premiere-libtorrent/src/enum_net.cpp

1161 lines
30 KiB
C++

/*
Copyright (c) 2007-2016, Arvid Norberg
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "libtorrent/config.hpp"
#include "libtorrent/enum_net.hpp"
#include "libtorrent/broadcast_socket.hpp"
#include "libtorrent/error_code.hpp"
#include "libtorrent/assert.hpp"
#include "libtorrent/socket_type.hpp"
#include "libtorrent/aux_/disable_warnings_push.hpp"
#include <boost/asio/ip/host_name.hpp>
#include <boost/bind.hpp>
#include <vector>
#include <stdlib.h> // for wcstombscstombs
#if TORRENT_USE_IFCONF
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <net/if.h>
#include <string.h>
#endif
#if TORRENT_USE_SYSCTL
#include <sys/sysctl.h>
#include <net/route.h>
#include <boost/scoped_array.hpp>
#endif
#if TORRENT_USE_GETIPFORWARDTABLE || TORRENT_USE_GETADAPTERSADDRESSES
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#include <windows.h>
#include <iphlpapi.h>
#endif
#if TORRENT_USE_NETLINK
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <asm/types.h>
#include <netinet/ether.h>
#include <netinet/in.h>
#include <net/if.h>
#include <stdio.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#endif
#if TORRENT_USE_IFADDRS
#include <ifaddrs.h>
#endif
#if TORRENT_USE_IFADDRS || TORRENT_USE_IFCONF || TORRENT_USE_NETLINK || TORRENT_USE_SYSCTL
// capture this here where warnings are disabled (the macro generates warnings)
const unsigned long siocgifmtu = SIOCGIFMTU;
#endif
#include "libtorrent/aux_/disable_warnings_pop.hpp"
#if defined(TORRENT_OS2) && !defined(IF_NAMESIZE)
#define IF_NAMESIZE IFNAMSIZ
#endif
namespace libtorrent { namespace
{
#if !defined TORRENT_BUILD_SIMULATOR
address inaddr_to_address(in_addr const* ina, int len = 4)
{
typedef boost::asio::ip::address_v4::bytes_type bytes_t;
bytes_t b;
std::memset(&b[0], 0, b.size());
if (len > 0) std::memcpy(&b[0], ina, (std::min)(len, int(b.size())));
return address_v4(b);
}
#if TORRENT_USE_IPV6
address inaddr6_to_address(in6_addr const* ina6, int len = 16)
{
typedef boost::asio::ip::address_v6::bytes_type bytes_t;
bytes_t b;
std::memset(&b[0], 0, b.size());
if (len > 0) std::memcpy(&b[0], ina6, (std::min)(len, int(b.size())));
return address_v6(b);
}
#endif
int sockaddr_len(sockaddr const* sin)
{
#if TORRENT_HAS_SALEN
return sin->sa_len;
#else
return sin->sa_family == AF_INET ? sizeof(sockaddr_in) : sizeof(sockaddr_in6);
#endif
}
address sockaddr_to_address(sockaddr const* sin, int assume_family = -1)
{
if (sin->sa_family == AF_INET || assume_family == AF_INET)
return inaddr_to_address(&reinterpret_cast<sockaddr_in const*>(sin)->sin_addr
, sockaddr_len(sin) - offsetof(sockaddr, sa_data));
#if TORRENT_USE_IPV6
else if (sin->sa_family == AF_INET6 || assume_family == AF_INET6)
return inaddr6_to_address(&reinterpret_cast<sockaddr_in6 const*>(sin)->sin6_addr
, sockaddr_len(sin) - offsetof(sockaddr, sa_data));
#endif
return address();
}
#if TORRENT_USE_NETLINK
int read_nl_sock(int sock, char *buf, int bufsize, int seq, int pid)
{
nlmsghdr* nl_hdr;
int msg_len = 0;
do
{
int read_len = recv(sock, buf, bufsize - msg_len, 0);
if (read_len < 0) return -1;
nl_hdr = reinterpret_cast<nlmsghdr*>(buf);
if ((NLMSG_OK(nl_hdr, read_len) == 0) || (nl_hdr->nlmsg_type == NLMSG_ERROR))
return -1;
if (nl_hdr->nlmsg_type == NLMSG_DONE) break;
buf += read_len;
