premiere-libtorrent/src/kademlia/node.cpp

1243 lines
34 KiB
C++

/*
Copyright (c) 2006-2016, Arvid Norberg
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "libtorrent/config.hpp"
#include "libtorrent/aux_/disable_warnings_push.hpp"
#include <utility>
#include <cinttypes> // for PRId64 et.al.
#include <boost/bind.hpp>
#include <boost/function/function1.hpp>
#ifdef TORRENT_USE_VALGRIND
#include <valgrind/memcheck.h>
#endif
#include "libtorrent/aux_/disable_warnings_pop.hpp"
#include "libtorrent/io.hpp"
#include "libtorrent/bencode.hpp"
#include "libtorrent/hasher.hpp"
#include "libtorrent/socket.hpp"
#include "libtorrent/random.hpp"
#include "libtorrent/aux_/session_impl.hpp"
#include "libtorrent/alert_types.hpp" // for dht_lookup
#include "libtorrent/performance_counters.hpp" // for counters
#include "libtorrent/kademlia/node_id.hpp"
#include "libtorrent/kademlia/rpc_manager.hpp"
#include "libtorrent/kademlia/routing_table.hpp"
#include "libtorrent/kademlia/node.hpp"
#include "libtorrent/kademlia/dht_observer.hpp"
#include "libtorrent/kademlia/direct_request.hpp"
#include "libtorrent/kademlia/refresh.hpp"
#include "libtorrent/kademlia/get_peers.hpp"
#include "libtorrent/kademlia/get_item.hpp"
namespace libtorrent { namespace dht
{
using detail::write_endpoint;
namespace {
void nop() {}
node_id calculate_node_id(node_id const& nid, dht_observer* observer, udp protocol)
{
address external_address;
if (observer) external_address = observer->external_address(protocol);
// if we don't have an observer, don't pretend that external_address is valid
// generating an ID based on 0.0.0.0 would be terrible. random is better
if (!observer || external_address.is_unspecified())
{
return generate_random_id();
}
if (nid == (node_id::min)() || !verify_id(nid, external_address))
return generate_id(external_address);
return nid;
}
} // anonymous namespace
node::node(udp proto, udp_socket_interface* sock
, dht_settings const& settings, node_id nid
, dht_observer* observer
, struct counters& cnt
, std::map<std::string, node*> const& nodes
, dht_storage_constructor_type storage_constructor)
: m_settings(settings)
, m_id(calculate_node_id(nid, observer, proto))
, m_table(m_id, proto, 8, settings, observer)
, m_rpc(m_id, m_settings, m_table, sock, observer)
, m_nodes(nodes)
, m_observer(observer)
, m_protocol(map_protocol_to_descriptor(proto))
, m_last_tracker_tick(aux::time_now())
, m_last_self_refresh(min_time())
, m_sock(sock)
, m_counters(cnt)
, m_storage(storage_constructor(m_id, m_settings))
{
m_secret[0] = random();
m_secret[1] = random();
TORRENT_ASSERT(m_storage.get() != NULL);
}
node::~node() {}
void node::update_node_id()
{
// if we don't have an observer, we can't ask for the external IP (and our
// current node ID is likely not generated from an external address), so we
// can just stop here in that case.
if (!m_observer) return;
// it's possible that our external address hasn't actually changed. If our
// current ID is still valid, don't do anything.
