premiere-libtorrent/src/disk_io_thread.cpp

1626 lines
43 KiB
C++

/*
Copyright (c) 2007, Arvid Norberg
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "libtorrent/storage.hpp"
#include "libtorrent/disk_io_thread.hpp"
#include "libtorrent/disk_buffer_holder.hpp"
#include "libtorrent/alloca.hpp"
#include "libtorrent/invariant_check.hpp"
#include "libtorrent/error_code.hpp"
#include <boost/scoped_array.hpp>
#ifdef TORRENT_DISK_STATS
#include "libtorrent/time.hpp"
#endif
#if TORRENT_USE_MLOCK && !defined TORRENT_WINDOWS
#include <sys/mman.h>
#endif
namespace libtorrent
{
disk_buffer_pool::disk_buffer_pool(int block_size)
: m_block_size(block_size)
, m_in_use(0)
#ifndef TORRENT_DISABLE_POOL_ALLOCATOR
, m_pool(block_size, m_settings.cache_buffer_chunk_size)
#endif
{
#if defined TORRENT_DISK_STATS || defined TORRENT_STATS
m_allocations = 0;
#endif
#ifdef TORRENT_DISK_STATS
m_log.open("disk_buffers.log", std::ios::trunc);
m_categories["read cache"] = 0;
m_categories["write cache"] = 0;
#endif
#ifdef TORRENT_DEBUG
m_magic = 0x1337;
#endif
}
#ifdef TORRENT_DEBUG
disk_buffer_pool::~disk_buffer_pool()
{
TORRENT_ASSERT(m_magic == 0x1337);
m_magic = 0;
}
#endif
#ifdef TORRENT_DEBUG
bool disk_buffer_pool::is_disk_buffer(char* buffer) const
{
TORRENT_ASSERT(m_magic == 0x1337);
#ifdef TORRENT_DISABLE_POOL_ALLOCATOR
return true;
#else
mutex_t::scoped_lock l(m_pool_mutex);
return m_pool.is_from(buffer);
#endif
}
#endif
char* disk_buffer_pool::allocate_buffer(char const* category)
{
mutex_t::scoped_lock l(m_pool_mutex);
TORRENT_ASSERT(m_magic == 0x1337);
#ifdef TORRENT_DISABLE_POOL_ALLOCATOR
char* ret = page_aligned_allocator::malloc(m_block_size);
#else
char* ret = (char*)m_pool.ordered_malloc();
m_pool.set_next_size(m_settings.cache_buffer_chunk_size);
#endif
++m_in_use;
#if TORRENT_USE_MLOCK
if (m_settings.lock_disk_cache)
{
#ifdef TORRENT_WINDOWS
VirtualLock(ret, m_block_size);
#else
mlock(ret, m_block_size);
#endif
}
#endif
#if defined TORRENT_DISK_STATS || defined TORRENT_STATS
++m_allocations;
#endif
#ifdef TORRENT_DISK_STATS
++m_categories[category];
m_buf_to_category[ret] = category;
m_log << log_time() << " " << category << ": " << m_categories[category] << "\n";
#endif
return ret;
}
#ifdef TORRENT_DISK_STATS
void disk_buffer_pool::rename_buffer(char* buf, char const* category)
{
TORRENT_ASSERT(m_categories.find(m_buf_to_category[buf])
!= m_categories.end());
std::string const& prev_category = m_buf_to_category[buf];
--m_categories[prev_category];
m_log << log_time() << " " << prev_category << ": " << m_categories[prev_category] << "\n";
++m_categories[category];
m_buf_to_category[buf] = category;
m_log << log_time() << " " << category << ": " << m_categories[category] << "\n";
}
#endif
void disk_buffer_pool::free_buffer(char* buf)
{
TORRENT_ASSERT(buf);
mutex_t::scoped_lock l(m_pool_mutex);
TORRENT_ASSERT(m_magic == 0x1337);
#if defined TORRENT_DISK_STATS || defined TORRENT_STATS
--m_allocations;
#endif
#ifdef TORRENT_DISK_STATS
TORRENT_ASSERT(m_categories.find(m_buf_to_category[buf])
!= m_categories.end());
std::string const& category = m_buf_to_category[buf];
--m_categories[category];
m_log << log_time() << " " << category << ": " << m_categories[category] << "\n";
m_buf_to_category.erase(buf);
#endif
#if TORRENT_USE_MLOCK
if (m_settings.lock_disk_cache)
{
#ifdef TORRENT_WINDOWS
VirtualUnlock(buf, m_block_size);
#else
munlock(buf, m_block_size);
#endif
}
#endif
#ifdef TORRENT_DISABLE_POOL_ALLOCATOR
page_aligned_allocator::free(buf);
#else
m_pool.ordered_free(buf);
#endif
--m_in_use;
}
char* disk_buffer_pool::allocate_buffers(int num_blocks, char const* category)
{
mutex_t::scoped_lock l(m_pool_mutex);
TORRENT_ASSERT(m_magic == 0x1337);
#ifdef TORRENT_DISABLE_POOL_ALLOCATOR
char* ret = page_aligned_allocator::malloc(m_block_size * num_blocks);
#else
char* ret = (char*)m_pool.ordered_malloc(num_blocks);
m_pool.set_next_size(m_settings.cache_buffer_chunk_size);
#endif
m_in_use += num_blocks;
#if TORRENT_USE_MLOCK
if (m_settings.lock_disk_cache)
{
#ifdef TORRENT_WINDOWS
VirtualLock(ret, m_block_size * num_blocks);
#else
mlock(ret, m_block_size * num_blocks);
#endif
}
#endif
#if defined TORRENT_DISK_STATS || defined TORRENT_STATS
m_allocations += num_blocks;
#endif
#ifdef TORRENT_DISK_STATS
m_categories[category] += num_blocks;
m_buf_to_category[ret] = category;
m_log << log_time() << " " << category << ": " << m_categories[category] << "\n";
#endif
return ret;
}
void disk_buffer_pool::free_buffers(char* buf, int num_blocks)
{
TORRENT_ASSERT(buf);
TORRENT_ASSERT(num_blocks >= 1);
mutex_t::scoped_lock l(m_pool_mutex);
TORRENT_ASSERT(m_magic == 0x1337);
#if defined TORRENT_DISK_STATS || defined TORRENT_STATS
m_allocations -= num_blocks;
#endif
#ifdef TORRENT_DISK_STATS
TORRENT_ASSERT(m_categories.find(m_buf_to_category[buf])
!= m_categories.end());
std::string const& category = m_buf_to_category[buf];
m_categories[category] -= num_blocks;
m_log << log_time() << " " << category << ": " << m_categories[category] << "\n";
