1161 lines
31 KiB
C++
1161 lines
31 KiB
C++
/*
|
|
|
|
Copyright (c) 2007, Arvid Norberg
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the distribution.
|
|
* Neither the name of the author nor the names of its
|
|
contributors may be used to endorse or promote products derived
|
|
from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
#include "libtorrent/storage.hpp"
|
|
#include <deque>
|
|
#include "libtorrent/disk_io_thread.hpp"
|
|
#include "libtorrent/disk_buffer_holder.hpp"
|
|
#include <boost/scoped_array.hpp>
|
|
|
|
#ifdef _WIN32
|
|
#include <malloc.h>
|
|
#ifndef alloca
|
|
#define alloca(s) _alloca(s)
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef TORRENT_DISK_STATS
|
|
#include "libtorrent/time.hpp"
|
|
#endif
|
|
|
|
namespace libtorrent
|
|
{
|
|
|
|
disk_io_thread::disk_io_thread(asio::io_service& ios, int block_size)
|
|
: m_abort(false)
|
|
, m_queue_buffer_size(0)
|
|
, m_cache_size(512) // 512 * 16kB = 8MB
|
|
, m_cache_expiry(60) // 1 minute
|
|
, m_coalesce_writes(true)
|
|
, m_coalesce_reads(true)
|
|
, m_use_read_cache(true)
|
|
#ifndef TORRENT_DISABLE_POOL_ALLOCATOR
|
|
, m_pool(block_size)
|
|
#endif
|
|
, m_block_size(block_size)
|
|
, m_ios(ios)
|
|
, m_disk_io_thread(boost::ref(*this))
|
|
{
|
|
#ifdef TORRENT_STATS
|
|
m_allocations = 0;
|
|
#endif
|
|
#ifdef TORRENT_DISK_STATS
|
|
m_log.open("disk_io_thread.log", std::ios::trunc);
|
|
#endif
|
|
}
|
|
|
|
disk_io_thread::~disk_io_thread()
|
|
{
|
|
TORRENT_ASSERT(m_abort == true);
|
|
}
|
|
|
|
void disk_io_thread::join()
|
|
{
|
|
mutex_t::scoped_lock l(m_queue_mutex);
|
|
disk_io_job j;
|
|
j.action = disk_io_job::abort_thread;
|
|
m_jobs.insert(m_jobs.begin(), j);
|
|
m_signal.notify_all();
|
|
l.unlock();
|
|
|
|
m_disk_io_thread.join();
|
|
}
|
|
|
|
void disk_io_thread::get_cache_info(sha1_hash const& ih, std::vector<cached_piece_info>& ret) const
|
|
{
|
|
mutex_t::scoped_lock l(m_piece_mutex);
|
|
ret.clear();
|
|
ret.reserve(m_pieces.size());
|
|
for (cache_t::const_iterator i = m_pieces.begin()
|
|
, end(m_pieces.end()); i != end; ++i)
|
|
{
|
|
torrent_info const& ti = *i->storage->info();
|
|
if (ti.info_hash() != ih) continue;
|
|
cached_piece_info info;
|
|
info.piece = i->piece;
|
|
info.last_use = i->last_use;
|
|
info.kind = cached_piece_info::write_cache;
|
|
int blocks_in_piece = (ti.piece_size(i->piece) + (m_block_size) - 1) / m_block_size;
|
|
info.blocks.resize(blocks_in_piece);
|
|
for (int b = 0; b < blocks_in_piece; ++b)
|
|
if (i->blocks[b]) info.blocks[b] = true;
|
|
ret.push_back(info);
|
|
}
|
|
for (cache_t::const_iterator i = m_read_pieces.begin()
|
|
, end(m_read_pieces.end()); i != end; ++i)
|
|
{
|
|
torrent_info const& ti = *i->storage->info();
|
|
if (ti.info_hash() != ih) continue;
|
|
cached_piece_info info;
|
|
info.piece = i->piece;
|
|
info.last_use = i->last_use;
|
|
info.kind = cached_piece_info::read_cache;
|
|
int blocks_in_piece = (ti.piece_size(i->piece) + (m_block_size) - 1) / m_block_size;
|
|
info.blocks.resize(blocks_in_piece);
|
|
for (int b = 0; b < blocks_in_piece; ++b)
|
|
if (i->blocks[b]) info.blocks[b] = true;
|
|
ret.push_back(info);
|
|
}
|
|
}
|
|
|
|
cache_status disk_io_thread::status() const
|
|
{
|
|
mutex_t::scoped_lock l(m_piece_mutex);
|
|
return m_cache_stats;
|
|
}
|
|
|
|
void disk_io_thread::set_cache_size(int s)
|
|
{
|
|
mutex_t::scoped_lock l(m_piece_mutex);
|
|
TORRENT_ASSERT(s >= 0);
|
|
m_cache_size = s;
|
|
}
|
|
|
|
void disk_io_thread::set_cache_expiry(int ex)
|
|
{
|
|
mutex_t::scoped_lock l(m_piece_mutex);
|
|
TORRENT_ASSERT(ex > 0);
|
|
m_cache_expiry = ex;
|
|
}
|
|
|
|
// aborts read operations
|
|
void disk_io_thread::stop(boost::intrusive_ptr<piece_manager> s)
|
|
{
|
|
mutex_t::scoped_lock l(m_queue_mutex);
|
|
// read jobs are aborted, write and move jobs are syncronized
|
|
for (std::list<disk_io_job>::iterator i = m_jobs.begin();
|
|
i != m_jobs.end();)
|
|
{
|
|
if (i->storage != s)
|
|
{
|
|
++i;
|
|
continue;
|
|
}
|
|
if (i->action == disk_io_job::read)
|
|
{
|
|
if (i->callback) m_ios.post(bind(i->callback, -1, *i));
|
|
m_jobs.erase(i++);
|
|
continue;
|
|
}
|
|
if (i->action == disk_io_job::check_files)