if (verify_id(m_id, m_observer->external_address(protocol())))
return;
#ifndef TORRENT_DISABLE_LOGGING
if (m_observer) m_observer->log(dht_logger::node
, "updating node ID (because external IP address changed)");
#endif
m_id = generate_id(m_observer->external_address(protocol()));
m_table.update_node_id(m_id);
}
bool node::verify_token(std::string const& token, char const* info_hash
, udp::endpoint const& addr) const
{
if (token.length() != 4)
{
#ifndef TORRENT_DISABLE_LOGGING
if (m_observer)
{
m_observer->log(dht_logger::node, "token of incorrect length: %d"
, int(token.length()));
}
#endif
return false;
}
hasher h1;
error_code ec;
std::string address = addr.address().to_string(ec);
if (ec) return false;
h1.update(&address[0], int(address.length()));
h1.update(reinterpret_cast<char const*>(&m_secret[0]), sizeof(m_secret[0]));
h1.update(reinterpret_cast<char const*>(info_hash), sha1_hash::size);
sha1_hash h = h1.final();
if (std::equal(token.begin(), token.end(), reinterpret_cast<char*>(&h[0])))
return true;
hasher h2;
h2.update(&address[0], int(address.length()));
h2.update(reinterpret_cast<char const*>(&m_secret[1]), sizeof(m_secret[1]));
h2.update(info_hash, sha1_hash::size);
h = h2.final();
if (std::equal(token.begin(), token.end(), reinterpret_cast<char*>(&h[0])))
return true;
return false;
}
std::string node::generate_token(udp::endpoint const& addr, char const* info_hash)
{
std::string token;
token.resize(4);
hasher h;
error_code ec;
std::string address = addr.address().to_string(ec);
TORRENT_ASSERT(!ec);
h.update(&address[0], int(address.length()));
h.update(reinterpret_cast<char*>(&m_secret[0]), sizeof(m_secret[0]));
h.update(info_hash, sha1_hash::size);
sha1_hash hash = h.final();
std::copy(hash.begin(), hash.begin() + 4, reinterpret_cast<char*>(&token[0]));
TORRENT_ASSERT(std::equal(token.begin(), token.end(), reinterpret_cast<char*>(&hash[0])));
return token;
}
void node::bootstrap(std::vector<udp::endpoint> const& nodes
, find_data::nodes_callback const& f)
{
node_id target = m_id;
make_id_secret(target);
boost::intrusive_ptr<dht::bootstrap> r(new dht::bootstrap(*this, target, f));
m_last_self_refresh = aux::time_now();
#ifndef TORRENT_DISABLE_LOGGING
int count = 0;
#endif
for (std::vector<udp::endpoint>::const_iterator i = nodes.begin()
, end(nodes.end()); i != end; ++i)
{
#ifndef TORRENT_DISABLE_LOGGING
++count;
#endif
r->add_entry(node_id(0), *i, observer::flag_initial);
}
// make us start as far away from our node ID as possible
r->trim_seed_nodes();
#ifndef TORRENT_DISABLE_LOGGING
if (m_observer)
m_observer->log(dht_logger::node, "bootstrapping with %d nodes", count);
#endif
r->start();
}
int node::bucket_size(int bucket)
{
return m_table.bucket_size(bucket);
}
void node::new_write_key()
{
m_secret[1] = m_secret[0];
m_secret[0] = random();
}
void node::unreachable(udp::endpoint const& ep)
{
m_rpc.unreachable(ep);
}
void node::incoming(msg const& m)
{
// is this a reply?
bdecode_node y_ent = m.message.dict_find_string("y");
if (!y_ent || y_ent.string_length() == 0)
{
// don't respond to this obviously broken messages. We don't
// want to open up a magnification opportunity
// entry e;
// incoming_error(e, "missing 'y' entry");
// m_sock.send_packet(e, m.addr);
return;
}
char y = *(y_ent.string_ptr());
bdecode_node ext_ip = m.message.dict_find_string("ip");
// backwards compatibility
if (!ext_ip)
{
bdecode_node r = m.message.dict_find_dict("r");
if (r)
ext_ip = r.dict_find_string("ip");
}
#if TORRENT_USE_IPV6
if (ext_ip && ext_ip.string_length() >= 16)
{
// this node claims we use the wrong node-ID!
address_v6::bytes_type b;
memcpy(&b[0], ext_ip.string_ptr(), 16);
if (m_observer)
m_observer->set_external_address(address_v6(b)
, m.addr.address());
} else
#endif
if (ext_ip && ext_ip.string_length() >= 4)
{
address_v4::bytes_type b;
memcpy(&b[0], ext_ip.string_ptr(), 4);
if (m_observer)
m_observer->set_external_address(address_v4(b)
, m.addr.address());
}
switch (y)
{
case 'r':
{
node_id id;
m_rpc.incoming(m, &id);
break;
}
case 'q':
{
TORRENT_ASSERT(m.message.dict_find_string_value("y") == "q");
// When a DHT node enters the read-only state, it no longer
// responds to 'query' messages that it receives.