m_buf_to_category.erase(buf);
#endif
#if TORRENT_USE_MLOCK
if (m_settings.lock_disk_cache)
{
#ifdef TORRENT_WINDOWS
VirtualUnlock(buf, m_block_size * num_blocks);
#else
munlock(buf, m_block_size * num_blocks);
#endif
}
#endif
#ifdef TORRENT_DISABLE_POOL_ALLOCATOR
page_aligned_allocator::free(buf);
#else
m_pool.ordered_free(buf, num_blocks);
#endif
m_in_use -= num_blocks;
}
void disk_buffer_pool::release_memory()
{
TORRENT_ASSERT(m_magic == 0x1337);
#ifndef TORRENT_DISABLE_POOL_ALLOCATOR
mutex_t::scoped_lock l(m_pool_mutex);
m_pool.release_memory();
#endif
}
// ------- disk_io_thread ------
disk_io_thread::disk_io_thread(asio::io_service& ios, int block_size)
: disk_buffer_pool(block_size)
, m_abort(false)
, m_queue_buffer_size(0)
, m_ios(ios)
, m_work(io_service::work(m_ios))
, m_disk_io_thread(boost::ref(*this))
{
#ifdef TORRENT_DISK_STATS
m_log.open("disk_io_thread.log", std::ios::trunc);
#endif
}
disk_io_thread::~disk_io_thread()
{
TORRENT_ASSERT(m_abort == true);
}
void disk_io_thread::join()
{
mutex_t::scoped_lock l(m_queue_mutex);
disk_io_job j;
j.action = disk_io_job::abort_thread;
m_jobs.insert(m_jobs.begin(), j);
m_signal.notify_all();
l.unlock();
m_disk_io_thread.join();
l.lock();
TORRENT_ASSERT(m_abort == true);
m_jobs.clear();
}
void disk_io_thread::get_cache_info(sha1_hash const& ih, std::vector<cached_piece_info>& ret) const
{
mutex_t::scoped_lock l(m_piece_mutex);
ret.clear();
ret.reserve(m_pieces.size());
for (cache_t::const_iterator i = m_pieces.begin()
, end(m_pieces.end()); i != end; ++i)
{
torrent_info const& ti = *i->storage->info();
if (ti.info_hash() != ih) continue;
cached_piece_info info;
info.piece = i->piece;
info.last_use = i->last_use;
info.kind = cached_piece_info::write_cache;
int blocks_in_piece = (ti.piece_size(i->piece) + (m_block_size) - 1) / m_block_size;
info.blocks.resize(blocks_in_piece);
for (int b = 0; b < blocks_in_piece; ++b)
if (i->blocks[b]) info.blocks[b] = true;
ret.push_back(info);
}
for (cache_t::const_iterator i = m_read_pieces.begin()
, end(m_read_pieces.end()); i != end; ++i)
{
torrent_info const& ti = *i->storage->info();
if (ti.info_hash() != ih) continue;
cached_piece_info info;
info.piece = i->piece;
info.last_use = i->last_use;
info.kind = cached_piece_info::read_cache;
int blocks_in_piece = (ti.piece_size(i->piece) + (m_block_size) - 1) / m_block_size;
info.blocks.resize(blocks_in_piece);
for (int b = 0; b < blocks_in_piece; ++b)
if (i->blocks[b]) info.blocks[b] = true;
ret.push_back(info);
}
}
cache_status disk_io_thread::status() const
{
mutex_t::scoped_lock l(m_piece_mutex);
m_cache_stats.total_used_buffers = in_use();
return m_cache_stats;
}
// aborts read operations
void disk_io_thread::stop(boost::intrusive_ptr<piece_manager> s)
{
mutex_t::scoped_lock l(m_queue_mutex);
// read jobs are aborted, write and move jobs are syncronized
for (std::list<disk_io_job>::iterator i = m_jobs.begin();
i != m_jobs.end();)
{
if (i->storage != s)
{
++i;
continue;
}
if (i->action == disk_io_job::read)
{
post_callback(i->callback, *i, -1);
m_jobs.erase(i++);
continue;
}
if (i->action == disk_io_job::check_files)
{
post_callback(i->callback, *i, piece_manager::disk_check_aborted);
m_jobs.erase(i++);
continue;
}
++i;
}
disk_io_job j;
j.action = disk_io_job::abort_torrent;
j.storage = s;
add_job(j);
}
bool range_overlap(int start1, int length1, int start2, int length2)
{
return (start1 <= start2 && start1 + length1 > start2)
|| (start2 <= start1 && start2 + length2 > start1);
}
namespace
{
// The semantic of this operator is:
// should lhs come before rhs in the job queue
bool operator<(disk_io_job const& lhs, disk_io_job const& rhs)
{
// NOTE: comparison inverted to make higher priority
// skip _in_front_of_ lower priority
if (lhs.priority > rhs.priority) return true;
if (lhs.priority < rhs.priority) return false;
if (lhs.storage.get() < rhs.storage.get()) return true;
if (lhs.storage.get() > rhs.storage.get()) return false;
if (lhs.piece < rhs.piece) return true;
if (lhs.piece > rhs.piece) return false;
if (lhs.offset < rhs.offset) return true;
// if (lhs.offset > rhs.offset) return false;
return false;
}
}
disk_io_thread::cache_t::iterator disk_io_thread::find_cached_piece(
disk_io_thread::cache_t& cache
, disk_io_job const& j, mutex_t::scoped_lock& l)
{
for (cache_t::iterator i = cache.begin()
, end(cache.end()); i != end; ++i)
{
if (i->storage != j.storage || i->piece != j.piece) continue;
return i;
}
return cache.end();
}
void disk_io_thread::flush_expired_pieces()
{
ptime now = time_now();
mutex_t::scoped_lock l(m_piece_mutex);
INVARIANT_CHECK;
// flush write cache
for (;;)
{
cache_t::iterator i = std::min_element(
m_pieces.begin(), m_pieces.end()
, bind(&cached_piece_entry::last_use, _1)
< bind(&cached_piece_entry::last_use, _2));
if (i == m_pieces.end()) break;
int age = total_seconds(now - i->last_use);
if (age < m_settings.cache_expiry) break;
flush_and_remove(i, l);
}
// flush read cache