msg_len += read_len;
if ((nl_hdr->nlmsg_flags & NLM_F_MULTI) == 0) break;
} while((nl_hdr->nlmsg_seq != seq) || (nl_hdr->nlmsg_pid != pid));
return msg_len;
}
bool parse_route(int s, nlmsghdr* nl_hdr, ip_route* rt_info)
{
rtmsg* rt_msg = reinterpret_cast<rtmsg*>(NLMSG_DATA(nl_hdr));
if((rt_msg->rtm_family != AF_INET && rt_msg->rtm_family != AF_INET6) || (rt_msg->rtm_table != RT_TABLE_MAIN
&& rt_msg->rtm_table != RT_TABLE_LOCAL))
return false;
int if_index = 0;
int rt_len = RTM_PAYLOAD(nl_hdr);
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wcast-align"
#endif
for (rtattr* rt_attr = reinterpret_cast<rtattr*>(RTM_RTA(rt_msg));
RTA_OK(rt_attr,rt_len); rt_attr = RTA_NEXT(rt_attr,rt_len))
{
switch(rt_attr->rta_type)
{
case RTA_OIF:
if_index = *reinterpret_cast<int*>(RTA_DATA(rt_attr));
break;
case RTA_GATEWAY:
#if TORRENT_USE_IPV6
if (rt_msg->rtm_family == AF_INET6)
{
rt_info->gateway = inaddr6_to_address(reinterpret_cast<in6_addr*>(RTA_DATA(rt_attr)));
}
else
#endif
{
rt_info->gateway = inaddr_to_address(reinterpret_cast<in_addr*>(RTA_DATA(rt_attr)));
}
break;
case RTA_DST:
#if TORRENT_USE_IPV6
if (rt_msg->rtm_family == AF_INET6)
{
rt_info->destination = inaddr6_to_address(reinterpret_cast<in6_addr*>(RTA_DATA(rt_attr)));
}
else
#endif
{
rt_info->destination = inaddr_to_address(reinterpret_cast<in_addr*>(RTA_DATA(rt_attr)));
}
break;
}
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif
if_indextoname(if_index, rt_info->name);
ifreq req;
memset(&req, 0, sizeof(req));
if_indextoname(if_index, req.ifr_name);
ioctl(s, siocgifmtu, &req);
rt_info->mtu = req.ifr_mtu;
// obviously this doesn't work correctly. How do you get the netmask for a route?
// if (ioctl(s, SIOCGIFNETMASK, &req) == 0) {
// rt_info->netmask = sockaddr_to_address(&req.ifr_addr, req.ifr_addr.sa_family);
// }
return true;
}
#endif // TORRENT_USE_NETLINK
#endif // !BUILD_SIMULATOR
#if TORRENT_USE_SYSCTL && !defined TORRENT_BUILD_SIMULATOR
#ifdef TORRENT_OS2
int _System __libsocket_sysctl(int* mib, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen);
#endif
bool parse_route(int s, rt_msghdr* rtm, ip_route* rt_info)
{
sockaddr* rti_info[RTAX_MAX];
sockaddr* sa = reinterpret_cast<sockaddr*>(rtm + 1);
for (int i = 0; i < RTAX_MAX; ++i)
{
if ((rtm->rtm_addrs & (1 << i)) == 0)
{
rti_info[i] = 0;
continue;
}
rti_info[i] = sa;
#define ROUNDUP(a) \
((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
sa = reinterpret_cast<sockaddr*>(reinterpret_cast<char*>(sa) + ROUNDUP(sa->sa_len));
#undef ROUNDUP
}
sa = rti_info[RTAX_GATEWAY];
if (sa == 0
|| rti_info[RTAX_DST] == 0
|| rti_info[RTAX_NETMASK] == 0
|| (sa->sa_family != AF_INET
#if TORRENT_USE_IPV6
&& sa->sa_family != AF_INET6
#endif
))
return false;
rt_info->gateway = sockaddr_to_address(rti_info[RTAX_GATEWAY]);
rt_info->destination = sockaddr_to_address(rti_info[RTAX_DST]);
rt_info->netmask = sockaddr_to_address(rti_info[RTAX_NETMASK]
, rt_info->destination.is_v4() ? AF_INET : AF_INET6);
if_indextoname(rtm->rtm_index, rt_info->name);
// TODO: get the MTU (and other interesting metrics) from the rt_msghdr instead
ifreq req;
memset(&req, 0, sizeof(req));
if_indextoname(rtm->rtm_index, req.ifr_name);
// ignore errors here. This is best-effort
ioctl(s, siocgifmtu, &req);
rt_info->mtu = req.ifr_mtu;
return true;
}
#endif