|
|
{
|
|
if (i->callback) m_ios.post(bind(i->callback
|
|
, piece_manager::disk_check_aborted, *i));
|
|
m_jobs.erase(i++);
|
|
continue;
|
|
}
|
|
++i;
|
|
}
|
|
m_signal.notify_all();
|
|
}
|
|
|
|
bool range_overlap(int start1, int length1, int start2, int length2)
|
|
{
|
|
return (start1 <= start2 && start1 + length1 > start2)
|
|
|| (start2 <= start1 && start2 + length2 > start1);
|
|
}
|
|
|
|
namespace
|
|
{
|
|
// The semantic of this operator is:
|
|
// should lhs come before rhs in the job queue
|
|
bool operator<(disk_io_job const& lhs, disk_io_job const& rhs)
|
|
{
|
|
// NOTE: comparison inverted to make higher priority
|
|
// skip _in_front_of_ lower priority
|
|
if (lhs.priority > rhs.priority) return true;
|
|
if (lhs.priority < rhs.priority) return false;
|
|
|
|
if (lhs.storage.get() < rhs.storage.get()) return true;
|
|
if (lhs.storage.get() > rhs.storage.get()) return false;
|
|
if (lhs.piece < rhs.piece) return true;
|
|
if (lhs.piece > rhs.piece) return false;
|
|
if (lhs.offset < rhs.offset) return true;
|
|
// if (lhs.offset > rhs.offset) return false;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
disk_io_thread::cache_t::iterator disk_io_thread::find_cached_piece(
|
|
disk_io_thread::cache_t& cache
|
|
, disk_io_job const& j, mutex_t::scoped_lock& l)
|
|
{
|
|
for (cache_t::iterator i = cache.begin()
|
|
, end(cache.end()); i != end; ++i)
|
|
{
|
|
if (i->storage != j.storage || i->piece != j.piece) continue;
|
|
return i;
|
|
}
|
|
return cache.end();
|
|
}
|
|
|
|
void disk_io_thread::flush_expired_pieces()
|
|
{
|
|
ptime now = time_now();
|
|
|
|
mutex_t::scoped_lock l(m_piece_mutex);
|
|
|
|
INVARIANT_CHECK;
|
|
for (;;)
|
|
{
|
|
cache_t::iterator i = std::min_element(
|
|
m_pieces.begin(), m_pieces.end()
|
|
, bind(&cached_piece_entry::last_use, _1)
|
|
< bind(&cached_piece_entry::last_use, _2));
|
|
if (i == m_pieces.end()) return;
|
|
int age = total_seconds(now - i->last_use);
|
|
if (age < m_cache_expiry) return;
|
|
flush_and_remove(i, l);
|
|
}
|
|
}
|
|
|
|
void disk_io_thread::free_piece(cached_piece_entry& p, mutex_t::scoped_lock& l)
|
|
{
|
|
int piece_size = p.storage->info()->piece_size(p.piece);
|
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
|
|
|
|
for (int i = 0; i < blocks_in_piece; ++i)
|
|
{
|
|
if (p.blocks[i] == 0) continue;
|
|
free_buffer(p.blocks[i]);
|
|
p.blocks[i] = 0;
|
|
--p.num_blocks;
|
|
--m_cache_stats.cache_size;
|
|
--m_cache_stats.read_cache_size;
|
|
}
|
|
}
|
|
|
|
bool disk_io_thread::clear_oldest_read_piece(
|
|
cache_t::iterator ignore
|
|
, mutex_t::scoped_lock& l)
|
|
{
|
|
INVARIANT_CHECK;
|
|
|
|
cache_t::iterator i = std::min_element(
|
|
m_read_pieces.begin(), m_read_pieces.end()
|
|
, bind(&cached_piece_entry::last_use, _1)
|
|
< bind(&cached_piece_entry::last_use, _2));
|
|
if (i != m_read_pieces.end() && i != ignore)
|
|
{
|
|
// don't replace an entry that is less than one second old
|
|
if (time_now() - i->last_use < seconds(1)) return false;
|
|
free_piece(*i, l);
|
|
m_read_pieces.erase(i);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void disk_io_thread::flush_oldest_piece(mutex_t::scoped_lock& l)
|
|
{
|
|
INVARIANT_CHECK;
|
|
// first look if there are any read cache entries that can
|
|
// be cleared
|
|
if (clear_oldest_read_piece(m_read_pieces.end(), l)) return;
|
|
|
|
cache_t::iterator i = std::min_element(
|
|
m_pieces.begin(), m_pieces.end()
|
|
, bind(&cached_piece_entry::last_use, _1)
|
|
< bind(&cached_piece_entry::last_use, _2));
|
|
if (i == m_pieces.end()) return;
|
|
flush_and_remove(i, l);
|
|
}
|
|
|
|
void disk_io_thread::flush_and_remove(disk_io_thread::cache_t::iterator e
|
|
, mutex_t::scoped_lock& l)
|
|
{
|
|
flush(e, l);
|
|
m_pieces.erase(e);
|
|
}
|
|
|
|
void disk_io_thread::flush(disk_io_thread::cache_t::iterator e
|
|
, mutex_t::scoped_lock& l)
|
|
{
|
|
INVARIANT_CHECK;
|
|
cached_piece_entry& p = *e;
|
|
int piece_size = p.storage->info()->piece_size(p.piece);
|
|
#ifdef TORRENT_DISK_STATS
|
|
m_log << log_time() << " flushing " << piece_size << std::endl;
|
|
#endif
|
|
TORRENT_ASSERT(piece_size > 0);
|
|
boost::scoped_array<char> buf;
