premiere-libtorrent/src/kademlia/routing_table.cpp

1109 lines
32 KiB
C++

/*
Copyright (c) 2006-2013, Arvid Norberg
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "libtorrent/pch.hpp"
#include <vector>
#include <iterator> // std::distance()
#include <algorithm> // std::copy, std::remove_copy_if
#include <functional>
#include <numeric>
#include <boost/cstdint.hpp>
#include <boost/bind.hpp>
#include "libtorrent/kademlia/routing_table.hpp"
#include "libtorrent/broadcast_socket.hpp" // for cidr_distance
#include "libtorrent/session_status.hpp"
#include "libtorrent/kademlia/node_id.hpp"
#include "libtorrent/time.hpp"
#include "libtorrent/invariant_check.hpp"
using boost::uint8_t;
namespace libtorrent { namespace dht
{
#ifdef TORRENT_DHT_VERBOSE_LOGGING
TORRENT_DEFINE_LOG(table)
#endif
routing_table::routing_table(node_id const& id, int bucket_size
, dht_settings const& settings)
: m_settings(settings)
, m_bucket_size(bucket_size)
, m_id(id)
, m_depth(0)
, m_last_bootstrap(min_time())
, m_last_refresh(min_time())
, m_last_self_refresh(min_time())
{
m_buckets.reserve(30);
}
int routing_table::bucket_limit(int bucket) const
{
if (!m_settings.extended_routing_table) return m_bucket_size;
const static int size_exceptions[] = {16, 8, 4, 2};
if (bucket < sizeof(size_exceptions)/sizeof(size_exceptions[0]))
return m_bucket_size * size_exceptions[bucket];
return m_bucket_size;
}
void routing_table::status(session_status& s) const
{
boost::tie(s.dht_nodes, s.dht_node_cache) = size();
s.dht_global_nodes = num_global_nodes();
ptime now = time_now();
for (table_t::const_iterator i = m_buckets.begin()
, end(m_buckets.end()); i != end; ++i)
{
dht_routing_bucket b;
b.num_nodes = i->live_nodes.size();
b.num_replacements = i->replacements.size();
b.last_active = total_seconds(now - i->last_active);
s.dht_routing_table.push_back(b);
}
}
boost::tuple<int, int> routing_table::size() const
{
int nodes = 0;
int replacements = 0;
for (table_t::const_iterator i = m_buckets.begin()
, end(m_buckets.end()); i != end; ++i)
{
nodes += i->live_nodes.size();
replacements += i->replacements.size();
}
return boost::make_tuple(nodes, replacements);
}
size_type routing_table::num_global_nodes() const
{
int deepest_bucket = 0;
int deepest_size = 0;
for (table_t::const_iterator i = m_buckets.begin()
, end(m_buckets.end()); i != end; ++i)
{
deepest_size = i->live_nodes.size(); // + i->replacements.size();
if (deepest_size < m_bucket_size) break;
// this bucket is full
++deepest_bucket;
}
if (deepest_bucket == 0) return 1 + deepest_size;
if (deepest_size < m_bucket_size / 2) return (size_type(1) << deepest_bucket) * m_bucket_size;
else return (size_type(2) << deepest_bucket) * deepest_size;
}
int routing_table::depth() const
{
if (m_depth >= m_buckets.size())
m_depth = m_buckets.size() - 1;
if (m_depth < 0) return m_depth;
// maybe the table is deeper now?
while (m_depth < int(m_buckets.size())-1
&& m_buckets[m_depth+1].live_nodes.size() >= m_bucket_size / 2)
{
++m_depth;
}
// maybe the table is more shallow now?