#if TORRENT_USE_IFADDRS && !defined TORRENT_BUILD_SIMULATOR
bool iface_from_ifaddrs(ifaddrs *ifa, ip_interface &rv)
{
int family = ifa->ifa_addr->sa_family;
if (family != AF_INET
#if TORRENT_USE_IPV6
&& family != AF_INET6
#endif
)
{
return false;
}
strncpy(rv.name, ifa->ifa_name, sizeof(rv.name));
rv.name[sizeof(rv.name)-1] = 0;
// determine address
rv.interface_address = sockaddr_to_address(ifa->ifa_addr);
// determine netmask
if (ifa->ifa_netmask != NULL)
{
rv.netmask = sockaddr_to_address(ifa->ifa_netmask);
}
return true;
}
#endif
}} // <anonymous>
namespace libtorrent
{
// return (a1 & mask) == (a2 & mask)
bool match_addr_mask(address const& a1, address const& a2, address const& mask)
{
// all 3 addresses needs to belong to the same family
if (a1.is_v4() != a2.is_v4()) return false;
if (a1.is_v4() != mask.is_v4()) return false;
#if TORRENT_USE_IPV6
if (a1.is_v6())
{
address_v6::bytes_type b1;
address_v6::bytes_type b2;
address_v6::bytes_type m;
b1 = a1.to_v6().to_bytes();
b2 = a2.to_v6().to_bytes();
m = mask.to_v6().to_bytes();
for (int i = 0; i < int(b1.size()); ++i)
{
b1[i] &= m[i];
b2[i] &= m[i];
}
return memcmp(&b1[0], &b2[0], b1.size()) == 0;
}
#endif
return (a1.to_v4().to_ulong() & mask.to_v4().to_ulong())
== (a2.to_v4().to_ulong() & mask.to_v4().to_ulong());
}
bool in_local_network(io_service& ios, address const& addr, error_code& ec)
{
std::vector<ip_interface> net = enum_net_interfaces(ios, ec);
if (ec) return false;
return in_local_network(net, addr);
}
bool in_local_network(std::vector<ip_interface> const& net, address const& addr)
{
for (std::vector<ip_interface>::const_iterator i = net.begin()
, end(net.end()); i != end; ++i)
{
if (match_addr_mask(addr, i->interface_address, i->netmask))
return true;
}
return false;
}
#if TORRENT_USE_GETIPFORWARDTABLE
address build_netmask(int bits, int family)
{
if (family == AF_INET)
{
typedef boost::asio::ip::address_v4::bytes_type bytes_t;
bytes_t b;
std::memset(&b[0], 0xff, b.size());
for (int i = int(sizeof(bytes_t)) / 8 - 1; i > 0; --i)
{
if (bits < 8)
{
b[i] <<= bits;
break;
}
b[i] = 0;
bits -= 8;
}
return address_v4(b);
}
#if TORRENT_USE_IPV6
else if (family == AF_INET6)
{
typedef boost::asio::ip::address_v6::bytes_type bytes_t;
bytes_t b;
std::memset(&b[0], 0xff, b.size());
for (int i = int(sizeof(bytes_t)) / 8 - 1; i > 0; --i)
{
if (bits < 8)
{
b[i] <<= bits;
break;
}
b[i] = 0;
bits -= 8;
}
return address_v6(b);
}
#endif
else
{
return address();
}
}
#endif
std::vector<ip_interface> enum_net_interfaces(io_service& ios, error_code& ec)
{
TORRENT_UNUSED(ios); // this may be unused depending on configuration
std::vector<ip_interface> ret;
ec.clear();
#if defined TORRENT_BUILD_SIMULATOR
std::vector<address> ips = ios.get_ips();
for (int i = 0; i < int(ips.size()); ++i)
{
ip_interface wan;
wan.interface_address = ips[i];
wan.netmask = address_v4::from_string("255.255.255.255");
strcpy(wan.name, "eth0");
wan.mtu = ios.sim().config().path_mtu(ips[i], ips[i]);
ret.push_back(wan);
}
#elif TORRENT_USE_IFADDRS
int s = socket(AF_INET, SOCK_DGRAM, 0);
if (s < 0)
{
ec = error_code(errno, system_category());
return ret;
}
ifaddrs *ifaddr;
if (getifaddrs(&ifaddr) == -1)
{
ec = error_code(errno, system_category());
close(s);
return ret;
}
for (ifaddrs* ifa = ifaddr; ifa; ifa = ifa->ifa_next)
{
if (ifa->ifa_addr == 0) continue;