if (m_settings.read_only) break;
if (!native_address(m.addr)) break;
if (!m_sock->has_quota())
{
m_counters.inc_stats_counter(counters::dht_messages_in_dropped);
return;
}
entry e;
incoming_request(m, e);
m_sock->send_packet(e, m.addr);
break;
}
case 'e':
{
#ifndef TORRENT_DISABLE_LOGGING
if (m_observer)
{
bdecode_node err = m.message.dict_find_list("e");
if (err && err.list_size() >= 2
&& err.list_at(0).type() == bdecode_node::int_t
&& err.list_at(1).type() == bdecode_node::string_t
&& m_observer)
{
m_observer->log(dht_logger::node, "INCOMING ERROR: (%" PRId64 ") %s"
, err.list_int_value_at(0)
, err.list_string_value_at(1).c_str());
}
else
{
m_observer->log(dht_logger::node, "INCOMING ERROR (malformed)");
}
}
#endif
node_id id;
m_rpc.incoming(m, &id);
break;
}
}
}
namespace
{
void announce_fun(std::vector<std::pair<node_entry, std::string> > const& v
, node& node, int listen_port, sha1_hash const& ih, int flags)
{
#ifndef TORRENT_DISABLE_LOGGING
if (node.observer())
{
char hex_ih[41];
to_hex(reinterpret_cast<char const*>(&ih[0]), 20, hex_ih);
node.observer()->log(dht_logger::node, "sending announce_peer [ ih: %s "
" p: %d nodes: %d ]", hex_ih, listen_port, int(v.size()));
}
#endif
// create a dummy traversal_algorithm
boost::intrusive_ptr<traversal_algorithm> algo(
new traversal_algorithm(node, (node_id::min)()));
// store on the first k nodes
for (std::vector<std::pair<node_entry, std::string> >::const_iterator i = v.begin()
, end(v.end()); i != end; ++i)
{
#ifndef TORRENT_DISABLE_LOGGING
if (node.observer())
{
node.observer()->log(dht_logger::node, "announce-distance: %d"
, (160 - distance_exp(ih, i->first.id)));
}
#endif
void* ptr = node.m_rpc.allocate_observer();
if (ptr == 0) return;
observer_ptr o(new (ptr) announce_observer(algo, i->first.ep(), i->first.id));
#if defined TORRENT_DEBUG || defined TORRENT_RELEASE_ASSERTS
o->m_in_constructor = false;
#endif
entry e;
e["y"] = "q";
e["q"] = "announce_peer";
entry& a = e["a"];
a["info_hash"] = ih.to_string();
a["port"] = listen_port;
a["token"] = i->second;
a["seed"] = (flags & node::flag_seed) ? 1 : 0;
if (flags & node::flag_implied_port) a["implied_port"] = 1;
node.stats_counters().inc_stats_counter(counters::dht_announce_peer_out);
node.m_rpc.invoke(e, i->first.ep(), o);
}
}
}
void node::add_router_node(udp::endpoint router)
{
#ifndef TORRENT_DISABLE_LOGGING
if (m_observer)
{
m_observer->log(dht_logger::node, "adding router node: %s"
, print_endpoint(router).c_str());
}
#endif
m_table.add_router_node(router);
}
void node::add_node(udp::endpoint node)
{
if (!native_address(node)) return;
// ping the node, and if we get a reply, it
// will be added to the routing table
send_single_refresh(node, m_table.num_active_buckets());
}
void node::get_peers(sha1_hash const& info_hash
, boost::function<void(std::vector<tcp::endpoint> const&)> dcallback
, boost::function<void(std::vector<std::pair<node_entry, std::string> > const&)> ncallback
, bool noseeds)
{
// search for nodes with ids close to id or with peers
// for info-hash id. then send announce_peer to them.
boost::intrusive_ptr<dht::get_peers> ta;
if (m_settings.privacy_lookups)
{
ta.reset(new dht::obfuscated_get_peers(*this, info_hash, dcallback, ncallback, noseeds));
}
else
{
ta.reset(new dht::get_peers(*this, info_hash, dcallback, ncallback, noseeds));
}
ta->start();
}
void node::announce(sha1_hash const& info_hash, int listen_port, int flags
, boost::function<void(std::vector<tcp::endpoint> const&)> f)
{
#ifndef TORRENT_DISABLE_LOGGING
if (m_observer)
{
char hex_ih[41];
to_hex(reinterpret_cast<char const*>(&info_hash[0]), 20, hex_ih);
m_observer->log(dht_logger::node, "announcing [ ih: %s p: %d ]"
, hex_ih, listen_port);
}
#endif
get_peers(info_hash, f
, boost::bind(&announce_fun, _1, boost::ref(*this)
, listen_port, info_hash, flags), flags & node::flag_seed);
}
void node::direct_request(udp::endpoint ep, entry& e
, boost::function<void(msg const&)> f)
{
// not really a traversal
boost::intrusive_ptr<direct_traversal> algo(
new direct_traversal(*this, (node_id::min)(), f));
void* ptr = m_rpc.allocate_observer();
if (ptr == 0) return;
observer_ptr o(new (ptr) direct_observer(algo, ep, (node_id::min)()));
#if defined TORRENT_DEBUG || defined TORRENT_RELEASE_ASSERTS
o->m_in_constructor = false;
#endif
m_rpc.invoke(e, ep, o);
}
void node::get_item(sha1_hash const& target
, boost::function<void(item const&)> f)
{
#ifndef TORRENT_DISABLE_LOGGING
if (m_observer)
{
char hex_target[41];
to_hex(reinterpret_cast<char const*>(&target[0]), 20, hex_target);
m_observer->log(dht_logger::node, "starting get for [ hash: %s ]"
, hex_target);
}
#endif
boost::intrusive_ptr<dht::get_item> ta;
ta.reset(new dht::get_item(*this, target, boost::bind(f, _1), find_data::nodes_callback()));
ta->start();
}
void node::get_item(char const* pk, std::string const& salt
, boost::function<void(item const&, bool)> f)
{
#ifndef TORRENT_DISABLE_LOGGING
if (m_observer)
{
char hex_key[65];
to_hex(pk, 32, hex_key);
m_observer->log(dht_logger::node, "starting get for [ key: %s ]", hex_key);
}
#endif
boost::intrusive_ptr<dht::get_item> ta;
ta.reset(new dht::get_item(*this, pk, salt, f, find_data::nodes_callback()));
ta->start();
}
namespace {
void put(std::vector<std::pair<node_entry, std::string> > const& nodes
, boost::intrusive_ptr<dht::put_data> ta)
{
ta->set_targets(nodes);
ta->start();
}
void put_data_cb(item i, bool auth
, boost::intrusive_ptr<put_data> ta
, boost::function<void(item&)> f)
{
// call data_callback only when we got authoritative data.