while (m_depth > 0
&& m_buckets[m_depth-1].live_nodes.size() < m_bucket_size / 2)
{
--m_depth;
}
return m_depth;
}
#if (defined TORRENT_DHT_VERBOSE_LOGGING || defined TORRENT_DEBUG) && TORRENT_USE_IOSTREAM
void routing_table::print_state(std::ostream& os) const
{
os << "kademlia routing table state\n"
<< "bucket_size: " << m_bucket_size << "\n"
<< "global node count: " << num_global_nodes() << "\n"
<< "node_id: " << m_id << "\n\n";
os << "number of nodes per bucket:\n-- live ";
for (int i = 8; i < 160; ++i)
os << "-";
os << "\n";
int max_size = bucket_limit(0);
for (int k = 0; k < max_size; ++k)
{
for (table_t::const_iterator i = m_buckets.begin(), end(m_buckets.end());
i != end; ++i)
{
os << (int(i->live_nodes.size()) > (max_size - 1 - k) ? "|" : " ");
}
os << "\n";
}
for (int i = 0; i < 160; ++i) os << "+";
os << "\n";
for (int k = 0; k < m_bucket_size; ++k)
{
for (table_t::const_iterator i = m_buckets.begin(), end(m_buckets.end());
i != end; ++i)
{
os << (int(i->replacements.size()) > k ? "|" : " ");
}
os << "\n";
}
os << "-- cached ";
for (int i = 10; i < 160; ++i)
os << "-";
os << "\n\n";
os << "nodes:\n";
int bucket_index = 0;
for (table_t::const_iterator i = m_buckets.begin(), end(m_buckets.end());
i != end; ++i, ++bucket_index)
{
// if (i->live_nodes.empty()) continue;
os << "=== BUCKET == " << bucket_index
<< " == " << i->live_nodes.size() << "|" << i->replacements.size()
<< " == " << total_seconds(time_now() - i->last_active)
<< " seconds ago ===== \n";
for (bucket_t::const_iterator j = i->live_nodes.begin()
, end(i->live_nodes.end()); j != end; ++j)
{
int bucket_size_limit = bucket_limit(bucket_index);
boost::uint32_t top_mask = bucket_size_limit - 1;
int mask_shift = 0;
TORRENT_ASSERT_VAL(bucket_size_limit > 0, bucket_size_limit);
while ((top_mask & 0x80) == 0)
{
top_mask <<= 1;
++mask_shift;
}
top_mask = (0xff << mask_shift) & 0xff;
node_id id = j->id;
id <<= bucket_index + 1;
os << " prefix: " << ((id[0] & top_mask) >> mask_shift)
<< " id: " << j->id
<< " rtt: " << j->rtt
<< " ip: " << j->ep()
<< " fails: " << j->fail_count()
<< " pinged: " << j->pinged()
<< " dist: " << distance_exp(m_id, j->id)
<< "\n";
}
}
os << "node spread per bucket:\n";
bucket_index = 0;
for (table_t::const_iterator i = m_buckets.begin(), end(m_buckets.end());
i != end; ++i, ++bucket_index)
{
int bucket_size_limit = bucket_limit(bucket_index);
// mask out the first 3 bits, or more depending
// on the bucket_size_limit
// we have all the lower bits set in (bucket_size_limit-1)
// but we want the left-most bits to be set. Shift it
// until the MSB is set
boost::uint32_t top_mask = bucket_size_limit - 1;
int mask_shift = 0;
TORRENT_ASSERT_VAL(bucket_size_limit > 0, bucket_size_limit);
while ((top_mask & 0x80) == 0)
{
top_mask <<= 1;
++mask_shift;
}
top_mask = (0xff << mask_shift) & 0xff;
bucket_size_limit = (top_mask >> mask_shift) + 1;
TORRENT_ASSERT_VAL(bucket_size_limit <= 256, bucket_size_limit);
bool sub_buckets[256];
memset(sub_buckets, 0, sizeof(sub_buckets));
for (bucket_t::const_iterator j = i->live_nodes.begin()
, end(i->live_nodes.end()); j != end; ++j)
{
node_id id = j->id;
id <<= bucket_index + 1;
int b = (id[0] & top_mask) >> mask_shift;
TORRENT_ASSERT(b >= 0 && b < sizeof(sub_buckets));
sub_buckets[b] = true;
}
os << bucket_index << " mask:" << (top_mask >> mask_shift) << ": [";
for (int i = 0; i < bucket_size_limit; ++i) os << (sub_buckets[i] ? "X" : " ");
os << "]\n";
}
}
#endif
void routing_table::touch_bucket(node_id const& target)
{
table_t::iterator i = find_bucket(target);
i->last_active = time_now();
}
// returns true if lhs is in more need of a refresh than rhs
bool compare_bucket_refresh(routing_table_node const& lhs, routing_table_node const& rhs)
{
// add the number of nodes to prioritize buckets with few nodes in them
return lhs.last_active + seconds(lhs.live_nodes.size() * 5)
< rhs.last_active + seconds(rhs.live_nodes.size() * 5);
}
// TODO: instad of refreshing a bucket by using find_nodes,
// ping each node periodically
bool routing_table::need_refresh(node_id& target) const
{
INVARIANT_CHECK;
ptime now = time_now();
// refresh our own bucket once every 15 minutes
if (now - m_last_self_refresh > minutes(15))
{
m_last_self_refresh = now;
target = m_id;
#ifdef TORRENT_DHT_VERBOSE_LOGGING
TORRENT_LOG(table) << "need_refresh [ bucket: self target: " << target << " ]";
#endif
return true;
}
if (m_buckets.empty()) return false;
table_t::const_iterator i = std::min_element(m_buckets.begin(), m_buckets.end()
, &compare_bucket_refresh);
if (now - i->last_active < minutes(15)) return false;
if (now - m_last_refresh < seconds(45)) return false;
// generate a random node_id within the given bucket
target = generate_random_id();
int num_bits = std::distance(m_buckets.begin(), i) + 1;
node_id mask = generate_prefix_mask(num_bits);
// target = (target & ~mask) | (root & mask)
node_id root = m_id;
root &= mask;
target &= ~mask;
target |= root;
// make sure this is in another subtree than m_id
// clear the (num_bits - 1) bit and then set it to the
// inverse of m_id's corresponding bit.