if ((ifa->ifa_flags & IFF_UP) == 0) continue;
int family = ifa->ifa_addr->sa_family;
if (family == AF_INET
#if TORRENT_USE_IPV6
|| family == AF_INET6
#endif
)
{
ip_interface iface;
if (iface_from_ifaddrs(ifa, iface))
{
ifreq req;
std::memset(&req, 0, sizeof(req));
// -1 to leave a 0-terminator
std::strncpy(req.ifr_name, iface.name, IF_NAMESIZE - 1);
// ignore errors here. This is best-effort
ioctl(s, siocgifmtu, &req);
iface.mtu = req.ifr_mtu;
ret.push_back(iface);
}
}
}
close(s);
freeifaddrs(ifaddr);
// MacOS X, BSD and solaris
#elif TORRENT_USE_IFCONF
int s = socket(AF_INET, SOCK_DGRAM, 0);
if (s < 0)
{
ec = error_code(errno, system_category());
return ret;
}
ifconf ifc;
// make sure the buffer is aligned to hold ifreq structs
ifreq buf[40];
ifc.ifc_len = sizeof(buf);
ifc.ifc_buf = reinterpret_cast<char*>(buf);
if (ioctl(s, SIOCGIFCONF, &ifc) < 0)
{
ec = error_code(errno, system_category());
close(s);
return ret;
}
char *ifr = reinterpret_cast<char*>(ifc.ifc_req);
int remaining = ifc.ifc_len;
while (remaining > 0)
{
ifreq const& item = *reinterpret_cast<ifreq*>(ifr);
#ifdef _SIZEOF_ADDR_IFREQ
int current_size = _SIZEOF_ADDR_IFREQ(item);
#elif defined TORRENT_BSD
int current_size = item.ifr_addr.sa_len + IFNAMSIZ;
#else
int current_size = sizeof(ifreq);
#endif
if (remaining < current_size) break;
if (item.ifr_addr.sa_family == AF_INET
#if TORRENT_USE_IPV6
|| item.ifr_addr.sa_family == AF_INET6
#endif
)
{
ip_interface iface;
iface.interface_address = sockaddr_to_address(&item.ifr_addr);
strcpy(iface.name, item.ifr_name);
ifreq req;
memset(&req, 0, sizeof(req));
// -1 to leave a 0-terminator
strncpy(req.ifr_name, item.ifr_name, IF_NAMESIZE - 1);
if (ioctl(s, siocgifmtu, &req) < 0)
{
ec = error_code(errno, system_category());
close(s);
return ret;
}
#ifndef TORRENT_OS2
iface.mtu = req.ifr_mtu;
#else
iface.mtu = req.ifr_metric; // according to tcp/ip reference
#endif
memset(&req, 0, sizeof(req));
strncpy(req.ifr_name, item.ifr_name, IF_NAMESIZE - 1);
if (ioctl(s, SIOCGIFNETMASK, &req) < 0)
{
#if TORRENT_USE_IPV6
if (iface.interface_address.is_v6())
{
// this is expected to fail (at least on MacOS X)
iface.netmask = address_v6::any();
}
else
#endif
{
ec = error_code(errno, system_category());
close(s);
return ret;
}
}
else
{
iface.netmask = sockaddr_to_address(&req.ifr_addr, item.ifr_addr.sa_family);
}
ret.push_back(iface);
}
ifr += current_size;
remaining -= current_size;
}
close(s);
#elif TORRENT_USE_GETADAPTERSADDRESSES
#if _WIN32_WINNT >= 0x0501
// Load Iphlpapi library
HMODULE iphlp = LoadLibraryA("Iphlpapi.dll");
if (iphlp)
{
// Get GetAdaptersAddresses() pointer
typedef ULONG (WINAPI *GetAdaptersAddresses_t)(ULONG,ULONG,PVOID,PIP_ADAPTER_ADDRESSES,PULONG);
GetAdaptersAddresses_t GetAdaptersAddresses = (GetAdaptersAddresses_t)GetProcAddress(
iphlp, "GetAdaptersAddresses");
if (GetAdaptersAddresses == NULL)
{
FreeLibrary(iphlp);
ec = error_code(boost::system::errc::not_supported, generic_category());
return std::vector<ip_interface>();
}
ULONG buf_size = 10000;
std::vector<char> buffer(buf_size);
PIP_ADAPTER_ADDRESSES adapter_addresses
= reinterpret_cast<IP_ADAPTER_ADDRESSES*>(&buffer[0]);
DWORD r = GetAdaptersAddresses(AF_UNSPEC, GAA_FLAG_SKIP_MULTICAST | GAA_FLAG_SKIP_DNS_SERVER
| GAA_FLAG_SKIP_ANYCAST, NULL, adapter_addresses, &buf_size);
if (r == ERROR_BUFFER_OVERFLOW)
