premiere-libtorrent/src/udp_socket.cpp

880 lines
20 KiB
C++

/*
Copyright (c) 2007, Arvid Norberg
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "libtorrent/config.hpp"
#include "libtorrent/socket.hpp"
#include "libtorrent/udp_socket.hpp"
#include "libtorrent/connection_queue.hpp"
#include "libtorrent/escape_string.hpp"
#include "libtorrent/socket_io.hpp"
#include "libtorrent/error.hpp"
#include <stdlib.h>
#include <boost/bind.hpp>
#include <boost/array.hpp>
#if BOOST_VERSION < 103500
#include <asio/read.hpp>
#else
#include <boost/asio/read.hpp>
#endif
using namespace libtorrent;
udp_socket::udp_socket(asio::io_service& ios
, udp_socket::callback_t const& c
, udp_socket::callback2_t const& c2
, connection_queue& cc)
: m_callback(c)
, m_callback2(c2)
, m_ipv4_sock(ios)
#if TORRENT_USE_IPV6
, m_ipv6_sock(ios)
#endif
, m_bind_port(0)
, m_outstanding(0)
, m_socks5_sock(ios)
, m_connection_ticket(-1)
, m_cc(cc)
, m_resolver(ios)
, m_queue_packets(false)
, m_tunnel_packets(false)
, m_abort(false)
{
#ifdef TORRENT_DEBUG
m_magic = 0x1337;
m_started = false;
m_outstanding_when_aborted = -1;
#if defined BOOST_HAS_PTHREADS
m_thread = 0;
#endif
#endif
}
udp_socket::~udp_socket()
{
#ifdef TORRENT_DEBUG
TORRENT_ASSERT(m_magic == 0x1337);
TORRENT_ASSERT(!m_callback || !m_started);
TORRENT_ASSERT_VAL(m_outstanding == 0, m_outstanding);
m_magic = 0;
#endif
}
#ifdef TORRENT_DEBUG
#define CHECK_MAGIC check_magic_ cm_(m_magic)
struct check_magic_
{
check_magic_(int& m_): m(m_) { TORRENT_ASSERT(m == 0x1337); }
~check_magic_() { TORRENT_ASSERT(m == 0x1337); }
int& m;
};
#else
#define CHECK_MAGIC do {} while (false)
#endif
void udp_socket::send_hostname(char const* hostname, int port
, char const* p, int len, error_code& ec)
{
CHECK_MAGIC;
TORRENT_ASSERT(is_open());
// if the sockets are closed, the udp_socket is closing too
if (!is_open()) return;
if (m_tunnel_packets)
{
// send udp packets through SOCKS5 server
wrap(hostname, port, p, len, ec);
return;
}
// this function is only supported when we're using a proxy
TORRENT_ASSERT(m_queue_packets);
if (!m_queue_packets) return;
m_queue.push_back(queued_packet());
queued_packet& qp = m_queue.back();
qp.ep.port(port);
qp.hostname = strdup(hostname);
qp.buf.insert(qp.buf.begin(), p, p + len);
}
void udp_socket::send(udp::endpoint const& ep, char const* p, int len, error_code& ec)
{
CHECK_MAGIC;
TORRENT_ASSERT(is_open());
// if the sockets are closed, the udp_socket is closing too
if (!is_open()) return;
if (m_tunnel_packets)
{
// send udp packets through SOCKS5 server
wrap(ep, p, len, ec);
return;
}
if (m_queue_packets)
{
m_queue.push_back(queued_packet());
queued_packet& qp = m_queue.back();
qp.ep = ep;
qp.hostname = 0;
qp.buf.insert(qp.buf.begin(), p, p + len);
return;
}
#if TORRENT_USE_IPV6
if (ep.address().is_v4() && m_ipv4_sock.is_open())
#endif
m_ipv4_sock.send_to(asio::buffer(p, len), ep, 0, ec);
#if TORRENT_USE_IPV6
else
m_ipv6_sock.send_to(asio::buffer(p, len), ep, 0, ec);
#endif
}
void udp_socket::on_read(udp::socket* s, error_code const& e, std::size_t bytes_transferred)
{
TORRENT_ASSERT(m_magic == 0x1337);