target[(num_bits - 1) / 8] &= ~(0x80 >> ((num_bits - 1) % 8));
target[(num_bits - 1) / 8] |=
(~(m_id[(num_bits - 1) / 8])) & (0x80 >> ((num_bits - 1) % 8));
TORRENT_ASSERT(distance_exp(m_id, target) == 160 - num_bits);
#ifdef TORRENT_DHT_VERBOSE_LOGGING
TORRENT_LOG(table) << "need_refresh [ bucket: " << num_bits << " target: " << target << " ]";
#endif
m_last_refresh = now;
return true;
}
void routing_table::replacement_cache(bucket_t& nodes) const
{
for (table_t::const_iterator i = m_buckets.begin()
, end(m_buckets.end()); i != end; ++i)
{
std::copy(i->replacements.begin(), i->replacements.end()
, std::back_inserter(nodes));
}
}
routing_table::table_t::iterator routing_table::find_bucket(node_id const& id)
{
// TORRENT_ASSERT(id != m_id);
int num_buckets = m_buckets.size();
if (num_buckets == 0)
{
m_buckets.push_back(routing_table_node());
// add 160 seconds to prioritize higher buckets (i.e. buckets closer to us)
m_buckets.back().last_active = min_time() + seconds(160);
++num_buckets;
}
int bucket_index = (std::min)(159 - distance_exp(m_id, id), num_buckets - 1);
TORRENT_ASSERT(bucket_index < int(m_buckets.size()));
TORRENT_ASSERT(bucket_index >= 0);
table_t::iterator i = m_buckets.begin();
std::advance(i, bucket_index);
return i;
}
bool compare_ip_cidr(node_entry const& lhs, node_entry const& rhs)
{
TORRENT_ASSERT(lhs.addr().is_v4() == rhs.addr().is_v4());
// the number of bits in the IPs that may match. If
// more bits that this matches, something suspicious is
// going on and we shouldn't add the second one to our
// routing table
int cutoff = rhs.addr().is_v4() ? 8 : 64;
int dist = cidr_distance(lhs.addr(), rhs.addr());
return dist <= cutoff;
}
node_entry* routing_table::find_node(udp::endpoint const& ep
, routing_table::table_t::iterator* bucket)
{
for (table_t::iterator i = m_buckets.begin()
, end(m_buckets.end()); i != end; ++i)
{
for (bucket_t::iterator j = i->replacements.begin();
j != i->replacements.end(); ++j)
{
if (j->addr() != ep.address()) continue;
if (j->port() != ep.port()) continue;
*bucket = i;
return &*j;
}
for (bucket_t::iterator j = i->live_nodes.begin();
j != i->live_nodes.end(); ++j)
{
if (j->addr() != ep.address()) continue;
if (j->port() != ep.port()) continue;
*bucket = i;
return &*j;
}
}
*bucket = m_buckets.end();
return 0;
}
void routing_table::remove_node(node_entry* n
, routing_table::table_t::iterator bucket)
{
if (!bucket->replacements.empty()
&& n >= &bucket->replacements[0]
&& n < &bucket->replacements[0] + bucket->replacements.size())
{
int idx = n - &bucket->replacements[0];
TORRENT_ASSERT(m_ips.count(n->endpoint.address().to_v4().to_bytes()) > 0);
m_ips.erase(n->endpoint.address().to_v4().to_bytes());
bucket->replacements.erase(bucket->replacements.begin() + idx);
}
if (!bucket->live_nodes.empty()
&& n >= &bucket->live_nodes[0]
&& n < &bucket->live_nodes[0] + bucket->live_nodes.size())
{
int idx = n - &bucket->live_nodes[0];
TORRENT_ASSERT(m_ips.count(n->endpoint.address().to_v4().to_bytes()) > 0);
m_ips.erase(n->endpoint.address().to_v4().to_bytes());
bucket->live_nodes.erase(bucket->live_nodes.begin() + idx);
}
}
bool routing_table::add_node(node_entry e)
{
INVARIANT_CHECK;
// if we already have this (IP,port), don't do anything
if (m_router_nodes.find(e.ep()) != m_router_nodes.end()) return false;
bool ret = need_bootstrap();
// don't add ourself
if (e.id == m_id) return ret;
// do we already have this IP in the table?