|
|
if (m_coalesce_writes) buf.reset(new (std::nothrow) char[piece_size]);
|
|
|
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
|
|
int buffer_size = 0;
|
|
int offset = 0;
|
|
for (int i = 0; i <= blocks_in_piece; ++i)
|
|
{
|
|
if (i == blocks_in_piece || p.blocks[i] == 0)
|
|
{
|
|
if (buffer_size == 0) continue;
|
|
TORRENT_ASSERT(buf);
|
|
|
|
TORRENT_ASSERT(buffer_size <= i * m_block_size);
|
|
l.unlock();
|
|
p.storage->write_impl(buf.get(), p.piece, (std::min)(
|
|
i * m_block_size, piece_size) - buffer_size, buffer_size);
|
|
l.lock();
|
|
++m_cache_stats.writes;
|
|
// std::cerr << " flushing p: " << p.piece << " bytes: " << buffer_size << std::endl;
|
|
buffer_size = 0;
|
|
offset = 0;
|
|
continue;
|
|
}
|
|
int block_size = (std::min)(piece_size - i * m_block_size, m_block_size);
|
|
TORRENT_ASSERT(offset + block_size <= piece_size);
|
|
TORRENT_ASSERT(offset + block_size > 0);
|
|
if (!buf)
|
|
{
|
|
l.unlock();
|
|
p.storage->write_impl(p.blocks[i], p.piece, i * m_block_size, block_size);
|
|
l.lock();
|
|
++m_cache_stats.writes;
|
|
}
|
|
else
|
|
{
|
|
std::memcpy(buf.get() + offset, p.blocks[i], block_size);
|
|
offset += m_block_size;
|
|
buffer_size += block_size;
|
|
}
|
|
free_buffer(p.blocks[i]);
|
|
p.blocks[i] = 0;
|
|
TORRENT_ASSERT(p.num_blocks > 0);
|
|
--p.num_blocks;
|
|
++m_cache_stats.blocks_written;
|
|
--m_cache_stats.cache_size;
|
|
}
|
|
TORRENT_ASSERT(buffer_size == 0);
|
|
// std::cerr << " flushing p: " << p.piece << " cached_blocks: " << m_cache_stats.cache_size << std::endl;
|
|
#ifndef NDEBUG
|
|
for (int i = 0; i < blocks_in_piece; ++i)
|
|
TORRENT_ASSERT(p.blocks[i] == 0);
|
|
#endif
|
|
}
|
|
|
|
void disk_io_thread::cache_block(disk_io_job& j, mutex_t::scoped_lock& l)
|
|
{
|
|
INVARIANT_CHECK;
|
|
TORRENT_ASSERT(find_cached_piece(m_pieces, j, l) == m_pieces.end());
|
|
cached_piece_entry p;
|
|
|
|
int piece_size = j.storage->info()->piece_size(j.piece);
|
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
|
|
|
|
p.piece = j.piece;
|
|
p.storage = j.storage;
|
|
p.last_use = time_now();
|
|
p.num_blocks = 1;
|
|
p.blocks.reset(new char*[blocks_in_piece]);
|
|
std::memset(&p.blocks[0], 0, blocks_in_piece * sizeof(char*));
|
|
int block = j.offset / m_block_size;
|
|
// std::cerr << " adding cache entry for p: " << j.piece << " block: " << block << " cached_blocks: " << m_cache_stats.cache_size << std::endl;
|
|
p.blocks[block] = j.buffer;
|
|
++m_cache_stats.cache_size;
|
|
m_pieces.push_back(p);
|
|
}
|
|
|
|
// fills a piece with data from disk, returns the total number of bytes
|
|
// read or -1 if there was an error
|
|
int disk_io_thread::read_into_piece(cached_piece_entry& p, int start_block, mutex_t::scoped_lock& l)
|
|
{
|
|
int piece_size = p.storage->info()->piece_size(p.piece);
|
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
|
|
|
|
int end_block = start_block;
|
|
for (int i = start_block; i < blocks_in_piece
|
|
&& m_cache_stats.cache_size < m_cache_size; ++i)
|
|
{
|
|
// this is a block that is already allocated
|
|
// stop allocating and don't read more than
|
|
// what we've allocated now
|
|
if (p.blocks[i]) break;
|
|
p.blocks[i] = allocate_buffer();
|
|
|
|
// the allocation failed, break
|
|
if (p.blocks[i] == 0) break;
|
|
++p.num_blocks;
|
|
++m_cache_stats.cache_size;
|
|
++m_cache_stats.read_cache_size;
|
|
++end_block;
|
|
}
|
|
|
|
if (end_block == start_block) return -2;
|
|
|
|
int buffer_size = piece_size - (end_block - 1) * m_block_size + (end_block - start_block - 1) * m_block_size;
|
|
TORRENT_ASSERT(buffer_size <= piece_size);
|
|
TORRENT_ASSERT(buffer_size + start_block * m_block_size <= piece_size);
|
|
boost::scoped_array<char> buf;
|
|
if (m_coalesce_reads) buf.reset(new (std::nothrow) char[buffer_size]);
|
|
int ret = 0;
|
|
if (buf)
|
|
{
|
|
l.unlock();
|
|
ret += p.storage->read_impl(buf.get(), p.piece, start_block * m_block_size, buffer_size);
|
|
l.lock();
|
|
if (p.storage->error()) { return -1; }
|
|
++m_cache_stats.reads;
|
|
}
|
|
|
|
int piece_offset = start_block * m_block_size;
|
|
int offset = 0;
|
|
for (int i = start_block; i < end_block; ++i)
|
|
{
|