if (auth)
{
f(i);
ta->set_data(i);
}
}
} // namespace
void node::put_item(sha1_hash const& target, entry const& data, boost::function<void(int)> f)
{
#ifndef TORRENT_DISABLE_LOGGING
if (m_observer)
{
char hex_target[41];
to_hex(target.data(), 20, hex_target);
m_observer->log(dht_logger::node, "starting get for [ hash: %s ]"
, hex_target);
}
#endif
item i;
i.assign(data);
boost::intrusive_ptr<dht::put_data> put_ta;
put_ta.reset(new dht::put_data(*this, boost::bind(f, _2)));
put_ta->set_data(i);
boost::intrusive_ptr<dht::get_item> ta;
ta.reset(new dht::get_item(*this, target, get_item::data_callback(),
boost::bind(&put, _1, put_ta)));
ta->start();
}
void node::put_item(char const* pk, std::string const& salt
, boost::function<void(item const&, int)> f
, boost::function<void(item&)> data_cb)
{
#ifndef TORRENT_DISABLE_LOGGING
if (m_observer)
{
char hex_key[65];
to_hex(pk, 32, hex_key);
m_observer->log(dht_logger::node, "starting get for [ key: %s ]", hex_key);
}
#endif
boost::intrusive_ptr<dht::put_data> put_ta;
put_ta.reset(new dht::put_data(*this, f));
boost::intrusive_ptr<dht::get_item> ta;
ta.reset(new dht::get_item(*this, pk, salt
, boost::bind(&put_data_cb, _1, _2, put_ta, data_cb)
, boost::bind(&put, _1, put_ta)));
ta->start();
}
struct ping_observer : observer
{
ping_observer(
boost::intrusive_ptr<traversal_algorithm> const& algorithm
, udp::endpoint const& ep, node_id const& id)
: observer(algorithm, ep, id)
{}
// parses out "nodes"
virtual void reply(msg const& m)
{
flags |= flag_done;
bdecode_node r = m.message.dict_find_dict("r");
if (!r)
{
#ifndef TORRENT_DISABLE_LOGGING
if (get_observer())
{
get_observer()->log(dht_logger::node
, "[%p] missing response dict"
, static_cast<void*>(algorithm()));
}
#endif
return;
}
// look for nodes
#if TORRENT_USE_IPV6
udp protocol = algorithm()->get_node().protocol();
#endif
char const* nodes_key = algorithm()->get_node().protocol_nodes_key();
bdecode_node n = r.dict_find_string(nodes_key);
if (n)
{
char const* nodes = n.string_ptr();
char const* end = nodes + n.string_length();
while (end - nodes >= 26)
{
node_id id;
std::copy(nodes, nodes + 20, id.begin());
nodes += 20;
udp::endpoint ep;
#if TORRENT_USE_IPV6
if (protocol == udp::v6())
ep = detail::read_v6_endpoint<udp::endpoint>(nodes);
else
#endif
ep = detail::read_v4_endpoint<udp::endpoint>(nodes);
algorithm()->get_node().m_table.heard_about(id, ep);
}
}
}
};
void node::tick()
{
// every now and then we refresh our own ID, just to keep
// expanding the routing table buckets closer to us.