if (m_ips.count(e.addr().to_v4().to_bytes()) > 0)
{
// this exact IP already exists in the table. It might be the case
// that the node changed IP. If pinged is true, and the port also
// matches then we assume it's in fact the same node, and just update
// the routing table
// pinged means that we have sent a message to the IP, port and received
// a response with a correct transaction ID, i.e. it is verified to not
// be the result of a poisoned routing table
table_t::iterator existing_bucket;
node_entry* existing = find_node(e.ep(), &existing_bucket);
if (!e.pinged() || existing == 0)
{
// the new node is not pinged, or it's not an existing node
// we should ignore it, unless we allow duplicate IPs in our
// routing table
if (m_settings.restrict_routing_ips)
{
#ifdef TORRENT_DHT_VERBOSE_LOGGING
TORRENT_LOG(table) << "ignoring node (duplicate IP): "
<< e.id << " " << e.addr();
#endif
return ret;
}
}
else if (existing && existing->id == e.id)
{
// if the node ID is the same, just update the failcount
// and be done with it
existing->timeout_count = 0;
existing->update_rtt(e.rtt);
return ret;
}
else if (existing)
{
TORRENT_ASSERT(existing->id != e.id);
// this is the same IP and port, but with
// a new node ID. remove the old entry and
// replace it with this new ID
remove_node(existing, existing_bucket);
}
}
table_t::iterator i = find_bucket(e.id);
bucket_t& b = i->live_nodes;
bucket_t& rb = i->replacements;
int bucket_index = std::distance(m_buckets.begin(), i);
int bucket_size_limit = bucket_limit(bucket_index);
bucket_t::iterator j;
// if the node already exists, we don't need it
j = std::find_if(b.begin(), b.end()
, boost::bind(&node_entry::id, _1) == e.id);
if (j != b.end())
{
// a new IP address just claimed this node-ID
// ignore it
if (j->addr() != e.addr() || j->port() != e.port()) return ret;
// we already have the node in our bucket
TORRENT_ASSERT(j->id == e.id && j->ep() == e.ep());
j->timeout_count = 0;
j->update_rtt(e.rtt);
// TORRENT_LOG(table) << "updating node: " << i->id << " " << i->addr();
return ret;
}
// if this node exists in the replacement bucket. update it and
// pull it out from there. We may add it back to the replacement
// bucket, but we may also replace a node in the main bucket, now
// that we have an updated RTT
j = std::find_if(rb.begin(), rb.end(), boost::bind(&node_entry::id, _1) == e.id);
if (j != rb.end())
{
// a new IP address just claimed this node-ID
// ignore it
if (j->addr() != e.addr() || j->port() != e.port()) return ret;
TORRENT_ASSERT(j->id == e.id && j->ep() == e.ep());
j->timeout_count = 0;
j->update_rtt(e.rtt);
e = *j;
m_ips.erase(j->addr().to_v4().to_bytes());
rb.erase(j);
}
if (m_settings.restrict_routing_ips)
{
// don't allow multiple entries from IPs very close to each other
j = std::find_if(b.begin(), b.end(), boost::bind(&compare_ip_cidr, _1, e));
if (j != b.end())
{
// we already have a node in this bucket with an IP very
// close to this one. We know that it's not the same, because
// it claims a different node-ID. Ignore this to avoid attacks
#ifdef TORRENT_DHT_VERBOSE_LOGGING
TORRENT_LOG(table) << "ignoring node: " << e.id << " " << e.addr()
<< " existing node: "
<< j->id << " " << j->addr();
#endif
return ret;
}
j = std::find_if(rb.begin(), rb.end(), boost::bind(&compare_ip_cidr, _1, e));
if (j != rb.end())
{
// same thing but for the replacement bucket
#ifdef TORRENT_DHT_VERBOSE_LOGGING
TORRENT_LOG(table) << "ignoring (replacement) node: " << e.id << " " << e.addr()
<< " existing node: "
<< j->id << " " << j->addr();
#endif
return ret;
}
}
// if there's room in the main bucket, just insert it
if (int(b.size()) < bucket_size_limit)
{
if (b.empty()) b.reserve(bucket_size_limit);
b.push_back(e);
m_ips.insert(e.addr().to_v4().to_bytes());
// TORRENT_LOG(table) << "inserting node: " << e.id << " " << e.addr();
return ret;
}
// if there is no room, we look for nodes that are not 'pinged',
// i.e. we haven't confirmed that they respond to messages.