|
int block_size = (std::min)(piece_size - piece_offset, m_block_size);
|
|
if (p.blocks[i] == 0) break;
|
|
TORRENT_ASSERT(offset <= buffer_size);
|
|
TORRENT_ASSERT(piece_offset <= piece_size);
|
|
if (buf)
|
|
{
|
|
std::memcpy(p.blocks[i], buf.get() + offset, block_size);
|
|
}
|
|
else
|
|
{
|
|
l.unlock();
|
|
ret += p.storage->read_impl(p.blocks[i], p.piece, piece_offset, block_size);
|
|
if (!p.storage->error()) { return -1; }
|
|
l.lock();
|
|
++m_cache_stats.reads;
|
|
}
|
|
offset += m_block_size;
|
|
piece_offset += m_block_size;
|
|
}
|
|
TORRENT_ASSERT(ret <= buffer_size);
|
|
return (ret != buffer_size) ? -1 : ret;
|
|
}
|
|
|
|
bool disk_io_thread::make_room(int num_blocks
|
|
, cache_t::iterator ignore
|
|
, mutex_t::scoped_lock& l)
|
|
{
|
|
if (m_cache_size - m_cache_stats.cache_size < num_blocks)
|
|
{
|
|
// there's not enough room in the cache, clear a piece
|
|
// from the read cache
|
|
if (!clear_oldest_read_piece(ignore, l)) return false;
|
|
}
|
|
|
|
return m_cache_size - m_cache_stats.cache_size >= num_blocks;
|
|
}
|
|
|
|
// returns -1 on read error, -2 if there isn't any space in the cache
|
|
// or the number of bytes read
|
|
int disk_io_thread::cache_read_block(disk_io_job const& j, mutex_t::scoped_lock& l)
|
|
{
|
|
INVARIANT_CHECK;
|
|
|
|
int piece_size = j.storage->info()->piece_size(j.piece);
|
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
|
|
|
|
int start_block = j.offset / m_block_size;
|
|
|
|
if (!make_room(blocks_in_piece - start_block
|
|
, m_read_pieces.end(), l)) return -2;
|
|
|
|
cached_piece_entry p;
|
|
p.piece = j.piece;
|
|
p.storage = j.storage;
|
|
p.last_use = time_now();
|
|
p.num_blocks = 0;
|
|
p.blocks.reset(new char*[blocks_in_piece]);
|
|
std::memset(&p.blocks[0], 0, blocks_in_piece * sizeof(char*));
|
|
int ret = read_into_piece(p, start_block, l);
|
|
|
|
if (ret == -1)
|
|
free_piece(p, l);
|
|
else
|
|
m_read_pieces.push_back(p);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void disk_io_thread::check_invariant() const
|
|
{
|
|
int cached_write_blocks = 0;
|
|
for (cache_t::const_iterator i = m_pieces.begin()
|
|
, end(m_pieces.end()); i != end; ++i)
|
|
{
|
|
cached_piece_entry const& p = *i;
|
|
TORRENT_ASSERT(p.blocks);
|
|
|
|
if (!p.storage) continue;
|
|
int piece_size = p.storage->info()->piece_size(p.piece);
|
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
|
|
int blocks = 0;
|
|
for (int k = 0; k < blocks_in_piece; ++k)
|
|
{
|
|
if (p.blocks[k])
|
|
{
|
|
#ifndef TORRENT_DISABLE_POOL_ALLOCATOR
|
|
TORRENT_ASSERT(is_disk_buffer(p.blocks[k]));
|
|
#endif
|
|
++blocks;
|
|
}
|
|
}
|
|
// TORRENT_ASSERT(blocks == p.num_blocks);
|
|
cached_write_blocks += blocks;
|
|
}
|
|
|
|
int cached_read_blocks = 0;
|
|
for (cache_t::const_iterator i = m_read_pieces.begin()
|
|
, end(m_read_pieces.end()); i != end; ++i)
|
|
{
|
|
cached_piece_entry const& p = *i;
|
|
TORRENT_ASSERT(p.blocks);
|
|
|
|
int piece_size = p.storage->info()->piece_size(p.piece);
|
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
|
|
int blocks = 0;
|
|
for (int k = 0; k < blocks_in_piece; ++k)
|
|
{
|
|
if (p.blocks[k])
|
|
{
|
|
#ifndef TORRENT_DISABLE_POOL_ALLOCATOR
|
|
TORRENT_ASSERT(is_disk_buffer(p.blocks[k]));
|
|
#endif
|
|
++blocks;
|
|
}
|
|
}
|
|
// TORRENT_ASSERT(blocks == p.num_blocks);
|
|
cached_read_blocks += blocks;
|
|
}
|
|
|
|
TORRENT_ASSERT(cached_read_blocks + cached_write_blocks == m_cache_stats.cache_size);
|
|
TORRENT_ASSERT(cached_read_blocks == m_cache_stats.read_cache_size);
|
|
|
|
// when writing, there may be a one block difference, right before an old piece
|
|
// is flushed
|
|
TORRENT_ASSERT(m_cache_stats.cache_size <= m_cache_size + 1);
|
|
}
|
|
#endif
|
|
|
|
int disk_io_thread::try_read_from_cache(disk_io_job const& j)
|
|
{
|
|
TORRENT_ASSERT(j.buffer);
|
|
|
|
mutex_t::scoped_lock l(m_piece_mutex);
|
|
if (!m_use_read_cache) return -2;
|
|
|
|
cache_t::iterator p
|
|
= find_cached_piece(m_read_pieces, j, l);
|
|
|
|
bool hit = true;
|
|
int ret = 0;
|
|
|
|
// if the piece cannot be found in the cache,
|
|
// read the whole piece starting at the block
|
|
// we got a request for.