// if m_table.depth() < 4, means routing_table doesn't
// have enough nodes.
time_point now = aux::time_now();
if (m_last_self_refresh + minutes(10) < now && m_table.depth() < 4)
{
node_id target = m_id;
make_id_secret(target);
boost::intrusive_ptr<dht::bootstrap> r(new dht::bootstrap(*this, target
, boost::bind(&nop)));
r->start();
m_last_self_refresh = now;
return;
}
node_entry const* ne = m_table.next_refresh();
if (ne == NULL) return;
// this shouldn't happen
TORRENT_ASSERT(m_id != ne->id);
if (ne->id == m_id) return;
int bucket = 159 - distance_exp(m_id, ne->id);
TORRENT_ASSERT(bucket < 160);
send_single_refresh(ne->ep(), bucket, ne->id);
}
void node::send_single_refresh(udp::endpoint const& ep, int bucket
, node_id const& id)
{
TORRENT_ASSERT(id != m_id);
void* ptr = m_rpc.allocate_observer();
if (ptr == 0) return;
TORRENT_ASSERT(bucket >= 0);
TORRENT_ASSERT(bucket <= 159);
// generate a random node_id within the given bucket
// TODO: 2 it would be nice to have a bias towards node-id prefixes that
// are missing in the bucket
node_id mask = generate_prefix_mask(bucket + 1);
node_id target = generate_secret_id() & ~mask;
target |= m_id & mask;
// create a dummy traversal_algorithm
// this is unfortunately necessary for the observer
// to free itself from the pool when it's being released
boost::intrusive_ptr<traversal_algorithm> algo(
new traversal_algorithm(*this, (node_id::min)()));
observer_ptr o(new (ptr) ping_observer(algo, ep, id));
#if defined TORRENT_DEBUG || defined TORRENT_RELEASE_ASSERTS
o->m_in_constructor = false;
#endif
entry e;
e["y"] = "q";
entry& a = e["a"];
if (m_table.is_full(bucket))
{
// current bucket is full, just ping it.
e["q"] = "ping";
m_counters.inc_stats_counter(counters::dht_ping_out);
}
else
{
// use get_peers instead of find_node. We'll get nodes in the response
// either way.
e["q"] = "get_peers";
a["info_hash"] = target.to_string();
m_counters.inc_stats_counter(counters::dht_get_peers_out);
}
m_rpc.invoke(e, ep, o);
}
time_duration node::connection_timeout()
{
time_duration d = m_rpc.tick();
time_point now(aux::time_now());
if (now - minutes(2) < m_last_tracker_tick) return d;
m_last_tracker_tick = now;
m_storage->tick();
return d;
}
void node::status(std::vector<dht_routing_bucket>& table
, std::vector<dht_lookup>& requests)
{
std::lock_guard<std::mutex> l(m_mutex);
m_table.status(table);
for (std::set<traversal_algorithm*>::iterator i = m_running_requests.begin()
, end(m_running_requests.end()); i != end; ++i)
{
requests.push_back(dht_lookup());
dht_lookup& lookup = requests.back();
(*i)->status(lookup);
}
}
// TODO: in the future, this function should update all the
// dht related counter. For now, it just update the storage
// related ones.
void node::update_stats_counters(counters& c) const
{
const dht_storage_counters& dht_cnt = m_storage->counters();
c.set_value(counters::dht_torrents, dht_cnt.torrents);
c.set_value(counters::dht_peers, dht_cnt.peers);
c.set_value(counters::dht_immutable_data, dht_cnt.immutable_data);
c.set_value(counters::dht_mutable_data, dht_cnt.mutable_data);
}
#ifndef TORRENT_NO_DEPRECATE
// TODO: 2 use the non deprecated function instead of this one
void node::status(session_status& s)
{
std::lock_guard<std::mutex> l(m_mutex);
m_table.status(s);
s.dht_torrents = int(m_storage->num_torrents());
s.active_requests.clear();
s.dht_total_allocations = m_rpc.num_allocated_observers();
for (std::set<traversal_algorithm*>::iterator i = m_running_requests.begin()
, end(m_running_requests.end()); i != end; ++i)
{
s.active_requests.push_back(dht_lookup());
dht_lookup& lookup = s.active_requests.back();
(*i)->status(lookup);
}
}
#endif
void node::lookup_peers(sha1_hash const& info_hash, entry& reply
, bool noseed, bool scrape) const
{
if (m_observer)
m_observer->get_peers(info_hash);
m_storage->get_peers(info_hash, noseed, scrape, reply);
}
void TORRENT_EXTRA_EXPORT write_nodes_entry(entry& n, nodes_t const& nodes)
{
std::back_insert_iterator<std::string> out(n.string());
for (nodes_t::const_iterator i = nodes.begin()
, end(nodes.end()); i != end; ++i)
{