for (;;)
{
cache_t::iterator i = std::min_element(
m_read_pieces.begin(), m_read_pieces.end()
, bind(&cached_piece_entry::last_use, _1)
< bind(&cached_piece_entry::last_use, _2));
if (i == m_read_pieces.end()) break;
int age = total_seconds(now - i->last_use);
if (age < m_settings.cache_expiry) break;
free_piece(*i, l);
m_read_pieces.erase(i);
}
}
void disk_io_thread::free_piece(cached_piece_entry& p, mutex_t::scoped_lock& l)
{
int piece_size = p.storage->info()->piece_size(p.piece);
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
for (int i = 0; i < blocks_in_piece; ++i)
{
if (p.blocks[i] == 0) continue;
free_buffer(p.blocks[i]);
p.blocks[i] = 0;
--p.num_blocks;
--m_cache_stats.cache_size;
--m_cache_stats.read_cache_size;
}
}
bool disk_io_thread::clear_oldest_read_piece(
cache_t::iterator ignore
, mutex_t::scoped_lock& l)
{
INVARIANT_CHECK;
cache_t::iterator i = std::min_element(
m_read_pieces.begin(), m_read_pieces.end()
, bind(&cached_piece_entry::last_use, _1)
< bind(&cached_piece_entry::last_use, _2));
if (i != m_read_pieces.end() && i != ignore)
{
// don't replace an entry that is less than one second old
if (time_now() - i->last_use < seconds(1)) return false;
free_piece(*i, l);
m_read_pieces.erase(i);
return true;
}
return false;
}
void disk_io_thread::flush_oldest_piece(mutex_t::scoped_lock& l)
{
INVARIANT_CHECK;
// first look if there are any read cache entries that can
// be cleared
if (clear_oldest_read_piece(m_read_pieces.end(), l)) return;
cache_t::iterator i = std::min_element(
m_pieces.begin(), m_pieces.end()
, bind(&cached_piece_entry::last_use, _1)
< bind(&cached_piece_entry::last_use, _2));
if (i == m_pieces.end()) return;
flush_and_remove(i, l);
}
void disk_io_thread::flush_and_remove(disk_io_thread::cache_t::iterator e
, mutex_t::scoped_lock& l)
{
flush(e, l);
m_pieces.erase(e);
}
void disk_io_thread::flush(disk_io_thread::cache_t::iterator e
, mutex_t::scoped_lock& l)
{
INVARIANT_CHECK;
// TODO: copy *e and unlink it before unlocking
cached_piece_entry& p = *e;
int piece_size = p.storage->info()->piece_size(p.piece);
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " flushing " << piece_size << std::endl;
#endif
TORRENT_ASSERT(piece_size > 0);
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
int buffer_size = 0;
int offset = 0;
boost::scoped_array<char> buf;
file::iovec_t* iov = 0;
int iov_counter = 0;
if (m_settings.coalesce_writes) buf.reset(new (std::nothrow) char[piece_size]);
else iov = TORRENT_ALLOCA(file::iovec_t, blocks_in_piece);
for (int i = 0; i <= blocks_in_piece; ++i)
{
if (i == blocks_in_piece || p.blocks[i] == 0)
{
if (buffer_size == 0) continue;
TORRENT_ASSERT(buffer_size <= i * m_block_size);
l.unlock();
if (iov)
{
p.storage->write_impl(iov, p.piece, (std::min)(
i * m_block_size, piece_size) - buffer_size, iov_counter);
iov_counter = 0;
}
else
{
TORRENT_ASSERT(buf);
file::iovec_t b = { buf.get(), buffer_size };
p.storage->write_impl(&b, p.piece, (std::min)(
i * m_block_size, piece_size) - buffer_size, 1);
}
l.lock();
++m_cache_stats.writes;
// std::cerr << " flushing p: " << p.piece << " bytes: " << buffer_size << std::endl;
buffer_size = 0;
offset = 0;
continue;
}
int block_size = (std::min)(piece_size - i * m_block_size, m_block_size);
TORRENT_ASSERT(offset + block_size <= piece_size);
TORRENT_ASSERT(offset + block_size > 0);
if (!buf)
{
iov[iov_counter].iov_base = p.blocks[i];
iov[iov_counter].iov_len = block_size;
++iov_counter;
}
else
{
std::memcpy(buf.get() + offset, p.blocks[i], block_size);
offset += m_block_size;
}
buffer_size += block_size;
TORRENT_ASSERT(p.num_blocks > 0);
--p.num_blocks;
++m_cache_stats.blocks_written;
--m_cache_stats.cache_size;
}
for (int i = 0; i < blocks_in_piece; ++i)
{
if (p.blocks[i] == 0) continue;
free_buffer(p.blocks[i]);
p.blocks[i] = 0;
}
TORRENT_ASSERT(buffer_size == 0);
// std::cerr << " flushing p: " << p.piece << " cached_blocks: " << m_cache_stats.cache_size << std::endl;
#ifdef TORRENT_DEBUG
for (int i = 0; i < blocks_in_piece; ++i)
TORRENT_ASSERT(p.blocks[i] == 0);
#endif
}
void disk_io_thread::cache_block(disk_io_job& j, mutex_t::scoped_lock& l)
{
INVARIANT_CHECK;
TORRENT_ASSERT(find_cached_piece(m_pieces, j, l) == m_pieces.end());
cached_piece_entry p;
#ifdef TORRENT_DISK_STATS
rename_buffer(j.buffer, "write cache");
#endif
int piece_size = j.storage->info()->piece_size(j.piece);
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
p.piece = j.piece;
p.storage = j.storage;
p.last_use = time_now();
p.num_blocks = 1;
p.blocks.reset(new char*[blocks_in_piece]);
std::memset(&p.blocks[0], 0, blocks_in_piece * sizeof(char*));
int block = j.offset / m_block_size;
// std::cerr << " adding cache entry for p: " << j.piece << " block: " << block << " cached_blocks: " << m_cache_stats.cache_size << std::endl;
p.blocks[block] = j.buffer;
++m_cache_stats.cache_size;
m_pieces.push_back(p);
}
enum read_options_t
{
ignore_cache_size = 1
};
// fills a piece with data from disk, returns the total number of bytes