TORRENT_ASSERT(is_single_thread());
TORRENT_ASSERT(m_outstanding > 0);
--m_outstanding;
if (e == asio::error::operation_aborted || m_abort)
{
if (m_outstanding == 0)
{
// "this" may be destructed in the callback
callback_t tmp = m_callback;
m_callback.clear();
}
return;
}
CHECK_MAGIC;
if (!m_callback) return;
if (e)
{
#ifndef BOOST_NO_EXCEPTIONS
try {
#endif
#if TORRENT_USE_IPV6
if (s == &m_ipv4_sock)
#endif
m_callback(e, m_v4_ep, 0, 0);
#if TORRENT_USE_IPV6
else
m_callback(e, m_v6_ep, 0, 0);
#endif
#ifndef BOOST_NO_EXCEPTIONS
} catch(std::exception&) {}
#endif
// don't stop listening on recoverable errors
if (e != asio::error::host_unreachable
&& e != asio::error::fault
&& e != asio::error::connection_reset
&& e != asio::error::connection_refused
&& e != asio::error::connection_aborted
&& e != asio::error::message_size)
{
if (m_outstanding == 0)
{
// "this" may be destructed in the callback
callback_t tmp = m_callback;
m_callback.clear();
}
return;
}
if (m_abort) return;
#if TORRENT_USE_IPV6
if (s == &m_ipv4_sock)
#endif
s->async_receive_from(asio::buffer(m_v4_buf, sizeof(m_v4_buf))
, m_v4_ep, boost::bind(&udp_socket::on_read, this, s, _1, _2));
#if TORRENT_USE_IPV6
else
s->async_receive_from(asio::buffer(m_v6_buf, sizeof(m_v6_buf))
, m_v6_ep, boost::bind(&udp_socket::on_read, this, s, _1, _2));
#endif
++m_outstanding;
#ifdef TORRENT_DEBUG
m_started = true;
#endif
return;
}
#if TORRENT_USE_IPV6
if (s == &m_ipv4_sock)
#endif
{
#ifndef BOOST_NO_EXCEPTIONS
try {
#endif
if (m_tunnel_packets)
{
// if the source IP doesn't match the proxy's, ignore the packet
if (m_v4_ep == m_proxy_addr)
unwrap(e, m_v4_buf, bytes_transferred);
}
else
{
m_callback(e, m_v4_ep, m_v4_buf, bytes_transferred);
}
#ifndef BOOST_NO_EXCEPTIONS
} catch(std::exception&) {}
#endif
if (m_abort) return;
s->async_receive_from(asio::buffer(m_v4_buf, sizeof(m_v4_buf))
, m_v4_ep, boost::bind(&udp_socket::on_read, this, s, _1, _2));
}
#if TORRENT_USE_IPV6
else
{
#ifndef BOOST_NO_EXCEPTIONS
try {
#endif
if (m_tunnel_packets)
{
// if the source IP doesn't match the proxy's, ignore the packet
if (m_v6_ep == m_proxy_addr)
unwrap(e, m_v6_buf, bytes_transferred);
}
else
{
m_callback(e, m_v6_ep, m_v6_buf, bytes_transferred);
}
#ifndef BOOST_NO_EXCEPTIONS
} catch(std::exception&) {}
#endif
if (m_abort) return;
s->async_receive_from(asio::buffer(m_v6_buf, sizeof(m_v6_buf))
, m_v6_ep, boost::bind(&udp_socket::on_read, this, s, _1, _2));
}
#endif
++m_outstanding;
#ifdef TORRENT_DEBUG
m_started = true;
#endif
}
void udp_socket::wrap(udp::endpoint const& ep, char const* p, int len, error_code& ec)
{
CHECK_MAGIC;
using namespace libtorrent::detail;
char header[20];
char* h = header;
write_uint16(0, h); // reserved
write_uint8(0, h); // fragment
write_uint8(ep.address().is_v4()?1:4, h); // atyp
write_endpoint(ep, h);
boost::array<asio::const_buffer, 2> iovec;
iovec[0] = asio::const_buffer(header, h - header);
iovec[1] = asio::const_buffer(p, len);
#if TORRENT_USE_IPV6
if (m_proxy_addr.address().is_v4() && m_ipv4_sock.is_open())
#endif
m_ipv4_sock.send_to(iovec, m_proxy_addr, 0, ec);
#if TORRENT_USE_IPV6
else
m_ipv6_sock.send_to(iovec, m_proxy_addr, 0, ec);