std::copy(i->id.begin(), i->id.end(), out);
write_endpoint(udp::endpoint(i->addr(), i->port()), out);
}
}
// build response
void node::incoming_request(msg const& m, entry& e)
{
e = entry(entry::dictionary_t);
e["y"] = "r";
e["t"] = m.message.dict_find_string_value("t");
key_desc_t top_desc[] = {
{"q", bdecode_node::string_t, 0, 0},
{"ro", bdecode_node::int_t, 0, key_desc_t::optional},
{"a", bdecode_node::dict_t, 0, key_desc_t::parse_children},
{"id", bdecode_node::string_t, 20, key_desc_t::last_child},
};
bdecode_node top_level[4];
char error_string[200];
if (!verify_message(m.message, top_desc, top_level, error_string
, sizeof(error_string)))
{
incoming_error(e, error_string);
return;
}
e["ip"] = endpoint_to_bytes(m.addr);
bdecode_node arg_ent = top_level[2];
bool read_only = top_level[1] && top_level[1].int_value() != 0;
node_id id(top_level[3].string_ptr());
// if this nodes ID doesn't match its IP, tell it what
// its IP is with an error
// don't enforce this yet
if (m_settings.enforce_node_id && !verify_id(id, m.addr.address()))
{
incoming_error(e, "invalid node ID");
return;
}
if (!read_only)
m_table.heard_about(id, m.addr);
entry& reply = e["r"];
m_rpc.add_our_id(reply);
// mirror back the other node's external port
reply["p"] = m.addr.port();
char const* query = top_level[0].string_ptr();
int query_len = top_level[0].string_length();
if (m_observer && m_observer->on_dht_request(query, query_len, m, e))
return;
if (query_len == 4 && memcmp(query, "ping", 4) == 0)
{
m_counters.inc_stats_counter(counters::dht_ping_in);
// we already have 't' and 'id' in the response
// no more left to add
}
else if (query_len == 9 && memcmp(query, "get_peers", 9) == 0)
{
key_desc_t msg_desc[] = {
{"info_hash", bdecode_node::string_t, 20, 0},
{"noseed", bdecode_node::int_t, 0, key_desc_t::optional},
{"scrape", bdecode_node::int_t, 0, key_desc_t::optional},
{"want", bdecode_node::list_t, 0, key_desc_t::optional},
};
bdecode_node msg_keys[4];
if (!verify_message(arg_ent, msg_desc, msg_keys, error_string
, sizeof(error_string)))
{
m_counters.inc_stats_counter(counters::dht_invalid_get_peers);
incoming_error(e, error_string);
return;
}
reply["token"] = generate_token(m.addr, msg_keys[0].string_ptr());
m_counters.inc_stats_counter(counters::dht_get_peers_in);
sha1_hash info_hash(msg_keys[0].string_ptr());
// always return nodes as well as peers
write_nodes_entries(info_hash, msg_keys[3], reply);
bool noseed = false;
bool scrape = false;
if (msg_keys[1] && msg_keys[1].int_value() != 0) noseed = true;
if (msg_keys[2] && msg_keys[2].int_value() != 0) scrape = true;
lookup_peers(info_hash, reply, noseed, scrape);
#ifndef TORRENT_DISABLE_LOGGING
if (reply.find_key("values") && m_observer)
{
m_observer->log(dht_logger::node, "values: %d"
, int(reply["values"].list().size()));
}
#endif
}
else if (query_len == 9 && memcmp(query, "find_node", 9) == 0)
{
key_desc_t msg_desc[] = {
{"target", bdecode_node::string_t, 20, 0},
{"want", bdecode_node::list_t, 0, key_desc_t::optional},
};
bdecode_node msg_keys[2];
if (!verify_message(arg_ent, msg_desc, msg_keys, error_string, sizeof(error_string)))
{
incoming_error(e, error_string);
return;
}
m_counters.inc_stats_counter(counters::dht_find_node_in);
sha1_hash target(msg_keys[0].string_ptr());
write_nodes_entries(target, msg_keys[1], reply);
}
else if (query_len == 13 && memcmp(query, "announce_peer", 13) == 0)
{
key_desc_t msg_desc[] = {
{"info_hash", bdecode_node::string_t, 20, 0},
{"port", bdecode_node::int_t, 0, 0},
{"token", bdecode_node::string_t, 0, 0},
{"n", bdecode_node::string_t, 0, key_desc_t::optional},
{"seed", bdecode_node::int_t, 0, key_desc_t::optional},
{"implied_port", bdecode_node::int_t, 0, key_desc_t::optional},
};
bdecode_node msg_keys[6];
if (!verify_message(arg_ent, msg_desc, msg_keys, error_string, sizeof(error_string)))
{
m_counters.inc_stats_counter(counters::dht_invalid_announce);
incoming_error(e, error_string);
return;
}
int port = int(msg_keys[1].int_value());
// is the announcer asking to ignore the explicit
// listen port and instead use the source port of the packet?
