const old_path = combine_path(m_save_path, f.file_path(i));
std::string const new_path = combine_path(save_path, f.file_path(i));
if (flags == dont_replace && exists(new_path))
{
if (ret == piece_manager::no_error) ret = piece_manager::need_full_check;
continue;
}
// TODO: ideally, if we end up copying files because of a move across
// volumes, the source should not be deleted until they've all been
// copied. That would let us rollback with higher confidence.
move_file(old_path, new_path, e);
// if the source file doesn't exist. That's not a problem
// we just ignore that file
if (e == boost::system::errc::no_such_file_or_directory)
e.clear();
if (e)
{
ec.ec = e;
ec.file = i;
ec.operation = storage_error::rename;
break;
}
}
if (!e && m_part_file)
{
m_part_file->move_partfile(save_path, e);
if (e)
{
ec.ec = e;
ec.file = -1;
ec.operation = storage_error::partfile_move;
}
}
if (e)
{
// rollback
while (--i >= 0)
{
// files moved out to absolute paths are not moved
if (f.file_absolute_path(i)) continue;
std::string const old_path = combine_path(m_save_path, f.file_path(i));
std::string const new_path = combine_path(save_path, f.file_path(i));
if (!exists(old_path))
{
// ignore errors when rolling back
error_code ignore;
move_file(new_path, old_path, ignore);
}
}
return piece_manager::fatal_disk_error;
}
std::string const old_save_path = m_save_path;
m_save_path = save_path;
std::set<std::string> subdirs;
for (i = 0; i < f.num_files(); ++i)
{
// files moved out to absolute paths are not moved
if (f.file_absolute_path(i)) continue;
if (has_parent_path(f.file_path(i)))
subdirs.insert(parent_path(f.file_path(i)));
std::string const old_path = combine_path(old_save_path, f.file_path(i));
// we may still have some files in old old_save_path
// eg. if (flags == dont_replace && exists(new_path))
// ignore errors when removing
error_code ignore;
remove(old_path, ignore);
}
for (std::string const& s : subdirs)
{
error_code err;
std::string subdir = combine_path(old_save_path, s);
while (subdir != old_save_path && !err)
{
remove(subdir, err);
subdir = parent_path(subdir);
}
}
return ret;
}
int default_storage::readv(file::iovec_t const* bufs, int num_bufs
, int piece, int offset, int flags, storage_error& ec)
{
read_fileop op(*this, flags);
#ifdef TORRENT_SIMULATE_SLOW_READ
boost::thread::sleep(boost::get_system_time()
+ boost::posix_time::milliseconds(1000));
#endif
return readwritev(files(), bufs, piece, offset, num_bufs, op, ec);
}
int default_storage::writev(file::iovec_t const* bufs, int num_bufs
, int piece, int offset, int flags, storage_error& ec)
{
write_fileop op(*this, flags);
return readwritev(files(), bufs, piece, offset, num_bufs, op, ec);
}
// much of what needs to be done when reading and writing is buffer
// management and piece to file mapping. Most of that is the same for reading
// and writing. This function is a template, and the fileop decides what to
// do with the file and the buffers.
int readwritev(file_storage const& files, file::iovec_t const* const bufs
, const int piece, const int offset, const int num_bufs, fileop& op
, storage_error& ec)
{
TORRENT_ASSERT(bufs != 0);
TORRENT_ASSERT(piece >= 0);
TORRENT_ASSERT(piece < files.num_pieces());
TORRENT_ASSERT(offset >= 0);
TORRENT_ASSERT(num_bufs > 0);
const int size = bufs_size(bufs, num_bufs);
TORRENT_ASSERT(size > 0);
TORRENT_ASSERT(files.is_loaded());
// find the file iterator and file offset
boost::uint64_t torrent_offset = piece * boost::uint64_t(files.piece_length()) + offset;
int file_index = files.file_index_at_offset(torrent_offset);
TORRENT_ASSERT(torrent_offset >= files.file_offset(file_index));
TORRENT_ASSERT(torrent_offset < files.file_offset(file_index) + files.file_size(file_index));
boost::int64_t file_offset = torrent_offset - files.file_offset(file_index);
// the number of bytes left before this read or write operation is
// completely satisfied.