#endif
}
void udp_socket::wrap(char const* hostname, int port, char const* p, int len, error_code& ec)
{
CHECK_MAGIC;
using namespace libtorrent::detail;
char header[270];
char* h = header;
write_uint16(0, h); // reserved
write_uint8(0, h); // fragment
write_uint8(3, h); // atyp
int hostlen = (std::min)(strlen(hostname), size_t(255));
write_uint8(hostlen, h); // hostname len
memcpy(h, hostname, hostlen);
h += hostlen;
write_uint16(port, h);
boost::array<asio::const_buffer, 2> iovec;
iovec[0] = asio::const_buffer(header, h - header);
iovec[1] = asio::const_buffer(p, len);
#if TORRENT_USE_IPV6
if (m_proxy_addr.address().is_v4() && m_ipv4_sock.is_open())
#endif
m_ipv4_sock.send_to(iovec, m_proxy_addr, 0, ec);
#if TORRENT_USE_IPV6
else
m_ipv6_sock.send_to(iovec, m_proxy_addr, 0, ec);
#endif
}
// unwrap the UDP packet from the SOCKS5 header
void udp_socket::unwrap(error_code const& e, char const* buf, int size)
{
CHECK_MAGIC;
using namespace libtorrent::detail;
// the minimum socks5 header size
if (size <= 10) return;
char const* p = buf;
p += 2; // reserved
int frag = read_uint8(p);
// fragmentation is not supported
if (frag != 0) return;
udp::endpoint sender;
int atyp = read_uint8(p);
if (atyp == 1)
{
// IPv4
sender = read_v4_endpoint<udp::endpoint>(p);
}
#if TORRENT_USE_IPV6
else if (atyp == 4)
{
// IPv6
sender = read_v6_endpoint<udp::endpoint>(p);
}
#endif
else
{
int len = read_uint8(p);
if (len > (buf + size) - p) return;
std::string hostname(p, p + len);
p += len;
m_callback2(e, hostname.c_str(), p, size - (p - buf));
return;
}
m_callback(e, sender, p, size - (p - buf));
}
void udp_socket::close()
{
TORRENT_ASSERT(is_single_thread());
TORRENT_ASSERT(m_magic == 0x1337);
error_code ec;
// if we close the socket here, we can't shut down
// utp connections or NAT-PMP. We need to cancel the
// outstanding operations
m_ipv4_sock.cancel(ec);
TORRENT_ASSERT_VAL(!ec || ec == error::bad_descriptor, ec);
#if TORRENT_USE_IPV6
m_ipv6_sock.cancel(ec);
TORRENT_ASSERT_VAL(!ec || ec == error::bad_descriptor, ec);
#endif
m_socks5_sock.cancel(ec);
TORRENT_ASSERT_VAL(!ec || ec == error::bad_descriptor, ec);
m_resolver.cancel();
m_abort = true;
if (m_connection_ticket >= 0)
{
m_cc.done(m_connection_ticket);
m_connection_ticket = -1;
}
if (m_outstanding == 0)
{
// "this" may be destructed in the callback
callback_t tmp = m_callback;
m_callback.clear();
}
}
void udp_socket::bind(udp::endpoint const& ep, error_code& ec)
{
CHECK_MAGIC;
TORRENT_ASSERT(is_single_thread());
TORRENT_ASSERT(m_abort == false);
if (m_abort) return;
if (m_ipv4_sock.is_open()) m_ipv4_sock.close(ec);
#if TORRENT_USE_IPV6
if (m_ipv6_sock.is_open()) m_ipv6_sock.close(ec);
#endif
if (ep.address().is_v4())
{
m_ipv4_sock.open(udp::v4(), ec);
if (ec) return;
m_ipv4_sock.bind(ep, ec);
if (ec) return;
m_ipv4_sock.async_receive_from(asio::buffer(m_v4_buf, sizeof(m_v4_buf))
, m_v4_ep, boost::bind(&udp_socket::on_read, this, &m_ipv4_sock, _1, _2));
++m_outstanding;
}
#if TORRENT_USE_IPV6
else
{
m_ipv6_sock.set_option(v6only(true), ec);
if (ec) return;
m_ipv6_sock.bind(ep, ec);
if (ec) return;