if (msg_keys[5] && msg_keys[5].int_value() != 0)
port = m.addr.port();
if (port < 0 || port >= 65536)
{
m_counters.inc_stats_counter(counters::dht_invalid_announce);
incoming_error(e, "invalid port");
return;
}
sha1_hash info_hash(msg_keys[0].string_ptr());
if (m_observer)
m_observer->announce(info_hash, m.addr.address(), port);
if (!verify_token(msg_keys[2].string_value(), msg_keys[0].string_ptr(), m.addr))
{
m_counters.inc_stats_counter(counters::dht_invalid_announce);
incoming_error(e, "invalid token");
return;
}
m_counters.inc_stats_counter(counters::dht_announce_peer_in);
// the token was correct. That means this
// node is not spoofing its address. So, let
// the table get a chance to add it.
m_table.node_seen(id, m.addr, 0xffff);
tcp::endpoint addr = tcp::endpoint(m.addr.address(), port);
std::string name = msg_keys[3] ? msg_keys[3].string_value() : std::string();
bool seed = msg_keys[4] && msg_keys[4].int_value();
m_storage->announce_peer(info_hash, addr, name, seed);
}
else if (query_len == 3 && memcmp(query, "put", 3) == 0)
{
// the first 2 entries are for both mutable and
// immutable puts
static const key_desc_t msg_desc[] = {
{"token", bdecode_node::string_t, 0, 0},
{"v", bdecode_node::none_t, 0, 0},
{"seq", bdecode_node::int_t, 0, key_desc_t::optional},
// public key
{"k", bdecode_node::string_t, item_pk_len, key_desc_t::optional},
{"sig", bdecode_node::string_t, item_sig_len, key_desc_t::optional},
{"cas", bdecode_node::int_t, 0, key_desc_t::optional},
{"salt", bdecode_node::string_t, 0, key_desc_t::optional},
};
// attempt to parse the message
bdecode_node msg_keys[7];
if (!verify_message(arg_ent, msg_desc, msg_keys, error_string, sizeof(error_string)))
{
m_counters.inc_stats_counter(counters::dht_invalid_put);
incoming_error(e, error_string);
return;
}
m_counters.inc_stats_counter(counters::dht_put_in);
// is this a mutable put?
bool mutable_put = (msg_keys[2] && msg_keys[3] && msg_keys[4]);
// public key (only set if it's a mutable put)
char const* pk = NULL;
if (msg_keys[3]) pk = msg_keys[3].string_ptr();
// signature (only set if it's a mutable put)
char const* sig = NULL;
if (msg_keys[4]) sig = msg_keys[4].string_ptr();
// pointer and length to the whole entry
std::pair<char const*, int> buf = msg_keys[1].data_section();
if (buf.second > 1000 || buf.second <= 0)
{
m_counters.inc_stats_counter(counters::dht_invalid_put);
incoming_error(e, "message too big", 205);
return;
}
std::pair<char const*, int> salt(static_cast<char const*>(NULL), 0);
if (msg_keys[6])
salt = std::pair<char const*, int>(
msg_keys[6].string_ptr(), msg_keys[6].string_length());
if (salt.second > 64)
{
m_counters.inc_stats_counter(counters::dht_invalid_put);
incoming_error(e, "salt too big", 207);
return;
}
sha1_hash target;
if (pk)
target = item_target_id(salt, pk);
else
target = item_target_id(buf);
// std::fprintf(stderr, "%s PUT target: %s salt: %s key: %s\n"
// , mutable_put ? "mutable":"immutable"
// , to_hex(target.to_string()).c_str()
// , salt.second > 0 ? std::string(salt.first, salt.second).c_str() : ""
// , pk ? to_hex(std::string(pk, 32)).c_str() : "");
// verify the write-token. tokens are only valid to write to
// specific target hashes. it must match the one we got a "get" for
if (!verify_token(msg_keys[0].string_value()
, reinterpret_cast<char const*>(&target[0]), m.addr))
{
m_counters.inc_stats_counter(counters::dht_invalid_put);
incoming_error(e, "invalid token");
return;
}
if (!mutable_put)
{
m_storage->put_immutable_item(target, buf.first, buf.second, m.addr.address());
}
else
{
// mutable put, we must verify the signature
#ifdef TORRENT_USE_VALGRIND
VALGRIND_CHECK_MEM_IS_DEFINED(msg_keys[4].string_ptr(), item_sig_len);
VALGRIND_CHECK_MEM_IS_DEFINED(pk, item_pk_len);
#endif
boost::int64_t seq = msg_keys[2].int_value();
if (seq < 0)
{
m_counters.inc_stats_counter(counters::dht_invalid_put);
incoming_error(e, "invalid (negative) sequence number");
return;
}
// msg_keys[4] is the signature, msg_keys[3] is the public key
if (!verify_mutable_item(buf, salt
, seq, pk, sig))
{
m_counters.inc_stats_counter(counters::dht_invalid_put);
incoming_error(e, "invalid signature", 206);
return;
}
TORRENT_ASSERT(item_sig_len == msg_keys[4].string_length());
boost::int64_t item_seq;