int bytes_left = size;
TORRENT_ASSERT(bytes_left >= 0);
// copy the iovec array so we can use it to keep track of our current
// location by updating the head base pointer and size. (see
// advance_bufs())
file::iovec_t* current_buf = TORRENT_ALLOCA(file::iovec_t, num_bufs);
copy_bufs(bufs, size, current_buf);
TORRENT_ASSERT(count_bufs(current_buf, size) == num_bufs);
file::iovec_t* tmp_buf = TORRENT_ALLOCA(file::iovec_t, num_bufs);
// the number of bytes left to read in the current file (specified by
// file_index). This is the minimum of (file_size - file_offset) and
// bytes_left.
int file_bytes_left;
while (bytes_left > 0)
{
file_bytes_left = bytes_left;
if (file_offset + file_bytes_left > files.file_size(file_index))
file_bytes_left = (std::max)(static_cast<int>(files.file_size(file_index) - file_offset), 0);
// there are no bytes left in this file, move to the next one
// this loop skips over empty files
while (file_bytes_left == 0)
{
++file_index;
file_offset = 0;
TORRENT_ASSERT(file_index < files.num_files());
// this should not happen. bytes_left should be clamped by the total
// size of the torrent, so we should never run off the end of it
if (file_index >= files.num_files()) return size;
file_bytes_left = bytes_left;
if (file_offset + file_bytes_left > files.file_size(file_index))
file_bytes_left = (std::max)(static_cast<int>(files.file_size(file_index) - file_offset), 0);
}
// make a copy of the iovec array that _just_ covers the next
// file_bytes_left bytes, i.e. just this one operation
copy_bufs(current_buf, file_bytes_left, tmp_buf);
int bytes_transferred = op.file_op(file_index, file_offset,
file_bytes_left, tmp_buf, ec);
if (ec) return -1;
// advance our position in the iovec array and the file offset.
advance_bufs(current_buf, bytes_transferred);
bytes_left -= bytes_transferred;
file_offset += bytes_transferred;
TORRENT_ASSERT(count_bufs(current_buf, bytes_left) <= num_bufs);
// if the file operation returned 0, we've hit end-of-file. We're done
if (bytes_transferred == 0)
{
if (file_bytes_left > 0 )
{
// fill in this information in case the caller wants to treat
// a short-read as an error
ec.file = file_index;
}
return size - bytes_left;
}
}
return size;
}
file_handle default_storage::open_file(int file, int mode
, storage_error& ec) const
{
file_handle h = open_file_impl(file, mode, ec.ec);
if (((mode & file::rw_mask) != file::read_only)
&& ec.ec == boost::system::errc::no_such_file_or_directory)
{
// this means the directory the file is in doesn't exist.
// so create it
ec.ec.clear();
std::string path = files().file_path(file, m_save_path);
create_directories(parent_path(path), ec.ec);
if (ec.ec)
{
ec.file = file;
ec.operation = storage_error::mkdir;
return file_handle();
}
// if the directory creation failed, don't try to open the file again
// but actually just fail
h = open_file_impl(file, mode, ec.ec);
}
if (ec.ec)
{
ec.file = file;
ec.operation = storage_error::open;
return file_handle();
}
TORRENT_ASSERT(h);
if (m_allocate_files && (mode & file::rw_mask) != file::read_only)
{
if (m_file_created.size() != files().num_files())
m_file_created.resize(files().num_files(), false);
TORRENT_ASSERT(int(m_file_created.size()) == files().num_files());
TORRENT_ASSERT(file < m_file_created.size());
// if this is the first time we open this file for writing,
// and we have m_allocate_files enabled, set the final size of
// the file right away, to allocate it on the filesystem.
if (m_file_created[file] == false)
{
error_code e;
h->set_size(files().file_size(file), e);
m_file_created.set_bit(file);
if (e)
{
ec.ec = e;
ec.file = file;
ec.operation = storage_error::fallocate;
return h;
}
}
}
return h;
}
file_handle default_storage::open_file_impl(int file, int mode
, error_code& ec) const
{
bool lock_files = m_settings ? settings().get_bool(settings_pack::lock_files) : false;
if (lock_files) mode |= file::lock_file;
if (!m_allocate_files) mode |= file::sparse;
// files with priority 0 should always be sparse
if (int(m_file_priority.size()) > file && m_file_priority[file] == 0)
mode |= file::sparse;
if (m_settings && settings().get_bool(settings_pack::no_atime_storage)) mode |= file::no_atime;
// if we have a cache already, don't store the data twice by leaving it in the OS cache as well
if (m_settings
&& settings().get_int(settings_pack::disk_io_write_mode)
== settings_pack::disable_os_cache)
{
mode |= file::no_cache;
}
file_handle ret = m_pool.open_file(const_cast<default_storage*>(this)
, m_save_path, file, files(), mode, ec);
if (ec && (mode & file::lock_file))
{
// we failed to open the file and we're trying to lock it. It's
// possible we're failing because we have another handle to this
// file in use (but waiting to be closed). Just retry to open it
// without locking.