m_ipv6_sock.async_receive_from(asio::buffer(m_v6_buf, sizeof(m_v6_buf))
, m_v6_ep, boost::bind(&udp_socket::on_read, this, &m_ipv6_sock, _1, _2));
++m_outstanding;
}
#endif
#ifdef TORRENT_DEBUG
m_started = true;
#endif
m_bind_port = ep.port();
}
void udp_socket::bind(int port)
{
CHECK_MAGIC;
TORRENT_ASSERT(is_single_thread());
TORRENT_ASSERT(m_abort == false);
if (m_abort) return;
error_code ec;
if (m_ipv4_sock.is_open()) m_ipv4_sock.close(ec);
#if TORRENT_USE_IPV6
if (m_ipv6_sock.is_open()) m_ipv6_sock.close(ec);
#endif
m_ipv4_sock.open(udp::v4(), ec);
if (!ec)
{
m_ipv4_sock.bind(udp::endpoint(address_v4::any(), port), ec);
m_ipv4_sock.async_receive_from(asio::buffer(m_v4_buf, sizeof(m_v4_buf))
, m_v4_ep, boost::bind(&udp_socket::on_read, this, &m_ipv4_sock, _1, _2));
++m_outstanding;
#ifdef TORRENT_DEBUG
m_started = true;
#endif
}
#if TORRENT_USE_IPV6
m_ipv6_sock.open(udp::v6(), ec);
if (!ec)
{
m_ipv6_sock.set_option(v6only(true), ec);
m_ipv6_sock.bind(udp::endpoint(address_v6::any(), port), ec);
m_ipv6_sock.async_receive_from(asio::buffer(m_v6_buf, sizeof(m_v6_buf))
, m_v6_ep, boost::bind(&udp_socket::on_read, this, &m_ipv6_sock, _1, _2));
++m_outstanding;
#ifdef TORRENT_DEBUG
m_started = true;
#endif
}
#endif
m_bind_port = port;
}
void udp_socket::set_proxy_settings(proxy_settings const& ps)
{
CHECK_MAGIC;
TORRENT_ASSERT(is_single_thread());
error_code ec;
m_socks5_sock.close(ec);
m_tunnel_packets = false;
m_proxy_settings = ps;
if (m_abort) return;
if (ps.type == proxy_settings::socks5
|| ps.type == proxy_settings::socks5_pw)
{
m_queue_packets = true;
// connect to socks5 server and open up the UDP tunnel
tcp::resolver::query q(ps.hostname, to_string(ps.port).elems);
m_resolver.async_resolve(q, boost::bind(
&udp_socket::on_name_lookup, this, _1, _2));
}
}
void udp_socket::on_name_lookup(error_code const& e, tcp::resolver::iterator i)
{
if (e) return;
CHECK_MAGIC;
TORRENT_ASSERT(is_single_thread());
m_proxy_addr.address(i->endpoint().address());
m_proxy_addr.port(i->endpoint().port());
// on_connect may be called from within this thread
m_cc.enqueue(boost::bind(&udp_socket::on_connect, this, _1)
, boost::bind(&udp_socket::on_timeout, this), seconds(10));
}
void udp_socket::on_timeout()
{
CHECK_MAGIC;
TORRENT_ASSERT(is_single_thread());
error_code ec;
m_socks5_sock.close(ec);
m_connection_ticket = -1;
}
void udp_socket::on_connect(int ticket)
{
CHECK_MAGIC;
TORRENT_ASSERT(is_single_thread());
if (m_abort) return;
m_connection_ticket = ticket;
error_code ec;
m_socks5_sock.open(m_proxy_addr.address().is_v4()?tcp::v4():tcp::v6(), ec);
m_socks5_sock.async_connect(tcp::endpoint(m_proxy_addr.address(), m_proxy_addr.port())
, boost::bind(&udp_socket::on_connected, this, _1));
}
void udp_socket::on_connected(error_code const& e)
{
CHECK_MAGIC;
TORRENT_ASSERT(is_single_thread());
m_cc.done(m_connection_ticket);
m_connection_ticket = -1;
if (e) return;
using namespace libtorrent::detail;
// send SOCKS5 authentication methods
char* p = &m_tmp_buf[0];
write_uint8(5, p); // SOCKS VERSION 5
if (m_proxy_settings.username.empty()
|| m_proxy_settings.type == proxy_settings::socks5)
{