if (!m_storage->get_mutable_item_seq(target, item_seq))
{
m_storage->put_mutable_item(target
, buf.first, buf.second
, sig, seq, pk
, salt.first, salt.second
, m.addr.address());
}
else
{
// this is the "cas" field in the put message
// if it was specified, we MUST make sure the current sequence
// number matches the expected value before replacing it
// this is critical for avoiding race conditions when multiple
// writers are accessing the same slot
if (msg_keys[5] && item_seq != msg_keys[5].int_value())
{
m_counters.inc_stats_counter(counters::dht_invalid_put);
incoming_error(e, "CAS mismatch", 301);
return;
}
if (item_seq > seq)
{
m_counters.inc_stats_counter(counters::dht_invalid_put);
incoming_error(e, "old sequence number", 302);
return;
}
m_storage->put_mutable_item(target
, buf.first, buf.second
, sig, seq, pk
, salt.first, salt.second
, m.addr.address());
}
}
m_table.node_seen(id, m.addr, 0xffff);
}
else if (query_len == 3 && memcmp(query, "get", 3) == 0)
{
key_desc_t msg_desc[] = {
{"seq", bdecode_node::int_t, 0, key_desc_t::optional},
{"target", bdecode_node::string_t, 20, 0},
{"want", bdecode_node::list_t, 0, key_desc_t::optional},
};
// k is not used for now
// attempt to parse the message
bdecode_node msg_keys[3];
if (!verify_message(arg_ent, msg_desc, msg_keys, error_string
, sizeof(error_string)))
{
m_counters.inc_stats_counter(counters::dht_invalid_get);
incoming_error(e, error_string);
return;
}
m_counters.inc_stats_counter(counters::dht_get_in);
sha1_hash target(msg_keys[1].string_ptr());
// std::fprintf(stderr, "%s GET target: %s\n"
// , msg_keys[1] ? "mutable":"immutable"
// , to_hex(target.to_string()).c_str());
reply["token"] = generate_token(m.addr, msg_keys[1].string_ptr());
// always return nodes as well as peers
write_nodes_entries(target, msg_keys[2], reply);
// if the get has a sequence number it must be for a mutable item
// so don't bother searching the immutable table
if (!msg_keys[0])
{
if (!m_storage->get_immutable_item(target, reply)) // ok, check for a mutable one
{
m_storage->get_mutable_item(target, 0, true, reply);
}
}
else
{
m_storage->get_mutable_item(target
, msg_keys[0].int_value(), false
, reply);
}
}
else
{
// if we don't recognize the message but there's a
// 'target' or 'info_hash' in the arguments, treat it
// as find_node to be future compatible
bdecode_node target_ent = arg_ent.dict_find_string("target");
if (!target_ent || target_ent.string_length() != 20)
{
target_ent = arg_ent.dict_find_string("info_hash");
if (!target_ent || target_ent.string_length() != 20)
{
incoming_error(e, "unknown message");
return;
}
}
sha1_hash target(target_ent.string_ptr());
// always return nodes as well as peers
write_nodes_entries(target, arg_ent.dict_find_list("want"), reply);
return;
}
}
void node::write_nodes_entries(sha1_hash const& info_hash
, bdecode_node const& want, entry& r)
{
// if no wants entry was specified, include a nodes
// entry based on the protocol the request came in with
if (want.type() != bdecode_node::list_t)
{
nodes_t n;
m_table.find_node(info_hash, n, 0);
write_nodes_entry(r[protocol_nodes_key()], n);
return;
}
// if there is a wants entry then we may need to reach into
// another node's routing table to get nodes of the requested type
// we use a map maintained by the owning dht_tracker to find the
// node associated with each string in the want list, which may
// include this node
for (int i = 0; i < want.list_size(); ++i)
{
bdecode_node wanted = want.list_at(i);
if (wanted.type() != bdecode_node::string_t)
continue;
std::map<std::string, node*>::const_iterator wanted_node
= m_nodes.find(wanted.string_value());
if (wanted_node == m_nodes.end())
continue;
nodes_t n;
wanted_node->second->m_table.find_node(info_hash, n, 0);
write_nodes_entry(r[wanted_node->second->protocol_nodes_key()], n);
}
}
node::protocol_descriptor const& node::map_protocol_to_descriptor(udp protocol)
{
static protocol_descriptor descriptors[] =
{ {udp::v4(), "n4", "nodes"}
, {udp::v6(), "n6", "nodes6"} };
for (int i = 0; i < sizeof(descriptors) / sizeof(protocol_descriptor); ++i)
{
if (descriptors[i].protocol == protocol)
return descriptors[i];
}
TORRENT_ASSERT_FAIL();
throw std::out_of_range("unknown protocol");
}
} } // namespace libtorrent::dht