// read or -1 if there was an error
int disk_io_thread::read_into_piece(cached_piece_entry& p, int start_block
, int options, mutex_t::scoped_lock& l)
{
int piece_size = p.storage->info()->piece_size(p.piece);
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
int end_block = start_block;
for (int i = start_block; i < blocks_in_piece
&& (in_use() < m_settings.cache_size
|| (options & ignore_cache_size)); ++i)
{
// this is a block that is already allocated
// stop allocating and don't read more than
// what we've allocated now
if (p.blocks[i]) break;
p.blocks[i] = allocate_buffer("read cache");
// the allocation failed, break
if (p.blocks[i] == 0) break;
++p.num_blocks;
++m_cache_stats.cache_size;
++m_cache_stats.read_cache_size;
++end_block;
}
if (end_block == start_block) return -2;
// the buffer_size is the size of the buffer we need to read
// all these blocks.
const int buffer_size = (std::min)((end_block - start_block) * m_block_size
, piece_size - start_block * m_block_size);
TORRENT_ASSERT(buffer_size <= piece_size);
TORRENT_ASSERT(buffer_size + start_block * m_block_size <= piece_size);
boost::scoped_array<char> buf;
file::iovec_t* iov = 0;
int iov_counter = 0;
if (m_settings.coalesce_reads) buf.reset(new (std::nothrow) char[buffer_size]);
else iov = TORRENT_ALLOCA(file::iovec_t, end_block - start_block);
int ret = 0;
if (buf)
{
l.unlock();
file::iovec_t b = { buf.get(), buffer_size };
ret = p.storage->read_impl(&b, p.piece, start_block * m_block_size, 1);
l.lock();
if (p.storage->error()) { return -1; }
if (ret != buffer_size)
{
// this means the file wasn't big enough for this read
p.storage->get_storage_impl()->set_error(""
, error_code(errors::file_too_short, libtorrent_category));
return -1;
}
++m_cache_stats.reads;
}
int piece_offset = start_block * m_block_size;
int offset = 0;
for (int i = start_block; i < end_block; ++i)
{
int block_size = (std::min)(piece_size - piece_offset, m_block_size);
if (p.blocks[i] == 0) break;
TORRENT_ASSERT(offset <= buffer_size);
TORRENT_ASSERT(piece_offset <= piece_size);
TORRENT_ASSERT(offset + block_size <= buffer_size);
if (buf)
{
std::memcpy(p.blocks[i], buf.get() + offset, block_size);
}
else
{
iov[iov_counter].iov_base = p.blocks[i];
iov[iov_counter].iov_len = block_size;
++iov_counter;
}
offset += m_block_size;
piece_offset += m_block_size;
}
if (iov)
{
l.unlock();
ret = p.storage->read_impl(iov, p.piece, start_block * m_block_size, iov_counter);
l.lock();
if (p.storage->error()) { return -1; }
if (ret != buffer_size)
{
// this means the file wasn't big enough for this read
p.storage->get_storage_impl()->set_error(""
, error_code(errors::file_too_short, libtorrent_category));
return -1;
}
++m_cache_stats.reads;
}
TORRENT_ASSERT(ret <= buffer_size);
TORRENT_ASSERT(ret == buffer_size || p.storage->error());
return (ret != buffer_size) ? -1 : ret;
}
bool disk_io_thread::make_room(int num_blocks
, cache_t::iterator ignore
, bool flush_write_cache
, mutex_t::scoped_lock& l)
{
while (m_settings.cache_size - in_use() < num_blocks)
{
// there's not enough room in the cache, clear a piece
// from the read cache
if (!clear_oldest_read_piece(ignore, l)) break;
}
// try flushing write cache
while (flush_write_cache && m_settings.cache_size - in_use() < num_blocks)
{
cache_t::iterator i = std::min_element(
m_pieces.begin(), m_pieces.end()
, bind(&cached_piece_entry::last_use, _1)
< bind(&cached_piece_entry::last_use, _2));
if (i == m_pieces.end()) break;
flush_and_remove(i, l);
}
return m_settings.cache_size - in_use() >= num_blocks;
}
// returns -1 on read error, -2 on out of memory error or the number of bytes read
// this function ignores the cache size limit, it will read the entire
// piece regardless of the offset in j
int disk_io_thread::cache_read_piece(disk_io_job const& j, mutex_t::scoped_lock& l)
{
INVARIANT_CHECK;
int piece_size = j.storage->info()->piece_size(j.piece);
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
make_room(blocks_in_piece, m_read_pieces.end(), true, l);
cached_piece_entry p;
p.piece = j.piece;
p.storage = j.storage;
p.last_use = time_now();
p.num_blocks = 0;
p.blocks.reset(new char*[blocks_in_piece]);
std::memset(&p.blocks[0], 0, blocks_in_piece * sizeof(char*));
int ret = read_into_piece(p, 0, ignore_cache_size, l);
if (ret == -1)
free_piece(p, l);
else
m_read_pieces.push_back(p);
return ret;
}
// returns -1 on read error, -2 if there isn't any space in the cache
// or the number of bytes read
int disk_io_thread::cache_read_block(disk_io_job const& j, mutex_t::scoped_lock& l)
{
INVARIANT_CHECK;
int piece_size = j.storage->info()->piece_size(j.piece);
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
int start_block = j.offset / m_block_size;
if (!make_room(blocks_in_piece - start_block
, m_read_pieces.end(), false, l)) return -2;
cached_piece_entry p;
p.piece = j.piece;
p.storage = j.storage;
p.last_use = time_now();
p.num_blocks = 0;
p.blocks.reset(new char*[blocks_in_piece]);