// Then we look for nodes marked as stale
// in the k-bucket. If we find one, we can replace it.
// then we look for nodes with the same 3 bit prefix (or however
// many bits prefix the bucket size warrants). If there is no other
// node with this prefix, remove the duplicate with the highest RTT.
// as the last replacement strategy, if the node we found matching our
// bit prefix has higher RTT than the new node, replace it.
// can we split the bucket?
bool can_split = false;
if (e.pinged() && e.fail_count() == 0)
{
// only nodes that are pinged and haven't failed
// can split the bucket, and we can only split
// the last bucket
can_split = (boost::next(i) == m_buckets.end() && m_buckets.size() < 159);
// if the node we're trying to insert is considered pinged,
// we may replace other nodes that aren't pinged
j = std::find_if(b.begin(), b.end(), boost::bind(&node_entry::pinged, _1) == false);
if (j != b.end() && !j->pinged())
{
// j points to a node that has not been pinged.
// Replace it with this new one
m_ips.erase(j->addr().to_v4().to_bytes());
*j = e;
m_ips.insert(e.addr().to_v4().to_bytes());
// TORRENT_LOG(table) << "replacing unpinged node: " << e.id << " " << e.addr();
return ret;
}
// A node is considered stale if it has failed at least one
// time. Here we choose the node that has failed most times.
// If we don't find one, place this node in the replacement-
// cache and replace any nodes that will fail in the future
// with nodes from that cache.
j = std::max_element(b.begin(), b.end()
, boost::bind(&node_entry::fail_count, _1)
< boost::bind(&node_entry::fail_count, _2));
TORRENT_ASSERT(j != b.end());
if (j->fail_count() > 0)
{
// i points to a node that has been marked
// as stale. Replace it with this new one
m_ips.erase(j->addr().to_v4().to_bytes());
*j = e;
m_ips.insert(e.addr().to_v4().to_bytes());
// TORRENT_LOG(table) << "replacing stale node: " << e.id << " " << e.addr();
return ret;
}
// in order to provide as few lookups as possible before finding
// the data someone is looking for, make sure there is an affinity
// towards having a good spread of node IDs in each bucket
boost::uint32_t mask = bucket_size_limit - 1;
int mask_shift = 0;
TORRENT_ASSERT_VAL(mask > 0, mask);
while ((mask & 0x80) == 0)
{
mask <<= 1;
++mask_shift;
}
// in case bucket_size_limit is not an even power of 2
mask = (0xff << mask_shift) & 0xff;
node_id id = e.id;
id <<= bucket_index + 1;
// pick out all nodes that have the same prefix as the new node
std::vector<bucket_t::iterator> nodes;
bool force_replace = false;
for (j = b.begin(); j != b.end(); ++j)
{
if (!matching_prefix(*j, mask, id[0] & mask, bucket_index)) continue;
nodes.push_back(j);
}
if (!nodes.empty())
{
j = *std::max_element(nodes.begin(), nodes.end()
, boost::bind(&node_entry::rtt, boost::bind(&bucket_t::iterator::operator*, _1))
< boost::bind(&node_entry::rtt, boost::bind(&bucket_t::iterator::operator*, _2)));
}
else
{
// there is no node in this prefix-slot, there may be some
// nodes sharing a prefix. Find all nodes that do not
// have a unique prefix
// find node entries with duplicate prefixes in O(1)
std::vector<bucket_t::iterator> prefix(1 << (8 - mask_shift), b.end());
TORRENT_ASSERT(prefix.size() >= bucket_size_limit);
// the begin iterator from this object is used as a placeholder
// for an occupied slot whose node has already been added to the
// duplicate nodes list.