write_uint8(1, p); // 1 authentication method (no auth)
write_uint8(0, p); // no authentication
}
else
{
write_uint8(2, p); // 2 authentication methods
write_uint8(0, p); // no authentication
write_uint8(2, p); // username/password
}
TORRENT_ASSERT_VAL(p - m_tmp_buf < sizeof(m_tmp_buf), (p - m_tmp_buf));
asio::async_write(m_socks5_sock, asio::buffer(m_tmp_buf, p - m_tmp_buf)
, boost::bind(&udp_socket::handshake1, this, _1));
}
void udp_socket::handshake1(error_code const& e)
{
CHECK_MAGIC;
if (e) return;
TORRENT_ASSERT(is_single_thread());
asio::async_read(m_socks5_sock, asio::buffer(m_tmp_buf, 2)
, boost::bind(&udp_socket::handshake2, this, _1));
}
void udp_socket::handshake2(error_code const& e)
{
CHECK_MAGIC;
if (e) return;
using namespace libtorrent::detail;
TORRENT_ASSERT(is_single_thread());
char* p = &m_tmp_buf[0];
int version = read_uint8(p);
int method = read_uint8(p);
if (version < 5) return;
if (method == 0)
{
socks_forward_udp(/*l*/);
}
else if (method == 2)
{
if (m_proxy_settings.username.empty())
{
error_code ec;
m_socks5_sock.close(ec);
return;
}
// start sub-negotiation
char* p = &m_tmp_buf[0];
write_uint8(1, p);
write_uint8(m_proxy_settings.username.size(), p);
write_string(m_proxy_settings.username, p);
write_uint8(m_proxy_settings.password.size(), p);
write_string(m_proxy_settings.password, p);
TORRENT_ASSERT_VAL(p - m_tmp_buf < sizeof(m_tmp_buf), (p - m_tmp_buf));
asio::async_write(m_socks5_sock, asio::buffer(m_tmp_buf, p - m_tmp_buf)
, boost::bind(&udp_socket::handshake3, this, _1));
}
else
{
error_code ec;
m_socks5_sock.close(ec);
return;
}
}
void udp_socket::handshake3(error_code const& e)
{
CHECK_MAGIC;
if (e) return;
TORRENT_ASSERT(is_single_thread());
asio::async_read(m_socks5_sock, asio::buffer(m_tmp_buf, 2)
, boost::bind(&udp_socket::handshake4, this, _1));
}
void udp_socket::handshake4(error_code const& e)
{
CHECK_MAGIC;
if (e) return;
TORRENT_ASSERT(is_single_thread());
using namespace libtorrent::detail;
char* p = &m_tmp_buf[0];
int version = read_uint8(p);
int status = read_uint8(p);
if (version != 1) return;
if (status != 0) return;
socks_forward_udp(/*l*/);
}
void udp_socket::socks_forward_udp()
{
CHECK_MAGIC;
using namespace libtorrent::detail;
// send SOCKS5 UDP command
char* p = &m_tmp_buf[0];
write_uint8(5, p); // SOCKS VERSION 5
write_uint8(3, p); // UDP ASSOCIATE command
write_uint8(0, p); // reserved
error_code ec;
tcp::endpoint local = m_socks5_sock.local_endpoint(ec);
write_uint8(local.address().is_v4() ? 1 : 4, p); // ATYP IPv4
detail::write_address(local.address(), p);
int port = 0;
#if TORRENT_USE_IPV6
if (local.address().is_v4())
#endif
port = m_ipv4_sock.local_endpoint(ec).port();
#if TORRENT_USE_IPV6
else
port = m_ipv6_sock.local_endpoint(ec).port();
#endif
detail::write_uint16(port , p);
TORRENT_ASSERT_VAL(p - m_tmp_buf < sizeof(m_tmp_buf), (p - m_tmp_buf));
asio::async_write(m_socks5_sock, asio::buffer(m_tmp_buf, p - m_tmp_buf)
, boost::bind(&udp_socket::connect1, this, _1));
}
void udp_socket::connect1(error_code const& e)
{
CHECK_MAGIC;
if (e) return;
TORRENT_ASSERT(is_single_thread());
asio::async_read(m_socks5_sock, asio::buffer(m_tmp_buf, 10)