std::memset(&p.blocks[0], 0, blocks_in_piece * sizeof(char*));
int ret = read_into_piece(p, start_block, 0, l);
if (ret == -1)
free_piece(p, l);
else
m_read_pieces.push_back(p);
return ret;
}
#ifdef TORRENT_DEBUG
void disk_io_thread::check_invariant() const
{
int cached_write_blocks = 0;
for (cache_t::const_iterator i = m_pieces.begin()
, end(m_pieces.end()); i != end; ++i)
{
cached_piece_entry const& p = *i;
TORRENT_ASSERT(p.blocks);
if (!p.storage) continue;
int piece_size = p.storage->info()->piece_size(p.piece);
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
int blocks = 0;
for (int k = 0; k < blocks_in_piece; ++k)
{
if (p.blocks[k])
{
#ifndef TORRENT_DISABLE_POOL_ALLOCATOR
TORRENT_ASSERT(is_disk_buffer(p.blocks[k]));
#endif
++blocks;
}
}
// TORRENT_ASSERT(blocks == p.num_blocks);
cached_write_blocks += blocks;
}
int cached_read_blocks = 0;
for (cache_t::const_iterator i = m_read_pieces.begin()
, end(m_read_pieces.end()); i != end; ++i)
{
cached_piece_entry const& p = *i;
TORRENT_ASSERT(p.blocks);
int piece_size = p.storage->info()->piece_size(p.piece);
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
int blocks = 0;
for (int k = 0; k < blocks_in_piece; ++k)
{
if (p.blocks[k])
{
#ifndef TORRENT_DISABLE_POOL_ALLOCATOR
TORRENT_ASSERT(is_disk_buffer(p.blocks[k]));
#endif
++blocks;
}
}
// TORRENT_ASSERT(blocks == p.num_blocks);
cached_read_blocks += blocks;
}
TORRENT_ASSERT(cached_read_blocks + cached_write_blocks == m_cache_stats.cache_size);
TORRENT_ASSERT(cached_read_blocks == m_cache_stats.read_cache_size);
#ifdef TORRENT_DISK_STATS
int read_allocs = m_categories.find(std::string("read cache"))->second;
int write_allocs = m_categories.find(std::string("write cache"))->second;
TORRENT_ASSERT(cached_read_blocks == read_allocs);
TORRENT_ASSERT(cached_write_blocks == write_allocs);
#endif
// when writing, there may be a one block difference, right before an old piece
// is flushed
TORRENT_ASSERT(m_cache_stats.cache_size <= m_settings.cache_size + 1);
}
#endif
int disk_io_thread::read_piece_from_cache_and_hash(disk_io_job const& j, sha1_hash& h)
{
TORRENT_ASSERT(j.buffer);
mutex_t::scoped_lock l(m_piece_mutex);
cache_t::iterator p
= find_cached_piece(m_read_pieces, j, l);
bool hit = true;
int ret = 0;
// if the piece cannot be found in the cache,
// read the whole piece starting at the block
// we got a request for.
if (p == m_read_pieces.end())
{
ret = cache_read_piece(j, l);
hit = false;
if (ret < 0) return ret;
p = m_read_pieces.end();
--p;
TORRENT_ASSERT(!m_read_pieces.empty());
TORRENT_ASSERT(p->piece == j.piece);
TORRENT_ASSERT(p->storage == j.storage);
}
hasher ctx;
int piece_size = j.storage->info()->piece_size(j.piece);
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
for (int i = 0; i < blocks_in_piece; ++i)
{
TORRENT_ASSERT(p->blocks[i]);
ctx.update((char const*)p->blocks[i], (std::min)(piece_size, m_block_size));
piece_size -= m_block_size;
}
h = ctx.final();
ret = copy_from_piece(p, hit, j, l);
TORRENT_ASSERT(ret > 0);
if (ret < 0) return ret;
// if read cache is disabled or we exceeded the
// limit, remove this piece from the cache
if (in_use() >= m_settings.cache_size
|| !m_settings.use_read_cache)
{
TORRENT_ASSERT(!m_read_pieces.empty());
TORRENT_ASSERT(p->piece == j.piece);
TORRENT_ASSERT(p->storage == j.storage);
if (p != m_read_pieces.end())
{
free_piece(*p, l);
m_read_pieces.erase(p);
}
}
ret = j.buffer_size;
++m_cache_stats.blocks_read;
if (hit) ++m_cache_stats.blocks_read_hit;
return ret;
}
int disk_io_thread::copy_from_piece(cache_t::iterator p, bool& hit
, disk_io_job const& j, mutex_t::scoped_lock& l)
{
TORRENT_ASSERT(j.buffer);
// copy from the cache and update the last use timestamp
int block = j.offset / m_block_size;
int block_offset = j.offset & (m_block_size-1);
int buffer_offset = 0;
int size = j.buffer_size;
if (p->blocks[block] == 0)
{
int piece_size = j.storage->info()->piece_size(j.piece);
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
int end_block = block;
while (end_block < blocks_in_piece && p->blocks[end_block] == 0) ++end_block;
if (!make_room(end_block - block, p, false, l)) return -2;
int ret = read_into_piece(*p, block, 0, l);
hit = false;
if (ret < 0) return ret;
TORRENT_ASSERT(p->blocks[block]);
}
p->last_use = time_now();
while (size > 0)
{
TORRENT_ASSERT(p->blocks[block]);
int to_copy = (std::min)(m_block_size
- block_offset, size);
std::memcpy(j.buffer + buffer_offset
, p->blocks[block] + block_offset
, to_copy);
size -= to_copy;
block_offset = 0;
buffer_offset += to_copy;
++block;
}
return j.buffer_size;
}
int disk_io_thread::try_read_from_cache(disk_io_job const& j)
{
TORRENT_ASSERT(j.buffer);
mutex_t::scoped_lock l(m_piece_mutex);
if (!m_settings.use_read_cache) return -2;
cache_t::iterator p
= find_cached_piece(m_read_pieces, j, l);
bool hit = true;
int ret = 0;
// if the piece cannot be found in the cache,
// read the whole piece starting at the block
// we got a request for.