mode &= ~file::lock_file;
ret = m_pool.open_file(const_cast<default_storage*>(this)
, m_save_path, file, files(), mode, ec);
}
return ret;
}
bool default_storage::tick()
{
error_code ec;
if (m_part_file) m_part_file->flush_metadata(ec);
return false;
}
#ifdef TORRENT_DISK_STATS
bool default_storage::disk_write_access_log() {
return g_access_log != NULL;
}
void default_storage::disk_write_access_log(bool enable) {
if (enable)
{
if (g_access_log == NULL)
{
g_access_log = fopen("file_access.log", "a+");
}
}
else
{
if (g_access_log != NULL)
{
FILE* f = g_access_log;
g_access_log = NULL;
fclose(f);
}
}
}
#endif
storage_interface* default_storage_constructor(storage_params const& params)
{
return new default_storage(params);
}
// -- disabled_storage --------------------------------------------------
namespace
{
// this storage implementation does not write anything to disk
// and it pretends to read, and just leaves garbage in the buffers
// this is useful when simulating many clients on the same machine
// or when running stress tests and want to take the cost of the
// disk I/O out of the picture. This cannot be used for any kind
// of normal bittorrent operation, since it will just send garbage
// to peers and throw away all the data it downloads. It would end
// up being banned immediately
class disabled_storage final : public storage_interface, boost::noncopyable
{
public:
virtual bool has_any_file(storage_error&) override { return false; }
virtual void set_file_priority(std::vector<boost::uint8_t> const&
, storage_error&) override {}
virtual void rename_file(int, std::string const&, storage_error&) override {}
virtual void release_files(storage_error&) override {}
virtual void delete_files(int, storage_error&) override {}
virtual void initialize(storage_error&) override {}
virtual int move_storage(std::string const&, int, storage_error&) override { return 0; }
virtual int readv(file::iovec_t const* bufs, int num_bufs
, int, int, int, storage_error&) override
{
return bufs_size(bufs, num_bufs);
}
virtual int writev(file::iovec_t const* bufs, int num_bufs
, int, int, int, storage_error&) override
{
return bufs_size(bufs, num_bufs);
}
virtual bool verify_resume_data(add_torrent_params const&
, std::vector<std::string> const*
, storage_error&) override { return false; }
};
}
storage_interface* disabled_storage_constructor(storage_params const& params)
{
TORRENT_UNUSED(params);
return new disabled_storage;
}
// -- zero_storage ------------------------------------------------------
namespace
{
// this storage implementation always reads zeroes, and always discards
// anything written to it
struct zero_storage final : storage_interface
{
virtual void initialize(storage_error&) override {}
virtual int readv(file::iovec_t const* bufs, int num_bufs
, int, int, int, storage_error&) override
{
int ret = 0;
for (int i = 0; i < num_bufs; ++i)
{
memset(bufs[i].iov_base, 0, bufs[i].iov_len);
ret += int(bufs[i].iov_len);
}
return 0;
}
virtual int writev(file::iovec_t const* bufs, int num_bufs
, int, int, int, storage_error&) override
{
int ret = 0;
for (int i = 0; i < num_bufs; ++i)
ret += int(bufs[i].iov_len);
return 0;
}
virtual bool has_any_file(storage_error&) override { return false; }
virtual void set_file_priority(std::vector<boost::uint8_t> const& /* prio */
, storage_error&) override {}
virtual int move_storage(std::string const& /* save_path */
, int /* flags */, storage_error&) override { return 0; }
virtual bool verify_resume_data(add_torrent_params const& /* rd */
, std::vector<std::string> const* /* links */
, storage_error&) override
{ return false; }
virtual void release_files(storage_error&) override {}
virtual void rename_file(int /* index */
, std::string const& /* new_filenamem */, storage_error&) override {}
virtual void delete_files(int, storage_error&) override {}
};
}
storage_interface* zero_storage_constructor(storage_params const&)
{
return new zero_storage;
}
void storage_piece_set::add_piece(cached_piece_entry* p)
{
TORRENT_ASSERT(p->in_storage == false);