|
|
if (p == m_read_pieces.end())
|
|
{
|
|
ret = cache_read_block(j, l);
|
|
hit = false;
|
|
if (ret < 0) return ret;
|
|
p = m_read_pieces.end();
|
|
--p;
|
|
TORRENT_ASSERT(!m_read_pieces.empty());
|
|
TORRENT_ASSERT(p->piece == j.piece);
|
|
TORRENT_ASSERT(p->storage == j.storage);
|
|
}
|
|
|
|
if (p != m_read_pieces.end())
|
|
{
|
|
// copy from the cache and update the last use timestamp
|
|
int block = j.offset / m_block_size;
|
|
int block_offset = j.offset % m_block_size;
|
|
int buffer_offset = 0;
|
|
int size = j.buffer_size;
|
|
if (p->blocks[block] == 0)
|
|
{
|
|
int piece_size = j.storage->info()->piece_size(j.piece);
|
|
int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size;
|
|
int end_block = block;
|
|
while (end_block < blocks_in_piece && p->blocks[end_block] == 0) ++end_block;
|
|
if (!make_room(end_block - block, p, l)) return -2;
|
|
ret = read_into_piece(*p, block, l);
|
|
hit = false;
|
|
if (ret < 0) return ret;
|
|
TORRENT_ASSERT(p->blocks[block]);
|
|
}
|
|
|
|
p->last_use = time_now();
|
|
while (size > 0)
|
|
{
|
|
TORRENT_ASSERT(p->blocks[block]);
|
|
int to_copy = (std::min)(m_block_size
|
|
- block_offset, size);
|
|
std::memcpy(j.buffer + buffer_offset
|
|
, p->blocks[block] + block_offset
|
|
, to_copy);
|
|
size -= to_copy;
|
|
block_offset = 0;
|
|
buffer_offset += to_copy;
|
|
++block;
|
|
}
|
|
ret = j.buffer_size;
|
|
++m_cache_stats.blocks_read;
|
|
if (hit) ++m_cache_stats.blocks_read_hit;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void disk_io_thread::add_job(disk_io_job const& j
|
|
, boost::function<void(int, disk_io_job const&)> const& f)
|
|
{
|
|
TORRENT_ASSERT(!j.callback);
|
|
TORRENT_ASSERT(j.storage);
|
|
TORRENT_ASSERT(j.buffer_size <= m_block_size);
|
|
mutex_t::scoped_lock l(m_queue_mutex);
|
|
|
|
std::list<disk_io_job>::reverse_iterator i = m_jobs.rbegin();
|
|
if (j.action == disk_io_job::read)
|
|
{
|
|
// when we're reading, we may not skip
|
|
// ahead of any write operation that overlaps
|
|
// the region we're reading
|
|
for (; i != m_jobs.rend(); i++)
|
|
{
|
|
// if *i should come before j, stop
|
|
// and insert j before i
|
|
if (*i < j) break;
|
|
// if we come across a write operation that
|
|
// overlaps the region we're reading, we need
|
|
// to stop
|
|
if (i->action == disk_io_job::write
|
|
&& i->storage == j.storage
|
|
&& i->piece == j.piece
|
|
&& range_overlap(i->offset, i->buffer_size
|
|
, j.offset, j.buffer_size))
|
|
break;
|
|
}
|
|
}
|
|
else if (j.action == disk_io_job::write)
|
|
{
|
|
for (; i != m_jobs.rend(); ++i)
|
|
{
|
|
if (*i < j)
|
|
{
|
|
if (i != m_jobs.rbegin()
|
|
&& i.base()->storage.get() != j.storage.get())
|
|
i = m_jobs.rbegin();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// if we are placed in front of all other jobs, put it on the back of
|
|
// the queue, to sweep the disk in the same direction, and to avoid
|
|
// starvation. The exception is if the priority is higher than the
|
|
// job at the front of the queue
|
|
if (i == m_jobs.rend() && (m_jobs.empty() || j.priority <= m_jobs.back().priority))
|
|
i = m_jobs.rbegin();
|
|
|
|
std::list<disk_io_job>::iterator k = m_jobs.insert(i.base(), j);
|
|
k->callback.swap(const_cast<boost::function<void(int, disk_io_job const&)>&>(f));
|
|
if (j.action == disk_io_job::write)
|
|
m_queue_buffer_size += j.buffer_size;
|
|
TORRENT_ASSERT(j.storage.get());
|
|
m_signal.notify_all();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
bool disk_io_thread::is_disk_buffer(char* buffer) const
|
|
{
|
|
#ifdef TORRENT_DISABLE_POOL_ALLOCATOR
|
|
return true;
|
|
#else
|
|
mutex_t::scoped_lock l(m_pool_mutex);
|
|