if (p == m_read_pieces.end())
{
ret = cache_read_block(j, l);
hit = false;
if (ret < 0) return ret;
p = m_read_pieces.end();
--p;
TORRENT_ASSERT(!m_read_pieces.empty());
TORRENT_ASSERT(p->piece == j.piece);
TORRENT_ASSERT(p->storage == j.storage);
}
if (p == m_read_pieces.end()) return ret;
ret = copy_from_piece(p, hit, j, l);
if (ret < 0) return ret;
ret = j.buffer_size;
++m_cache_stats.blocks_read;
if (hit) ++m_cache_stats.blocks_read_hit;
return ret;
}
void disk_io_thread::add_job(disk_io_job const& j
, boost::function<void(int, disk_io_job const&)> const& f)
{
TORRENT_ASSERT(!m_abort);
TORRENT_ASSERT(!j.callback);
TORRENT_ASSERT(j.storage
|| j.action == disk_io_job::abort_thread
|| j.action == disk_io_job::update_settings);
TORRENT_ASSERT(j.buffer_size <= m_block_size);
mutex_t::scoped_lock l(m_queue_mutex);
std::list<disk_io_job>::reverse_iterator i = m_jobs.rbegin();
if (j.action == disk_io_job::read)
{
// when we're reading, we may not skip
// ahead of any write operation that overlaps
// the region we're reading
for (; i != m_jobs.rend(); i++)
{
// if *i should come before j, stop
// and insert j before i
if (*i < j) break;
// if we come across a write operation that
// overlaps the region we're reading, we need
// to stop
if (i->action == disk_io_job::write
&& i->storage == j.storage
&& i->piece == j.piece
&& range_overlap(i->offset, i->buffer_size
, j.offset, j.buffer_size))
break;
}
}
else if (j.action == disk_io_job::write)
{
for (; i != m_jobs.rend(); ++i)
{
if (*i < j)
{
if (i != m_jobs.rbegin()
&& i.base()->storage.get() != j.storage.get())
i = m_jobs.rbegin();
break;
}
}
}
// if we are placed in front of all other jobs, put it on the back of
// the queue, to sweep the disk in the same direction, and to avoid
// starvation. The exception is if the priority is higher than the
// job at the front of the queue
if (i == m_jobs.rend() && (m_jobs.empty() || j.priority <= m_jobs.back().priority))
i = m_jobs.rbegin();
std::list<disk_io_job>::iterator k = m_jobs.insert(i.base(), j);
k->callback.swap(const_cast<boost::function<void(int, disk_io_job const&)>&>(f));
if (j.action == disk_io_job::write)
m_queue_buffer_size += j.buffer_size;
m_signal.notify_all();
}
bool disk_io_thread::test_error(disk_io_job& j)
{
TORRENT_ASSERT(j.storage);
error_code const& ec = j.storage->error();
if (ec)
{
j.str = ec.message();
j.error = ec;
j.error_file = j.storage->error_file();
j.storage->clear_error();
#ifdef TORRENT_DEBUG
std::cout << "ERROR: '" << j.str << "' " << j.error_file << std::endl;
#endif
return true;
}
return false;
}
void disk_io_thread::post_callback(
boost::function<void(int, disk_io_job const&)> const& handler
, disk_io_job const& j, int ret)
{
if (!handler) return;
m_ios.post(bind(handler, ret, j));
}
void disk_io_thread::operator()()
{
for (;;)
{
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " idle" << std::endl;
#endif
mutex_t::scoped_lock jl(m_queue_mutex);
while (m_jobs.empty() && !m_abort)
{
// if there hasn't been an event in one second
// see if we should flush the cache
// if (!m_signal.timed_wait(jl, boost::posix_time::seconds(1)))
// flush_expired_pieces();
m_signal.wait(jl);
}
if (m_abort && m_jobs.empty())
{
jl.unlock();
mutex_t::scoped_lock l(m_piece_mutex);
// flush all disk caches
for (cache_t::iterator i = m_pieces.begin()
, end(m_pieces.end()); i != end; ++i)
flush(i, l);
for (cache_t::iterator i = m_read_pieces.begin()
, end(m_read_pieces.end()); i != end; ++i)
free_piece(*i, l);
m_pieces.clear();
m_read_pieces.clear();
// release the io_service to allow the run() call to return
// we do this once we stop posting new callbacks to it.
m_work.reset();
return;
}
// if there's a buffer in this job, it will be freed
// when this holder is destructed, unless it has been
// released.