, boost::bind(&udp_socket::connect2, this, _1));
}
void udp_socket::connect2(error_code const& e)
{
CHECK_MAGIC;
if (e) return;
TORRENT_ASSERT(is_single_thread());
using namespace libtorrent::detail;
char* p = &m_tmp_buf[0];
int version = read_uint8(p); // VERSION
int status = read_uint8(p); // STATUS
read_uint8(p); // RESERVED
int atyp = read_uint8(p); // address type
if (version != 5) return;
if (status != 0) return;
if (atyp == 1)
{
m_proxy_addr.address(address_v4(read_uint32(p)));
m_proxy_addr.port(read_uint16(p));
}
else
{
// in this case we need to read more data from the socket
TORRENT_ASSERT(false && "not implemented yet!");
}
m_tunnel_packets = true;
m_queue_packets = false;
// forward all packets that were put in the queue
while (!m_queue.empty())
{
queued_packet const& p = m_queue.front();
error_code ec;
if (p.hostname)
{
udp_socket::send_hostname(p.hostname, p.ep.port(), &p.buf[0], p.buf.size(), ec);
free(p.hostname);
}
else
{
udp_socket::send(p.ep, &p.buf[0], p.buf.size(), ec);
}
m_queue.pop_front();
}
asio::async_read(m_socks5_sock, asio::buffer(m_tmp_buf, 10)
, boost::bind(&udp_socket::hung_up, this, _1));
}
void udp_socket::hung_up(error_code const& e)
{
CHECK_MAGIC;
TORRENT_ASSERT(is_single_thread());
if (e == asio::error::operation_aborted || m_abort) return;
// the socks connection was closed, re-open it
set_proxy_settings(m_proxy_settings);
}
rate_limited_udp_socket::rate_limited_udp_socket(io_service& ios
, callback_t const& c
, callback2_t const& c2
, connection_queue& cc)
: udp_socket(ios, c, c2, cc)
, m_timer(ios)
, m_queue_size_limit(200)
, m_rate_limit(4000)
, m_quota(4000)
, m_last_tick(time_now())
{
error_code ec;
m_timer.expires_from_now(seconds(1), ec);
m_timer.async_wait(boost::bind(&rate_limited_udp_socket::on_tick, this, _1));
TORRENT_ASSERT_VAL(!ec, ec);
}
bool rate_limited_udp_socket::send(udp::endpoint const& ep, char const* p, int len, error_code& ec, int flags)
{
if (m_quota < len)
{
// bit 1 of flags means "don't drop"
if (int(m_queue.size()) >= m_queue_size_limit && (flags & 1) == 0)
return false;
m_queue.push_back(queued_packet());
queued_packet& qp = m_queue.back();
qp.ep = ep;
qp.buf.insert(qp.buf.begin(), p, p + len);
return true;
}
m_quota -= len;
udp_socket::send(ep, p, len, ec);
return true;
}
void rate_limited_udp_socket::on_tick(error_code const& e)
{
if (e) return;
if (is_closed()) return;
error_code ec;
ptime now = time_now_hires();
m_timer.expires_at(now + seconds(1), ec);
m_timer.async_wait(boost::bind(&rate_limited_udp_socket::on_tick, this, _1));
time_duration delta = now - m_last_tick;
m_last_tick = now;
if (m_quota < m_rate_limit) m_quota += m_rate_limit * total_milliseconds(delta) / 1000;
if (m_queue.empty()) return;
while (!m_queue.empty() && int(m_queue.front().buf.size()) <= m_quota)
{
queued_packet const& p = m_queue.front();
TORRENT_ASSERT(m_quota >= p.buf.size());
m_quota -= p.buf.size();
error_code ec;
udp_socket::send(p.ep, &p.buf[0], p.buf.size(), ec);
m_queue.pop_front();
}
}
void rate_limited_udp_socket::close()
{
error_code ec;
m_timer.cancel(ec);
udp_socket::close();
}