bucket_t placeholder;
nodes.reserve(b.size());
for (j = b.begin(); j != b.end(); ++j)
{
node_id id = j->id;
id <<= bucket_index + 1;
int this_prefix = (id[0] & mask) >> mask_shift;
TORRENT_ASSERT(this_prefix >= 0);
TORRENT_ASSERT(this_prefix < prefix.size());
if (prefix[this_prefix] != b.end())
{
// there's already a node with this prefix. Remember both
// duplicates.
nodes.push_back(j);
if (prefix[this_prefix] != placeholder.begin())
{
nodes.push_back(prefix[this_prefix]);
prefix[this_prefix] = placeholder.begin();
}
}
}
if (!nodes.empty())
{
// from these nodes, pick the one with the highest RTT
// and replace it
std::vector<bucket_t::iterator>::iterator k = std::max_element(nodes.begin(), nodes.end()
, boost::bind(&node_entry::rtt, boost::bind(&bucket_t::iterator::operator*, _1))
< boost::bind(&node_entry::rtt, boost::bind(&bucket_t::iterator::operator*, _2)));
// in this case, we would really rather replace the node even if
// the new node has higher RTT, becase it fills a new prefix that we otherwise
// don't have.
force_replace = true;
j = *k;
}
else
{
j = std::max_element(b.begin(), b.end()
, boost::bind(&node_entry::rtt, _1)
< boost::bind(&node_entry::rtt, _2));
}
}
if (j != b.end() && (force_replace || j->rtt > e.rtt))
{
m_ips.erase(j->addr().to_v4().to_bytes());
*j = e;
m_ips.insert(e.addr().to_v4().to_bytes());
#ifdef TORRENT_DHT_VERBOSE_LOGGING
TORRENT_LOG(table) << "replacing node with higher RTT: " << e.id << " " << e.addr();
#endif
return ret;
}
// in order to keep lookup times small, prefer nodes with low RTTs
}
// if we can't split, try to insert into the replacement bucket
if (!can_split)
{
// if we don't have any identified stale nodes in
// the bucket, and the bucket is full, we have to
// cache this node and wait until some node fails
// and then replace it.
j = std::find_if(rb.begin(), rb.end()
, boost::bind(&node_entry::id, _1) == e.id);
// if the node is already in the replacement bucket
// just return.
if (j != rb.end())
{
// if the IP address matches, it's the same node
// make sure it's marked as pinged
if (j->ep() == e.ep()) j->set_pinged();
return ret;
}
if ((int)rb.size() >= m_bucket_size)
{
// if the replacement bucket is full, remove the oldest entry
// but prefer nodes that haven't been pinged, since they are
// less reliable than this one, that has been pinged
j = std::find_if(rb.begin(), rb.end(), boost::bind(&node_entry::pinged, _1) == false);
if (j == rb.end()) j = rb.begin();
m_ips.erase(j->addr().to_v4().to_bytes());
rb.erase(j);
}
if (rb.empty()) rb.reserve(m_bucket_size);
rb.push_back(e);
m_ips.insert(e.addr().to_v4().to_bytes());
// TORRENT_LOG(table) << "inserting node in replacement cache: " << e.id << " " << e.addr();
return ret;
}
split_bucket();
// now insert the new node in the appropriate bucket
i = find_bucket(e.id);
int dst_bucket = std::distance(m_buckets.begin(), i);
bucket_t& nb = i->live_nodes;
bucket_t& nrb = i->replacements;
if (int(nb.size()) < bucket_limit(dst_bucket))
nb.push_back(e);
else if (int(nrb.size()) < m_bucket_size)
nrb.push_back(e);
m_ips.insert(e.addr().to_v4().to_bytes());
while (m_buckets.back().live_nodes.size() > bucket_limit(m_buckets.size()-1))
split_bucket();
return ret;
}
void routing_table::split_bucket()
{
INVARIANT_CHECK;
int bucket_index = m_buckets.size()-1;
int bucket_size_limit = bucket_limit(bucket_index);
TORRENT_ASSERT(m_buckets.back().live_nodes.size() >= bucket_size_limit);
// this is the last bucket, and it's full already. Split
// it by adding another bucket
m_buckets.push_back(routing_table_node());
// the extra seconds added to the end is to prioritize
// buckets closer to us when refreshing