TORRENT_ASSERT(p->storage.get() == this);
TORRENT_ASSERT(m_cached_pieces.count(p) == 0);
m_cached_pieces.insert(p);
#if TORRENT_USE_ASSERTS
p->in_storage = true;
#endif
}
bool storage_piece_set::has_piece(cached_piece_entry const* p) const
{
return m_cached_pieces.count(const_cast<cached_piece_entry*>(p)) > 0;
}
void storage_piece_set::remove_piece(cached_piece_entry* p)
{
TORRENT_ASSERT(p->in_storage == true);
TORRENT_ASSERT(m_cached_pieces.count(p) == 1);
m_cached_pieces.erase(p);
#if TORRENT_USE_ASSERTS
p->in_storage = false;
#endif
}
// -- piece_manager -----------------------------------------------------
piece_manager::piece_manager(
storage_interface* storage_impl
, boost::shared_ptr<void> const& torrent
, file_storage* files)
: m_files(*files)
, m_storage(storage_impl)
, m_torrent(torrent)
{
}
piece_manager::~piece_manager()
{}
#ifdef TORRENT_DEBUG
void piece_manager::assert_torrent_refcount() const
{
if (!m_torrent) return;
// sorry about this layer violation, but it's
// quite convenient to make sure the torrent won't
// get unloaded under our feet later
TORRENT_ASSERT(static_cast<torrent*>(m_torrent.get())->refcount() > 0);
}
#endif
int piece_manager::check_no_fastresume(storage_error& ec)
{
bool has_files = false;
if (!m_storage->settings().get_bool(settings_pack::no_recheck_incomplete_resume))
{
storage_error se;
has_files = m_storage->has_any_file(se);
if (se)
{
ec = se;
return fatal_disk_error;
}
if (has_files)
{
// always initialize the storage
int ret = check_init_storage(ec);
return ret != no_error ? ret : need_full_check;
}
}
return check_init_storage(ec);
}
int piece_manager::check_init_storage(storage_error& ec)
{
storage_error se;
// initialize may clear the error we pass in and it's important to
// preserve the error code in ec, even when initialize() is successful
m_storage->initialize(se);
if (se)
{
ec = se;
return fatal_disk_error;
}
return no_error;
}
// check if the fastresume data is up to date
// if it is, use it and return true. If it
// isn't return false and the full check
// will be run. If the links pointer is non-null, it has the same number
// of elements as there are files. Each element is either empty or contains
// the absolute path to a file identical to the corresponding file in this
// torrent. The storage must create hard links (or copy) those files. If
// any file does not exist or is inaccessible, the disk job must fail.
int piece_manager::check_fastresume(
add_torrent_params const& rd
, std::vector<std::string> const* links
, storage_error& ec)
{
TORRENT_ASSERT(m_files.piece_length() > 0);
// if we don't have any resume data, return
if (rd.have_pieces.empty()) return check_no_fastresume(ec);
if (!m_storage->verify_resume_data(rd, links, ec))
return check_no_fastresume(ec);
return check_init_storage(ec);
}
// ====== disk_job_fence implementation ========
disk_job_fence::disk_job_fence()
: m_has_fence(0)
, m_outstanding_jobs(0)
{}
int disk_job_fence::job_complete(disk_io_job* j, tailqueue<disk_io_job>& jobs)
{
std::lock_guard<std::mutex> l(m_mutex);
TORRENT_ASSERT(j->flags & disk_io_job::in_progress);
j->flags &= ~disk_io_job::in_progress;
TORRENT_ASSERT(m_outstanding_jobs > 0);
--m_outstanding_jobs;
if (j->flags & disk_io_job::fence)
{
// a fence job just completed. Make sure the fence logic
// works by asserting m_outstanding_jobs is in fact 0 now
TORRENT_ASSERT(m_outstanding_jobs == 0);
// the fence can now be lowered
--m_has_fence;
// now we need to post all jobs that have been queued up
// while this fence was up. However, if there's another fence
// in the queue, stop there and raise the fence again
int ret = 0;
while (m_blocked_jobs.size())
{
disk_io_job *bj = static_cast<disk_io_job*>(m_blocked_jobs.pop_front());
if (bj->flags & disk_io_job::fence)
{
// we encountered another fence. We cannot post anymore
// jobs from the blocked jobs queue. We have to go back
// into a raised fence mode and wait for all current jobs
// to complete. The exception is that if there are no jobs
// executing currently, we should add the fence job.