{
buffer.resize(buf_size);
adapter_addresses = reinterpret_cast<IP_ADAPTER_ADDRESSES*>(&buffer[0]);
r = GetAdaptersAddresses(AF_UNSPEC, GAA_FLAG_SKIP_MULTICAST | GAA_FLAG_SKIP_DNS_SERVER
| GAA_FLAG_SKIP_ANYCAST, NULL, adapter_addresses, &buf_size);
}
if (r != NO_ERROR)
{
FreeLibrary(iphlp);
ec = error_code(WSAGetLastError(), system_category());
return std::vector<ip_interface>();
}
for (PIP_ADAPTER_ADDRESSES adapter = adapter_addresses;
adapter != 0; adapter = adapter->Next)
{
ip_interface r;
strncpy(r.name, adapter->AdapterName, sizeof(r.name));
r.name[sizeof(r.name)-1] = 0;
r.mtu = adapter->Mtu;
for (IP_ADAPTER_UNICAST_ADDRESS* unicast = adapter->FirstUnicastAddress;
unicast; unicast = unicast->Next)
{
if (unicast->Address.lpSockaddr->sa_family != AF_INET
#if TORRENT_USE_IPV6
&& unicast->Address.lpSockaddr->sa_family != AF_INET6
#endif
)
continue;
r.interface_address = sockaddr_to_address(unicast->Address.lpSockaddr);
ret.push_back(r);
}
}
// Free memory
FreeLibrary(iphlp);
return ret;
}
#endif
SOCKET s = socket(AF_INET, SOCK_DGRAM, 0);
if (s == SOCKET_ERROR)
{
ec = error_code(WSAGetLastError(), system_category());
return ret;
}
INTERFACE_INFO buffer[30];
DWORD size;
if (WSAIoctl(s, SIO_GET_INTERFACE_LIST, 0, 0, buffer,
sizeof(buffer), &size, 0, 0) != 0)
{
ec = error_code(WSAGetLastError(), system_category());
closesocket(s);
return ret;
}
closesocket(s);
int n = size / sizeof(INTERFACE_INFO);
ip_interface iface;
for (int i = 0; i < n; ++i)
{
iface.interface_address = sockaddr_to_address(&buffer[i].iiAddress.Address);
if (iface.interface_address == address_v4::any()) continue;
iface.netmask = sockaddr_to_address(&buffer[i].iiNetmask.Address
, iface.interface_address.is_v4() ? AF_INET : AF_INET6);
iface.name[0] = 0;
iface.mtu = 1500; // how to get the MTU?
ret.push_back(iface);
}
#else
#ifdef _MSC_VER
#pragma message ( "THIS OS IS NOT RECOGNIZED, enum_net_interfaces WILL PROBABLY NOT WORK" )
#else
#warning "THIS OS IS NOT RECOGNIZED, enum_net_interfaces WILL PROBABLY NOT WORK"
#endif
// make a best guess of the interface we're using and its IP
udp::resolver r(ios);
udp::resolver::iterator i = r.resolve(udp::resolver::query(boost::asio::ip::host_name(ec), "0"), ec);
if (ec) return ret;
ip_interface iface;
for (;i != udp::resolver_iterator(); ++i)
{
iface.interface_address = i->endpoint().address();
iface.name[0] = '\0';
iface.mtu = 1500;
if (iface.interface_address.is_v4())
iface.netmask = address_v4::netmask(iface.interface_address.to_v4());
ret.push_back(iface);
}
#endif
return ret;
}
address get_default_gateway(io_service& ios, error_code& ec)
{
std::vector<ip_route> ret = enum_routes(ios, ec);
std::vector<ip_route>::iterator i = std::find_if(ret.begin(), ret.end()
, boost::bind(&ip_route::destination, _1) == address());
if (i == ret.end()) return address();
return i->gateway;
}
std::vector<ip_route> enum_routes(io_service& ios, error_code& ec)
{
std::vector<ip_route> ret;
TORRENT_UNUSED(ios);
#ifdef TORRENT_BUILD_SIMULATOR
TORRENT_UNUSED(ec);
std::vector<address> ips = ios.get_ips();
for (int i = 0; i < int(ips.size()); ++i)
{
ip_route r;
if (ips[i].is_v4())
{
r.destination = address_v4();
r.netmask = address_v4::from_string("255.255.255.0");
address_v4::bytes_type b = ips[i].to_v4().to_bytes();
b[3] = 1;
r.gateway = address_v4(b);
}
else