disk_buffer_holder holder(*this
, m_jobs.front().action != disk_io_job::check_fastresume
&& m_jobs.front().action != disk_io_job::update_settings
? m_jobs.front().buffer : 0);
boost::function<void(int, disk_io_job const&)> handler;
handler.swap(m_jobs.front().callback);
disk_io_job j = m_jobs.front();
m_jobs.pop_front();
m_queue_buffer_size -= j.buffer_size;
jl.unlock();
flush_expired_pieces();
int ret = 0;
TORRENT_ASSERT(j.storage
|| j.action == disk_io_job::abort_thread
|| j.action == disk_io_job::update_settings);
#ifdef TORRENT_DISK_STATS
ptime start = time_now();
#endif
#ifndef BOOST_NO_EXCEPTIONS
try {
#endif
if (j.storage && j.storage->get_storage_impl()->m_settings == 0)
j.storage->get_storage_impl()->m_settings = &m_settings;
switch (j.action)
{
case disk_io_job::update_settings:
{
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " update_settings " << std::endl;
#endif
TORRENT_ASSERT(j.buffer);
session_settings const& s = *((session_settings*)j.buffer);
TORRENT_ASSERT(s.cache_size >= 0);
TORRENT_ASSERT(s.cache_expiry > 0);
m_settings = s;
}
case disk_io_job::abort_torrent:
{
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " abort_torrent " << std::endl;
#endif
mutex_t::scoped_lock jl(m_queue_mutex);
for (std::list<disk_io_job>::iterator i = m_jobs.begin();
i != m_jobs.end();)
{
if (i->storage != j.storage)
{
++i;
continue;
}
if (i->action == disk_io_job::check_files)
{
post_callback(i->callback, *i, piece_manager::disk_check_aborted);
m_jobs.erase(i++);
continue;
}
++i;
}
break;
}
case disk_io_job::abort_thread:
{
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " abort_thread " << std::endl;
#endif
mutex_t::scoped_lock jl(m_queue_mutex);
for (std::list<disk_io_job>::iterator i = m_jobs.begin();
i != m_jobs.end();)
{
if (i->action == disk_io_job::read)
{
post_callback(i->callback, *i, -1);
m_jobs.erase(i++);
continue;
}
if (i->action == disk_io_job::check_files)
{
post_callback(i->callback, *i, piece_manager::disk_check_aborted);
m_jobs.erase(i++);
continue;
}
++i;
}
m_abort = true;
break;
}
case disk_io_job::read_and_hash:
{
if (test_error(j))
{
ret = -1;
break;
}
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " read_and_hash " << j.buffer_size << std::endl;
#endif
INVARIANT_CHECK;
TORRENT_ASSERT(j.buffer == 0);
j.buffer = allocate_buffer("send buffer");
TORRENT_ASSERT(j.buffer_size <= m_block_size);
if (j.buffer == 0)
{
ret = -1;
j.error = error_code(ENOMEM, get_posix_category());
j.str = j.error.message();
break;
}
disk_buffer_holder read_holder(*this, j.buffer);
// read the entire piece and verify the piece hash
// since we need to check the hash, this function
// will ignore the cache size limit (at least for
// reading and hashing, not for keeping it around)
sha1_hash h;
ret = read_piece_from_cache_and_hash(j, h);
if (ret == -1)
{
j.buffer = 0;
test_error(j);
break;
}
ret = (j.storage->info()->hash_for_piece(j.piece) == h)?ret:-3;
if (ret == -3)
{
j.storage->mark_failed(j.piece);
j.error = error_code(errors::failed_hash_check, libtorrent_category);
j.str = j.error.message();
}
read_holder.release();
break;
}
case disk_io_job::read:
{
if (test_error(j))
{
ret = -1;
break;
}
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " read " << j.buffer_size << std::endl;
#endif
INVARIANT_CHECK;
TORRENT_ASSERT(j.buffer == 0);
j.buffer = allocate_buffer("send buffer");
TORRENT_ASSERT(j.buffer_size <= m_block_size);
if (j.buffer == 0)
{
ret = -1;
j.error = error_code(ENOMEM, get_posix_category());
j.str = j.error.message();
break;
}
disk_buffer_holder read_holder(*this, j.buffer);
ret = try_read_from_cache(j);
// -2 means there's no space in the read cache
// or that the read cache is disabled
if (ret == -1)
{
j.buffer = 0;
test_error(j);
break;
}
else if (ret == -2)
{
file::iovec_t b = { j.buffer, j.buffer_size };
ret = j.storage->read_impl(&b, j.piece, j.offset, 1);
if (ret < 0)
{
test_error(j);
break;
}
if (ret != j.storage->m_files.piece_size(j.piece) - j.offset)
{
// this means the file wasn't big enough for this read
j.error = error_code(errors::file_too_short, libtorrent_category);
j.error_file.clear();
j.str = j.error.message();
ret = -1;
break;
}
++m_cache_stats.blocks_read;
}
read_holder.release();
break;
}
case disk_io_job::write:
{
if (test_error(j))
{
ret = -1;
break;
}
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " write " << j.buffer_size << std::endl;
#endif
mutex_t::scoped_lock l(m_piece_mutex);
INVARIANT_CHECK;
cache_t::iterator p
= find_cached_piece(m_pieces, j, l);
int block = j.offset / m_block_size;
TORRENT_ASSERT(j.buffer);
TORRENT_ASSERT(j.buffer_size <= m_block_size);
if (p != m_pieces.end())
{
TORRENT_ASSERT(p->blocks[block] == 0);
if (p->blocks[block])
{
free_buffer(p->blocks[block]);
--p->num_blocks;
}
p->blocks[block] = j.buffer;
#ifdef TORRENT_DISK_STATS
rename_buffer(j.buffer, "write cache");
#endif
++m_cache_stats.cache_size;
++p->num_blocks;
p->last_use = time_now();