if (m_outstanding_jobs == 0 && jobs.empty())
{
TORRENT_ASSERT((bj->flags & disk_io_job::in_progress) == 0);
bj->flags |= disk_io_job::in_progress;
++m_outstanding_jobs;
++ret;
#if TORRENT_USE_ASSERTS
TORRENT_ASSERT(bj->blocked);
bj->blocked = false;
#endif
jobs.push_back(bj);
}
else
{
// put the fence job back in the blocked queue
m_blocked_jobs.push_front(bj);
}
return ret;
}
TORRENT_ASSERT((bj->flags & disk_io_job::in_progress) == 0);
bj->flags |= disk_io_job::in_progress;
++m_outstanding_jobs;
++ret;
#if TORRENT_USE_ASSERTS
TORRENT_ASSERT(bj->blocked);
bj->blocked = false;
#endif
jobs.push_back(bj);
}
return ret;
}
// there are still outstanding jobs, even if we have a
// fence, it's not time to lower it yet
// also, if we don't have a fence, we're done
if (m_outstanding_jobs > 0 || m_has_fence == 0) return 0;
// there's a fence raised, and no outstanding operations.
// it means we can execute the fence job right now.
TORRENT_ASSERT(m_blocked_jobs.size() > 0);
// this is the fence job
disk_io_job *bj = static_cast<disk_io_job*>(m_blocked_jobs.pop_front());
TORRENT_ASSERT(bj->flags & disk_io_job::fence);
TORRENT_ASSERT((bj->flags & disk_io_job::in_progress) == 0);
bj->flags |= disk_io_job::in_progress;
++m_outstanding_jobs;
#if TORRENT_USE_ASSERTS
TORRENT_ASSERT(bj->blocked);
bj->blocked = false;
#endif
// prioritize fence jobs since they're blocking other jobs
jobs.push_front(bj);
return 1;
}
bool disk_job_fence::is_blocked(disk_io_job* j)
{
std::lock_guard<std::mutex> l(m_mutex);
DLOG(stderr, "[%p] is_blocked: fence: %d num_outstanding: %d\n"
, static_cast<void*>(this), m_has_fence, int(m_outstanding_jobs));
// if this is the job that raised the fence, don't block it
// ignore fence can only ignore one fence. If there are several,
// this job still needs to get queued up
if (m_has_fence == 0)
{
TORRENT_ASSERT((j->flags & disk_io_job::in_progress) == 0);
j->flags |= disk_io_job::in_progress;
++m_outstanding_jobs;
return false;
}
m_blocked_jobs.push_back(j);
#if TORRENT_USE_ASSERTS
TORRENT_ASSERT(j->blocked == false);
j->blocked = true;
#endif
return true;
}
bool disk_job_fence::has_fence() const
{
std::lock_guard<std::mutex> l(m_mutex);
return m_has_fence != 0;
}
int disk_job_fence::num_blocked() const
{
std::lock_guard<std::mutex> l(m_mutex);
return m_blocked_jobs.size();
}
// j is the fence job. It must have exclusive access to the storage
// fj is the flush job. If the job j is queued, we need to issue
// this job
int disk_job_fence::raise_fence(disk_io_job* j, disk_io_job* fj
, counters& cnt)
{
TORRENT_ASSERT((j->flags & disk_io_job::fence) == 0);
j->flags |= disk_io_job::fence;
std::lock_guard<std::mutex> l(m_mutex);
DLOG(stderr, "[%p] raise_fence: fence: %d num_outstanding: %d\n"
, static_cast<void*>(this), m_has_fence, int(m_outstanding_jobs));
if (m_has_fence == 0 && m_outstanding_jobs == 0)
{
++m_has_fence;
DLOG(stderr, "[%p] raise_fence: need posting\n"
, static_cast<void*>(this));
// the job j is expected to be put on the job queue
// after this, without being passed through is_blocked()
// that's why we're accounting for it here
// fj is expected to be discarded by the caller
j->flags |= disk_io_job::in_progress;
++m_outstanding_jobs;
return fence_post_fence;
}
++m_has_fence;
if (m_has_fence > 1)
{
#if TORRENT_USE_ASSERTS
TORRENT_ASSERT(fj->blocked == false);
fj->blocked = true;
#endif
m_blocked_jobs.push_back(fj);
cnt.inc_stats_counter(counters::blocked_disk_jobs);
}
else
{
// in this case, fj is expected to be put on the job queue
fj->flags |= disk_io_job::in_progress;
++m_outstanding_jobs;
}
#if TORRENT_USE_ASSERTS
TORRENT_ASSERT(j->blocked == false);
j->blocked = true;
#endif
m_blocked_jobs.push_back(j);
cnt.inc_stats_counter(counters::blocked_disk_jobs);
return m_has_fence > 1 ? fence_post_none : fence_post_flush;
}
} // namespace libtorrent