{
r.destination = address_v6();
r.netmask = address_v6::from_string("FFFF:FFFF:FFFF:FFFF::0");
address_v6::bytes_type b = ips[i].to_v6().to_bytes();
b[14] = 1;
r.gateway = address_v6(b);
}
strcpy(r.name, "eth0");
r.mtu = ios.sim().config().path_mtu(ips[i], ips[i]);
ret.push_back(r);
}
#elif TORRENT_USE_SYSCTL
/*
struct rt_msg
{
rt_msghdr m_rtm;
char buf[512];
};
rt_msg m;
int len = sizeof(rt_msg);
bzero(&m, len);
m.m_rtm.rtm_type = RTM_GET;
m.m_rtm.rtm_flags = RTF_UP | RTF_GATEWAY;
m.m_rtm.rtm_version = RTM_VERSION;
m.m_rtm.rtm_addrs = RTA_DST | RTA_GATEWAY | RTA_NETMASK;
m.m_rtm.rtm_seq = 0;
m.m_rtm.rtm_msglen = len;
int s = socket(PF_ROUTE, SOCK_RAW, AF_UNSPEC);
if (s == -1)
{
ec = error_code(errno, system_category());
return std::vector<ip_route>();
}
int n = write(s, &m, len);
if (n == -1)
{
ec = error_code(errno, system_category());
close(s);
return std::vector<ip_route>();
}
else if (n != len)
{
ec = boost::asio::error::operation_not_supported;
close(s);
return std::vector<ip_route>();
}
bzero(&m, len);
n = read(s, &m, len);
if (n == -1)
{
ec = error_code(errno, system_category());
close(s);
return std::vector<ip_route>();
}
for (rt_msghdr* ptr = &m.m_rtm; (char*)ptr < ((char*)&m.m_rtm) + n; ptr = (rt_msghdr*)(((char*)ptr) + ptr->rtm_msglen))
{
std::cout << " rtm_msglen: " << ptr->rtm_msglen << std::endl;
std::cout << " rtm_type: " << ptr->rtm_type << std::endl;
if (ptr->rtm_errno)
{
ec = error_code(ptr->rtm_errno, system_category());
return std::vector<ip_route>();
}
if (m.m_rtm.rtm_flags & RTF_UP == 0
|| m.m_rtm.rtm_flags & RTF_GATEWAY == 0)
{
ec = boost::asio::error::operation_not_supported;
return address_v4::any();
}
if (ptr->rtm_addrs & RTA_DST == 0
|| ptr->rtm_addrs & RTA_GATEWAY == 0
|| ptr->rtm_addrs & RTA_NETMASK == 0)
{
ec = boost::asio::error::operation_not_supported;
return std::vector<ip_route>();
}
if (ptr->rtm_msglen > len - ((char*)ptr - ((char*)&m.m_rtm)))
{
ec = boost::asio::error::operation_not_supported;
return std::vector<ip_route>();
}
int min_len = sizeof(rt_msghdr) + 2 * sizeof(sockaddr_in);
if (m.m_rtm.rtm_msglen < min_len)
{
ec = boost::asio::error::operation_not_supported;
return std::vector<ip_route>();
}
ip_route r;
// destination
char* p = m.buf;
sockaddr_in* sin = (sockaddr_in*)p;
r.destination = sockaddr_to_address((sockaddr*)p);
// gateway
p += sin->sin_len;
sin = (sockaddr_in*)p;
r.gateway = sockaddr_to_address((sockaddr*)p);
// netmask
p += sin->sin_len;
sin = (sockaddr_in*)p;
r.netmask = sockaddr_to_address((sockaddr*)p);
ret.push_back(r);
}
close(s);
*/
int mib[6] = { CTL_NET, PF_ROUTE, 0, AF_UNSPEC, NET_RT_DUMP, 0};
size_t needed = 0;
#ifdef TORRENT_OS2
if (__libsocket_sysctl(mib, 6, 0, &needed, 0, 0) < 0)
#else
if (sysctl(mib, 6, 0, &needed, 0, 0) < 0)
#endif
{
ec = error_code(errno, system_category());
return std::vector<ip_route>();
}
if (needed <= 0)
{
return std::vector<ip_route>();
}
boost::scoped_array<char> buf(new (std::nothrow) char[needed]);
if (buf.get() == 0)
{
ec = boost::asio::error::no_memory;
return std::vector<ip_route>();
}
#ifdef TORRENT_OS2
if (__libsocket_sysctl(mib, 6, buf.get(), &needed, 0, 0) < 0)
#else
if (sysctl(mib, 6, buf.get(), &needed, 0, 0) < 0)
#endif
{
ec = error_code(errno, system_category());
return std::vector<ip_route>();
}
char* end = buf.get() + needed;