return m_pool.is_from(buffer);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
char* disk_io_thread::allocate_buffer()
|
|
{
|
|
mutex_t::scoped_lock l(m_pool_mutex);
|
|
#ifdef TORRENT_STATS
|
|
++m_allocations;
|
|
#endif
|
|
#ifdef TORRENT_DISABLE_POOL_ALLOCATOR
|
|
return (char*)malloc(m_block_size);
|
|
#else
|
|
return (char*)m_pool.ordered_malloc();
|
|
#endif
|
|
}
|
|
|
|
void disk_io_thread::free_buffer(char* buf)
|
|
{
|
|
mutex_t::scoped_lock l(m_pool_mutex);
|
|
#ifdef TORRENT_STATS
|
|
--m_allocations;
|
|
#endif
|
|
#ifdef TORRENT_DISABLE_POOL_ALLOCATOR
|
|
free(buf);
|
|
#else
|
|
m_pool.ordered_free(buf);
|
|
#endif
|
|
}
|
|
|
|
bool disk_io_thread::test_error(disk_io_job& j)
|
|
{
|
|
error_code const& ec = j.storage->error();
|
|
if (ec)
|
|
{
|
|
j.str = ec.message();
|
|
j.error = ec;
|
|
j.error_file = j.storage->error_file();
|
|
j.storage->clear_error();
|
|
#ifndef NDEBUG
|
|
std::cout << "ERROR: '" << j.str << "' " << j.error_file << std::endl;
|
|
#endif
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void disk_io_thread::operator()()
|
|
{
|
|
for (;;)
|
|
{
|
|
#ifdef TORRENT_DISK_STATS
|
|
m_log << log_time() << " idle" << std::endl;
|
|
#endif
|
|
mutex_t::scoped_lock jl(m_queue_mutex);
|
|
|
|
while (m_jobs.empty() && !m_abort)
|
|
m_signal.wait(jl);
|
|
if (m_abort && m_jobs.empty())
|
|
{
|
|
jl.unlock();
|
|
|
|
mutex_t::scoped_lock l(m_piece_mutex);
|
|
// flush all disk caches
|
|
for (cache_t::iterator i = m_pieces.begin()
|
|
, end(m_pieces.end()); i != end; ++i)
|
|
flush(i, l);
|
|
for (cache_t::iterator i = m_read_pieces.begin()
|
|
, end(m_read_pieces.end()); i != end; ++i)
|
|
free_piece(*i, l);
|
|
m_pieces.clear();
|
|
m_read_pieces.clear();
|
|
return;
|
|
}
|
|
|
|
// if there's a buffer in this job, it will be freed
|
|
// when this holder is destructed, unless it has been
|
|
// released.
|
|
disk_buffer_holder holder(*this
|
|
, m_jobs.front().action != disk_io_job::check_fastresume
|
|
? m_jobs.front().buffer : 0);
|
|
|
|
boost::function<void(int, disk_io_job const&)> handler;
|
|
handler.swap(m_jobs.front().callback);
|
|
|
|
disk_io_job j = m_jobs.front();
|
|
m_jobs.pop_front();
|
|
m_queue_buffer_size -= j.buffer_size;
|
|
jl.unlock();
|
|
|
|
flush_expired_pieces();
|
|
|
|
int ret = 0;
|
|
|
|
TORRENT_ASSERT(j.storage || j.action == disk_io_job::abort_thread);
|
|
#ifdef TORRENT_DISK_STATS
|
|
ptime start = time_now();
|
|
#endif
|
|
#ifndef BOOST_NO_EXCEPTIONS
|
|
try {
|
|
#endif
|
|
|
|
switch (j.action)
|
|
{
|
|
case disk_io_job::abort_thread:
|
|
{
|
|
mutex_t::scoped_lock jl(m_queue_mutex);
|
|
m_abort = true;
|
|
|
|
for (std::list<disk_io_job>::iterator i = m_jobs.begin();
|
|
i != m_jobs.end();)
|
|
{
|
|
if (i->action == disk_io_job::read)
|
|
{
|
|
if (i->callback) m_ios.post(bind(i->callback, -1, *i));
|
|
m_jobs.erase(i++);
|
|
continue;
|
|
}
|
|
if (i->action == disk_io_job::check_files)
|
|
{
|
|
if (i->callback) m_ios.post(bind(i->callback
|
|
, piece_manager::disk_check_aborted, *i));
|
|
m_jobs.erase(i++);
|
|
continue;
|
|
}
|
|
++i;
|
|
}
|
|
break;
|
|
}
|
|
case disk_io_job::read:
|
|
{
|
|
if (test_error(j))
|
|
{
|
|
ret = -1;
|
|
return;
|
|
}
|
|
#ifdef TORRENT_DISK_STATS
|
|
m_log << log_time() << " read " << j.buffer_size << std::endl;
|
|
#endif
|
|
INVARIANT_CHECK;
|
|
TORRENT_ASSERT(j.buffer == 0);
|
|
j.buffer = allocate_buffer();
|
|
TORRENT_ASSERT(j.buffer_size <= m_block_size);
|
|
if (j.buffer == 0)
|
|
{
|
|
ret = -1;
|
|
j.error = error_code(ENOMEM, get_posix_category());
|
|
j.str = j.error.message();
|
|
break;
|
|
}
|
|
|
|
disk_buffer_holder read_holder(*this, j.buffer);
|
|
ret = try_read_from_cache(j);
|
|
|
|
// -2 means there's no space in the read cache