m_buckets.back().last_active = min_time() + seconds(160 - m_buckets.size());
bucket_t& new_bucket = m_buckets.back().live_nodes;
bucket_t& new_replacement_bucket = m_buckets.back().replacements;
bucket_t& b = m_buckets[bucket_index].live_nodes;
bucket_t& rb = m_buckets[bucket_index].replacements;
// move any node whose (160 - distane_exp(m_id, id)) >= (i - m_buckets.begin())
// to the new bucket
int new_bucket_size = bucket_limit(bucket_index + 1);
for (bucket_t::iterator j = b.begin(); j != b.end();)
{
if (distance_exp(m_id, j->id) >= 159 - bucket_index)
{
++j;
continue;
}
// this entry belongs in the new bucket
new_bucket.push_back(*j);
j = b.erase(j);
}
// split the replacement bucket as well. If the live bucket
// is not full anymore, also move the replacement entries
// into the main bucket
for (bucket_t::iterator j = rb.begin(); j != rb.end();)
{
if (distance_exp(m_id, j->id) >= 159 - bucket_index)
{
if (int(b.size()) >= bucket_size_limit)
{
++j;
continue;
}
b.push_back(*j);
}
else
{
// this entry belongs in the new bucket
if (int(new_bucket.size()) < new_bucket_size)
new_bucket.push_back(*j);
else if (int(new_replacement_bucket.size()) < m_bucket_size)
new_replacement_bucket.push_back(*j);
}
j = rb.erase(j);
}
}
void routing_table::for_each_node(
void (*fun1)(void*, node_entry const&)
, void (*fun2)(void*, node_entry const&)
, void* userdata) const
{
for (table_t::const_iterator i = m_buckets.begin()
, end(m_buckets.end()); i != end; ++i)
{
if (fun1)
{
for (bucket_t::const_iterator j = i->live_nodes.begin()
, end(i->live_nodes.end()); j != end; ++j)
fun1(userdata, *j);
}
if (fun2)
{
for (bucket_t::const_iterator j = i->replacements.begin()
, end(i->replacements.end()); j != end; ++j)
fun2(userdata, *j);
}
}
}
void routing_table::node_failed(node_id const& id, udp::endpoint const& ep)
{
INVARIANT_CHECK;
// if messages to ourself fails, ignore it
if (id == m_id) return;
table_t::iterator i = find_bucket(id);
bucket_t& b = i->live_nodes;
bucket_t& rb = i->replacements;
bucket_t::iterator j = std::find_if(b.begin(), b.end()
, boost::bind(&node_entry::id, _1) == id);
if (j == b.end()) return;
// if the endpoint doesn't match, it's a different node
// claiming the same ID. The node we have in our routing
// table is not necessarily stale
if (j->ep() != ep) return;
if (rb.empty())
{
j->timed_out();
#ifdef TORRENT_DHT_VERBOSE_LOGGING
TORRENT_LOG(table) << " NODE FAILED"
" id: " << id <<
" ip: " << j->ep() <<
" fails: " << j->fail_count() <<
" pinged: " << j->pinged() <<
" up-time: " << total_seconds(time_now() - j->first_seen);
#endif
// if this node has failed too many times, or if this node
// has never responded at all, remove it
if (j->fail_count() >= m_settings.max_fail_count || !j->pinged())
{
m_ips.erase(j->addr().to_v4().to_bytes());
b.erase(j);
}
return;
}
m_ips.erase(j->addr().to_v4().to_bytes());
b.erase(j);
// sort by RTT first, to find the node with the lowest
// RTT that is pinged
std::sort(rb.begin(), rb.end()
, boost::bind(&node_entry::rtt, _1) < boost::bind(&node_entry::rtt, _2));
j = std::find_if(rb.begin(), rb.end(), boost::bind(&node_entry::pinged, _1));
if (j == rb.end()) j = rb.begin();
b.push_back(*j);
rb.erase(j);
}
void routing_table::add_router_node(udp::endpoint router)
{
m_router_nodes.insert(router);
}
// we heard from this node, but we don't know if it
// was spoofed or not (i.e. pinged == false)
void routing_table::heard_about(node_id const& id, udp::endpoint const& ep)
{
add_node(node_entry(id, ep));
}
// this function is called every time the node sees
// a sign of a node being alive. This node will either
// be inserted in the k-buckets or be moved to the top
// of its bucket.