int s = socket(AF_INET, SOCK_DGRAM, 0);
if (s < 0)
{
ec = error_code(errno, system_category());
return std::vector<ip_route>();
}
rt_msghdr* rtm;
for (char* next = buf.get(); next < end; next += rtm->rtm_msglen)
{
rtm = reinterpret_cast<rt_msghdr*>(next);
if (rtm->rtm_version != RTM_VERSION
|| (rtm->rtm_type != RTM_ADD
&& rtm->rtm_type != RTM_GET))
{
continue;
}
ip_route r;
if (parse_route(s, rtm, &r)) ret.push_back(r);
}
close(s);
#elif TORRENT_USE_GETIPFORWARDTABLE
/*
move this to enum_net_interfaces
// Load Iphlpapi library
HMODULE iphlp = LoadLibraryA("Iphlpapi.dll");
if (!iphlp)
{
ec = boost::asio::error::operation_not_supported;
return std::vector<ip_route>();
}
// Get GetAdaptersInfo() pointer
typedef DWORD (WINAPI *GetAdaptersInfo_t)(PIP_ADAPTER_INFO, PULONG);
GetAdaptersInfo_t GetAdaptersInfo = (GetAdaptersInfo_t)GetProcAddress(iphlp, "GetAdaptersInfo");
if (!GetAdaptersInfo)
{
FreeLibrary(iphlp);
ec = boost::asio::error::operation_not_supported;
return std::vector<ip_route>();
}
PIP_ADAPTER_INFO adapter_info = 0;
ULONG out_buf_size = 0;
if (GetAdaptersInfo(adapter_info, &out_buf_size) != ERROR_BUFFER_OVERFLOW)
{
FreeLibrary(iphlp);
ec = boost::asio::error::operation_not_supported;
return std::vector<ip_route>();
}
adapter_info = (IP_ADAPTER_INFO*)malloc(out_buf_size);
if (!adapter_info)
{
FreeLibrary(iphlp);
ec = boost::asio::error::no_memory;
return std::vector<ip_route>();
}
if (GetAdaptersInfo(adapter_info, &out_buf_size) == NO_ERROR)
{
for (PIP_ADAPTER_INFO adapter = adapter_info;
adapter != 0; adapter = adapter->Next)
{
ip_route r;
r.destination = address::from_string(adapter->IpAddressList.IpAddress.String, ec);
r.gateway = address::from_string(adapter->GatewayList.IpAddress.String, ec);
r.netmask = address::from_string(adapter->IpAddressList.IpMask.String, ec);
strncpy(r.name, adapter->AdapterName, sizeof(r.name));
if (ec)
{
ec = error_code();
continue;
}
ret.push_back(r);
}
}
// Free memory
free(adapter_info);
FreeLibrary(iphlp);
*/
// Load Iphlpapi library
HMODULE iphlp = LoadLibraryA("Iphlpapi.dll");
if (!iphlp)
{
ec = boost::asio::error::operation_not_supported;
return std::vector<ip_route>();
}
typedef DWORD (WINAPI *GetIfEntry_t)(PMIB_IFROW pIfRow);
GetIfEntry_t GetIfEntry = (GetIfEntry_t)GetProcAddress(iphlp, "GetIfEntry");
if (!GetIfEntry)
{
ec = boost::asio::error::operation_not_supported;
return std::vector<ip_route>();
}
#if _WIN32_WINNT >= 0x0600
typedef DWORD (WINAPI *GetIpForwardTable2_t)(
ADDRESS_FAMILY, PMIB_IPFORWARD_TABLE2*);
typedef void (WINAPI *FreeMibTable_t)(PVOID Memory);
GetIpForwardTable2_t GetIpForwardTable2 = (GetIpForwardTable2_t)GetProcAddress(
iphlp, "GetIpForwardTable2");
FreeMibTable_t FreeMibTable = (FreeMibTable_t)GetProcAddress(
iphlp, "FreeMibTable");
if (GetIpForwardTable2 && FreeMibTable)
{
MIB_IPFORWARD_TABLE2* routes = NULL;
int res = GetIpForwardTable2(AF_UNSPEC, &routes);
if (res == NO_ERROR)
{
for (int i = 0; i < routes->NumEntries; ++i)
{
ip_route r;
r.gateway = sockaddr_to_address((const sockaddr*)&routes->Table[i].NextHop);
r.destination = sockaddr_to_address(
(const sockaddr*)&routes->Table[i].DestinationPrefix.Prefix);
r.netmask = build_netmask(routes->Table[i].SitePrefixLength
, routes->Table[i].DestinationPrefix.Prefix.si_family);
MIB_IFROW ifentry;
ifentry.dwIndex = routes->Table[i].InterfaceIndex;