|
|
// or that the read cache is disabled
|
|
if (ret == -1)
|
|
{
|
|
j.buffer = 0;
|
|
test_error(j);
|
|
break;
|
|
}
|
|
else if (ret == -2)
|
|
{
|
|
ret = j.storage->read_impl(j.buffer, j.piece, j.offset
|
|
, j.buffer_size);
|
|
if (ret < 0)
|
|
{
|
|
test_error(j);
|
|
break;
|
|
}
|
|
++m_cache_stats.blocks_read;
|
|
}
|
|
read_holder.release();
|
|
break;
|
|
}
|
|
case disk_io_job::write:
|
|
{
|
|
if (test_error(j))
|
|
{
|
|
ret = -1;
|
|
break;
|
|
}
|
|
#ifdef TORRENT_DISK_STATS
|
|
m_log << log_time() << " write " << j.buffer_size << std::endl;
|
|
#endif
|
|
mutex_t::scoped_lock l(m_piece_mutex);
|
|
INVARIANT_CHECK;
|
|
cache_t::iterator p
|
|
= find_cached_piece(m_pieces, j, l);
|
|
int block = j.offset / m_block_size;
|
|
TORRENT_ASSERT(j.buffer);
|
|
TORRENT_ASSERT(j.buffer_size <= m_block_size);
|
|
if (p != m_pieces.end())
|
|
{
|
|
TORRENT_ASSERT(p->blocks[block] == 0);
|
|
if (p->blocks[block])
|
|
{
|
|
free_buffer(p->blocks[block]);
|
|
--p->num_blocks;
|
|
}
|
|
p->blocks[block] = j.buffer;
|
|
++m_cache_stats.cache_size;
|
|
++p->num_blocks;
|
|
p->last_use = time_now();
|
|
}
|
|
else
|
|
{
|
|
cache_block(j, l);
|
|
}
|
|
// we've now inserted the buffer
|
|
// in the cache, we should not
|
|
// free it at the end
|
|
holder.release();
|
|
if (m_cache_stats.cache_size >= m_cache_size)
|
|
flush_oldest_piece(l);
|
|
break;
|
|
}
|
|
case disk_io_job::hash:
|
|
{
|
|
#ifdef TORRENT_DISK_STATS
|
|
m_log << log_time() << " hash" << std::endl;
|
|
#endif
|
|
mutex_t::scoped_lock l(m_piece_mutex);
|
|
INVARIANT_CHECK;
|
|
|
|
cache_t::iterator i
|
|
= find_cached_piece(m_pieces, j, l);
|
|
if (i != m_pieces.end())
|
|
{
|
|
flush_and_remove(i, l);
|
|
if (test_error(j))
|
|
{
|
|
ret = -1;
|
|
j.storage->mark_failed(j.piece);
|
|
break;
|
|
}
|
|
}
|
|
l.unlock();
|
|
sha1_hash h = j.storage->hash_for_piece_impl(j.piece);
|
|
if (test_error(j))
|
|
{
|
|
ret = -1;
|
|
j.storage->mark_failed(j.piece);
|
|
break;
|
|
}
|
|
ret = (j.storage->info()->hash_for_piece(j.piece) == h)?0:-2;
|
|
if (ret == -2) j.storage->mark_failed(j.piece);
|
|
break;
|
|
}
|
|
case disk_io_job::move_storage:
|
|
{
|
|
#ifdef TORRENT_DISK_STATS
|
|
m_log << log_time() << " move" << std::endl;
|
|
#endif
|
|
TORRENT_ASSERT(j.buffer == 0);
|
|
ret = j.storage->move_storage_impl(j.str) ? 1 : 0;
|
|
if (ret != 0)
|
|
{
|
|
test_error(j);
|
|
break;
|
|
}
|
|
j.str = j.storage->save_path().string();
|
|
break;
|
|
}
|
|
case disk_io_job::release_files:
|
|
{
|
|
#ifdef TORRENT_DISK_STATS
|
|
m_log << log_time() << " release" << std::endl;
|
|
#endif
|
|
TORRENT_ASSERT(j.buffer == 0);
|
|
|
|
mutex_t::scoped_lock l(m_piece_mutex);
|
|
INVARIANT_CHECK;
|
|
|
|
for (cache_t::iterator i = m_pieces.begin(); i != m_pieces.end();)
|
|
{
|
|
if (i->storage == j.storage)
|
|
{
|
|
flush(i, l);
|
|
i = m_pieces.erase(i);
|
|
}
|
|
else
|
|
{
|
|
++i;
|
|
}
|
|
}
|
|
l.unlock();
|
|
#ifndef TORRENT_DISABLE_POOL_ALLOCATOR
|
|
{
|
|
mutex_t::scoped_lock l(m_pool_mutex);
|
|
m_pool.release_memory();
|
|
}
|
|
#endif
|
|
ret = j.storage->release_files_impl();
|
|
if (ret != 0) test_error(j);
|
|
break;
|
|
}
|
|
case disk_io_job::clear_read_cache:
|
|
{
|
|
#ifdef TORRENT_DISK_STATS
|
|
m_log << log_time() << " clear-cache" << std::endl;
|
|
#endif
|
|
TORRENT_ASSERT(j.buffer == 0);
|
|
|
|
mutex_t::scoped_lock l(m_piece_mutex);
|
|
INVARIANT_CHECK;
|
|
|
|
for (cache_t::iterator i = m_read_pieces.begin();
|
|
i != m_read_pieces.end();)
|
|
{
|
|
if (i->storage == j.storage)
|
|
{
|
|
free_piece(*i, l);
|
|
i = m_read_pieces.erase(i);
|
|
}
|
|
else
|
|
{
|
|
++i;
|
|
}
|
|
}
|
|
l.unlock();
|
|
#ifndef TORRENT_DISABLE_POOL_ALLOCATOR