}
else
{
cache_block(j, l);
}
// we've now inserted the buffer
// in the cache, we should not
// free it at the end
holder.release();
if (in_use() >= m_settings.cache_size)
flush_oldest_piece(l);
break;
}
case disk_io_job::hash:
{
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " hash" << std::endl;
#endif
mutex_t::scoped_lock l(m_piece_mutex);
INVARIANT_CHECK;
cache_t::iterator i
= find_cached_piece(m_pieces, j, l);
if (i != m_pieces.end())
{
flush_and_remove(i, l);
if (test_error(j))
{
ret = -1;
j.storage->mark_failed(j.piece);
break;
}
}
l.unlock();
sha1_hash h = j.storage->hash_for_piece_impl(j.piece);
if (test_error(j))
{
ret = -1;
j.storage->mark_failed(j.piece);
break;
}
ret = (j.storage->info()->hash_for_piece(j.piece) == h)?0:-2;
if (ret == -2) j.storage->mark_failed(j.piece);
break;
}
case disk_io_job::move_storage:
{
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " move" << std::endl;
#endif
TORRENT_ASSERT(j.buffer == 0);
ret = j.storage->move_storage_impl(j.str);
if (ret != 0)
{
test_error(j);
break;
}
j.str = j.storage->save_path().string();
break;
}
case disk_io_job::release_files:
{
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " release" << std::endl;
#endif
TORRENT_ASSERT(j.buffer == 0);
mutex_t::scoped_lock l(m_piece_mutex);
INVARIANT_CHECK;
for (cache_t::iterator i = m_pieces.begin(); i != m_pieces.end();)
{
if (i->storage == j.storage)
{
flush(i, l);
i = m_pieces.erase(i);
}
else
{
++i;
}
}
l.unlock();
release_memory();
ret = j.storage->release_files_impl();
if (ret != 0) test_error(j);
break;
}
case disk_io_job::clear_read_cache:
{
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " clear-cache" << std::endl;
#endif
TORRENT_ASSERT(j.buffer == 0);
mutex_t::scoped_lock l(m_piece_mutex);
INVARIANT_CHECK;
for (cache_t::iterator i = m_read_pieces.begin();
i != m_read_pieces.end();)
{
if (i->storage == j.storage)
{
free_piece(*i, l);
i = m_read_pieces.erase(i);
}
else
{
++i;
}
}
l.unlock();
release_memory();
ret = 0;
break;
}
case disk_io_job::delete_files:
{
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " delete" << std::endl;
#endif
TORRENT_ASSERT(j.buffer == 0);
mutex_t::scoped_lock l(m_piece_mutex);
INVARIANT_CHECK;
cache_t::iterator i = std::remove_if(
m_pieces.begin(), m_pieces.end(), bind(&cached_piece_entry::storage, _1) == j.storage);
for (cache_t::iterator k = i; k != m_pieces.end(); ++k)
{
torrent_info const& ti = *k->storage->info();
int blocks_in_piece = (ti.piece_size(k->piece) + m_block_size - 1) / m_block_size;
for (int j = 0; j < blocks_in_piece; ++j)
{
if (k->blocks[j] == 0) continue;
free_buffer(k->blocks[j]);
k->blocks[j] = 0;
--m_cache_stats.cache_size;
}
}
m_pieces.erase(i, m_pieces.end());
l.unlock();
release_memory();
ret = j.storage->delete_files_impl();
if (ret != 0) test_error(j);
break;
}
case disk_io_job::check_fastresume:
{
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " check_fastresume" << std::endl;
#endif
lazy_entry const* rd = (lazy_entry const*)j.buffer;
TORRENT_ASSERT(rd != 0);
ret = j.storage->check_fastresume(*rd, j.str);
break;
}
case disk_io_job::check_files:
{
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " check_files" << std::endl;
#endif
int piece_size = j.storage->info()->piece_length();
for (int processed = 0; processed < 4 * 1024 * 1024; processed += piece_size)
{
ret = j.storage->check_files(j.piece, j.offset, j.str);
#ifndef BOOST_NO_EXCEPTIONS
try {
#endif
TORRENT_ASSERT(handler);
if (handler && ret == piece_manager::need_full_check)
post_callback(handler, j, ret);
#ifndef BOOST_NO_EXCEPTIONS
} catch (std::exception&) {}
#endif
if (ret != piece_manager::need_full_check) break;
}
if (test_error(j))
{
ret = piece_manager::fatal_disk_error;
break;
}
TORRENT_ASSERT(ret != -2 || !j.str.empty());
// if the check is not done, add it at the end of the job queue
if (ret == piece_manager::need_full_check)
{
add_job(j, handler);
continue;
}
break;
}
case disk_io_job::save_resume_data:
{
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " save_resume_data" << std::endl;
#endif
j.resume_data.reset(new entry(entry::dictionary_t));
j.storage->write_resume_data(*j.resume_data);
ret = 0;
break;
}
case disk_io_job::rename_file:
{
#ifdef TORRENT_DISK_STATS
m_log << log_time() << " rename_file" << std::endl;
#endif
ret = j.storage->rename_file_impl(j.piece, j.str);
if (ret != 0)
{
test_error(j);
break;
}
}
}
#ifndef BOOST_NO_EXCEPTIONS
}
catch (std::exception& e)
{
ret = -1;
try
{
j.str = e.what();
}
catch (std::exception&) {}
}
#endif
// if (!handler) std::cerr << "DISK THREAD: no callback specified" << std::endl;
// else std::cerr << "DISK THREAD: invoking callback" << std::endl;
#ifndef BOOST_NO_EXCEPTIONS
try {
#endif
TORRENT_ASSERT(ret != -2 || !j.str.empty()
|| j.action == disk_io_job::hash);
post_callback(handler, j, ret);
#ifndef BOOST_NO_EXCEPTIONS
} catch (std::exception&)
{
TORRENT_ASSERT(false);
}
#endif
}
TORRENT_ASSERT(false);
}
}