if (GetIfEntry(&ifentry) == NO_ERROR)
{
wcstombs(r.name, ifentry.wszName, sizeof(r.name));
r.mtu = ifentry.dwMtu;
ret.push_back(r);
}
}
}
if (routes) FreeMibTable(routes);
FreeLibrary(iphlp);
return ret;
}
#endif
// Get GetIpForwardTable() pointer
typedef DWORD (WINAPI *GetIpForwardTable_t)(PMIB_IPFORWARDTABLE pIpForwardTable,PULONG pdwSize,BOOL bOrder);
GetIpForwardTable_t GetIpForwardTable = (GetIpForwardTable_t)GetProcAddress(
iphlp, "GetIpForwardTable");
if (!GetIpForwardTable)
{
FreeLibrary(iphlp);
ec = boost::asio::error::operation_not_supported;
return std::vector<ip_route>();
}
MIB_IPFORWARDTABLE* routes = NULL;
ULONG out_buf_size = 0;
if (GetIpForwardTable(routes, &out_buf_size, FALSE) != ERROR_INSUFFICIENT_BUFFER)
{
FreeLibrary(iphlp);
ec = boost::asio::error::operation_not_supported;
return std::vector<ip_route>();
}
routes = (MIB_IPFORWARDTABLE*)malloc(out_buf_size);
if (!routes)
{
FreeLibrary(iphlp);
ec = boost::asio::error::no_memory;
return std::vector<ip_route>();
}
if (GetIpForwardTable(routes, &out_buf_size, FALSE) == NO_ERROR)
{
for (int i = 0; i < routes->dwNumEntries; ++i)
{
ip_route r;
r.destination = inaddr_to_address((in_addr const*)&routes->table[i].dwForwardDest);
r.netmask = inaddr_to_address((in_addr const*)&routes->table[i].dwForwardMask);
r.gateway = inaddr_to_address((in_addr const*)&routes->table[i].dwForwardNextHop);
MIB_IFROW ifentry;
ifentry.dwIndex = routes->table[i].dwForwardIfIndex;
if (GetIfEntry(&ifentry) == NO_ERROR)
{
wcstombs(r.name, ifentry.wszName, sizeof(r.name));
r.name[sizeof(r.name)-1] = 0;
r.mtu = ifentry.dwMtu;
ret.push_back(r);
}
}
}
// Free memory
free(routes);
FreeLibrary(iphlp);
#elif TORRENT_USE_NETLINK
enum { BUFSIZE = 8192 };
int sock = socket(PF_ROUTE, SOCK_DGRAM, NETLINK_ROUTE);
if (sock < 0)
{
ec = error_code(errno, system_category());
return std::vector<ip_route>();
}
int seq = 0;
char msg[BUFSIZE];
memset(msg, 0, BUFSIZE);
nlmsghdr* nl_msg = reinterpret_cast<nlmsghdr*>(msg);
nl_msg->nlmsg_len = NLMSG_LENGTH(sizeof(rtmsg));
nl_msg->nlmsg_type = RTM_GETROUTE;
nl_msg->nlmsg_flags = NLM_F_DUMP | NLM_F_REQUEST;
nl_msg->nlmsg_seq = seq++;
nl_msg->nlmsg_pid = getpid();
if (send(sock, nl_msg, nl_msg->nlmsg_len, 0) < 0)
{
ec = error_code(errno, system_category());
close(sock);
return std::vector<ip_route>();
}
int len = read_nl_sock(sock, msg, BUFSIZE, seq, getpid());
if (len < 0)
{
ec = error_code(errno, system_category());
close(sock);
return std::vector<ip_route>();
}
int s = socket(AF_INET, SOCK_DGRAM, 0);
if (s < 0)
{
ec = error_code(errno, system_category());
return std::vector<ip_route>();
}
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wcast-align"
#endif
for (; NLMSG_OK(nl_msg, len); nl_msg = NLMSG_NEXT(nl_msg, len))
{
ip_route r;
if (parse_route(s, nl_msg, &r)) ret.push_back(r);
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif
close(s);
close(sock);
#endif
return ret;
}
// returns the device name whose local address is ``addr``. If
// no such device is found, an empty string is returned.
std::string device_for_address(address addr, io_service& ios, error_code& ec)
{
std::vector<ip_interface> ifs = enum_net_interfaces(ios, ec);
if (ec) return std::string();
for (int i = 0; i < int(ifs.size()); ++i)
if (ifs[i].interface_address == addr) return ifs[i].name;
return std::string();
}
}