|
|
{
|
|
mutex_t::scoped_lock l(m_pool_mutex);
|
|
m_pool.release_memory();
|
|
}
|
|
#endif
|
|
ret = 0;
|
|
break;
|
|
}
|
|
case disk_io_job::delete_files:
|
|
{
|
|
#ifdef TORRENT_DISK_STATS
|
|
m_log << log_time() << " delete" << std::endl;
|
|
#endif
|
|
TORRENT_ASSERT(j.buffer == 0);
|
|
|
|
mutex_t::scoped_lock l(m_piece_mutex);
|
|
INVARIANT_CHECK;
|
|
|
|
cache_t::iterator i = std::remove_if(
|
|
m_pieces.begin(), m_pieces.end(), bind(&cached_piece_entry::storage, _1) == j.storage);
|
|
|
|
for (cache_t::iterator k = i; k != m_pieces.end(); ++k)
|
|
{
|
|
torrent_info const& ti = *k->storage->info();
|
|
int blocks_in_piece = (ti.piece_size(k->piece) + m_block_size - 1) / m_block_size;
|
|
for (int j = 0; j < blocks_in_piece; ++j)
|
|
{
|
|
if (k->blocks[j] == 0) continue;
|
|
free_buffer(k->blocks[j]);
|
|
k->blocks[j] = 0;
|
|
--m_cache_stats.cache_size;
|
|
}
|
|
}
|
|
m_pieces.erase(i, m_pieces.end());
|
|
l.unlock();
|
|
#ifndef TORRENT_DISABLE_POOL_ALLOCATOR
|
|
{
|
|
mutex_t::scoped_lock l(m_pool_mutex);
|
|
m_pool.release_memory();
|
|
}
|
|
#endif
|
|
ret = j.storage->delete_files_impl();
|
|
if (ret != 0) test_error(j);
|
|
break;
|
|
}
|
|
case disk_io_job::check_fastresume:
|
|
{
|
|
#ifdef TORRENT_DISK_STATS
|
|
m_log << log_time() << " check fastresume" << std::endl;
|
|
#endif
|
|
lazy_entry const* rd = (lazy_entry const*)j.buffer;
|
|
TORRENT_ASSERT(rd != 0);
|
|
ret = j.storage->check_fastresume(*rd, j.str);
|
|
break;
|
|
}
|
|
case disk_io_job::check_files:
|
|
{
|
|
#ifdef TORRENT_DISK_STATS
|
|
m_log << log_time() << " check files" << std::endl;
|
|
#endif
|
|
int piece_size = j.storage->info()->piece_length();
|
|
for (int processed = 0; processed < 4 * 1024 * 1024; processed += piece_size)
|
|
{
|
|
ret = j.storage->check_files(j.piece, j.offset, j.str);
|
|
|
|
#ifndef BOOST_NO_EXCEPTIONS
|
|
try {
|
|
#endif
|
|
TORRENT_ASSERT(handler);
|
|
if (handler && ret == piece_manager::need_full_check)
|
|
m_ios.post(bind(handler, ret, j));
|
|
#ifndef BOOST_NO_EXCEPTIONS
|
|
} catch (std::exception&) {}
|
|
#endif
|
|
if (ret != piece_manager::need_full_check) break;
|
|
}
|
|
if (test_error(j))
|
|
{
|
|
ret = piece_manager::fatal_disk_error;
|
|
break;
|
|
}
|
|
TORRENT_ASSERT(ret != -2 || !j.str.empty());
|
|
|
|
// if the check is not done, add it at the end of the job queue
|
|
if (ret == piece_manager::need_full_check)
|
|
{
|
|
add_job(j, handler);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
case disk_io_job::save_resume_data:
|
|
{
|
|
#ifdef TORRENT_DISK_STATS
|
|
m_log << log_time() << " save resume data" << std::endl;
|
|
#endif
|
|
j.resume_data.reset(new entry(entry::dictionary_t));
|
|
j.storage->write_resume_data(*j.resume_data);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
case disk_io_job::rename_file:
|
|
{
|
|
#ifdef TORRENT_DISK_STATS
|
|
m_log << log_time() << " rename file" << std::endl;
|
|
#endif
|
|
ret = j.storage->rename_file_impl(j.piece, j.str);
|
|
}
|
|
}
|
|
#ifndef BOOST_NO_EXCEPTIONS
|
|
} catch (std::exception& e)
|
|
{
|
|
ret = -1;
|
|
try
|
|
{
|
|
j.str = e.what();
|
|
}
|
|
catch (std::exception&) {}
|
|
}
|
|
#endif
|
|
|
|
// if (!handler) std::cerr << "DISK THREAD: no callback specified" << std::endl;
|
|
// else std::cerr << "DISK THREAD: invoking callback" << std::endl;
|
|
#ifndef BOOST_NO_EXCEPTIONS
|
|
try {
|
|
#endif
|
|
TORRENT_ASSERT(ret != -2 || !j.str.empty()
|
|
|| j.action == disk_io_job::hash);
|
|
if (handler) m_ios.post(bind(handler, ret, j));
|
|
#ifndef BOOST_NO_EXCEPTIONS
|
|
} catch (std::exception&)
|
|
{
|
|
TORRENT_ASSERT(false);
|
|
}
|
|
#endif
|
|
}
|
|
TORRENT_ASSERT(false);
|
|
}
|
|
}
|
|
|