// the return value indicates if the table needs a refresh.
// if true, the node should refresh the table (i.e. do a find_node
// on its own id)
bool routing_table::node_seen(node_id const& id, udp::endpoint ep, int rtt)
{
return add_node(node_entry(id, ep, rtt, true));
}
bool routing_table::need_bootstrap() const
{
ptime now = time_now();
if (now - m_last_bootstrap < seconds(30)) return false;
for (table_t::const_iterator i = m_buckets.begin()
, end(m_buckets.end()); i != end; ++i)
{
for (bucket_t::const_iterator j = i->live_nodes.begin()
, end(i->live_nodes.end()); j != end; ++j)
{
if (j->confirmed()) return false;
}
}
m_last_bootstrap = now;
return true;
}
// fills the vector with the k nodes from our buckets that
// are nearest to the given id.
void routing_table::find_node(node_id const& target
, std::vector<node_entry>& l, int options, int count)
{
l.clear();
if (count == 0) count = m_bucket_size;
table_t::iterator i = find_bucket(target);
int bucket_index = std::distance(m_buckets.begin(), i);
int bucket_size_limit = bucket_limit(bucket_index);
l.reserve(bucket_size_limit);
table_t::iterator j = i;
int unsorted_start_idx = 0;
for (; j != m_buckets.end() && int(l.size()) < count; ++j)
{
bucket_t& b = j->live_nodes;
if (options & include_failed)
{
copy(b.begin(), b.end()
, std::back_inserter(l));
}
else
{
std::remove_copy_if(b.begin(), b.end()
, std::back_inserter(l)
, !boost::bind(&node_entry::confirmed, _1));
}
if (int(l.size()) == count) return;
if (int(l.size()) > count)
{
// sort the nodes by how close they are to the target
std::sort(l.begin() + unsorted_start_idx, l.end(), boost::bind(&compare_ref
, boost::bind(&node_entry::id, _1)
, boost::bind(&node_entry::id, _2), target));
l.resize(count);
return;
}
unsorted_start_idx = int(l.size());
}
// if we still don't have enough nodes, copy nodes
// further away from us
if (i == m_buckets.begin())
return;
j = i;
unsorted_start_idx = int(l.size());
do
{
--j;
bucket_t& b = j->live_nodes;
if (options & include_failed)
{
std::copy(b.begin(), b.end(), std::back_inserter(l));
}
else
{
std::remove_copy_if(b.begin(), b.end(), std::back_inserter(l)
, !boost::bind(&node_entry::confirmed, _1));
}
if (int(l.size()) == count) return;
if (int(l.size()) > count)
{
// sort the nodes by how close they are to the target
std::sort(l.begin() + unsorted_start_idx, l.end(), boost::bind(&compare_ref
, boost::bind(&node_entry::id, _1)
, boost::bind(&node_entry::id, _2), target));
l.resize(count);
return;
}
unsorted_start_idx = int(l.size());
}
while (j != m_buckets.begin() && int(l.size()) < count);
TORRENT_ASSERT(int(l.size()) <= count);
}
#if defined TORRENT_DEBUG && !defined TORRENT_DISABLE_INVARIANT_CHECKS
void routing_table::check_invariant() const
{
std::multiset<address_v4::bytes_type> all_ips;
for (table_t::const_iterator i = m_buckets.begin()
, end(m_buckets.end()); i != end; ++i)
{
for (bucket_t::const_iterator j = i->replacements.begin();
j != i->replacements.end(); ++j)
{
all_ips.insert(j->addr().to_v4().to_bytes());
}
for (bucket_t::const_iterator j = i->live_nodes.begin();
j != i->live_nodes.end(); ++j)
{
all_ips.insert(j->addr().to_v4().to_bytes());
}
}
TORRENT_ASSERT(all_ips == m_ips);
}
#endif
} } // namespace libtorrent::dht