/* Copyright (c) 2006-2013, Arvid Norberg & Daniel Wallin All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/pch.hpp" #include "libtorrent/time.hpp" // for total_seconds #include #include #include #include #include #include "libtorrent/broadcast_socket.hpp" // for cidr_distance #include // for read_*_endpoint #include namespace libtorrent { namespace dht { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_DEFINE_LOG(traversal) #endif using detail::read_v4_endpoint; #if TORRENT_USE_IPV6 using detail::read_v6_endpoint; #endif observer_ptr traversal_algorithm::new_observer(void* ptr , udp::endpoint const& ep, node_id const& id) { observer_ptr o(new (ptr) null_observer(boost::intrusive_ptr(this), ep, id)); #if defined TORRENT_DEBUG || TORRENT_RELEASE_ASSERTS o->m_in_constructor = false; #endif return o; } traversal_algorithm::traversal_algorithm( node_impl& node , node_id target) : m_ref_count(0) , m_node(node) , m_target(target) , m_invoke_count(0) , m_branch_factor(3) , m_responses(0) , m_timeouts(0) , m_num_target_nodes(m_node.m_table.bucket_size()) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(traversal) << "[" << this << "] NEW" " target: " << target << " k: " << m_node.m_table.bucket_size(); #endif } // returns true of lhs and rhs are too close to each other to appear // in the same DHT search under different node IDs bool compare_ip_cidr(observer_ptr const& lhs, observer_ptr const& rhs) { if (lhs->target_addr().is_v4() != rhs->target_addr().is_v4()) return false; // the number of bits in the IPs that may match. If // more bits that this matches, something suspicious is // going on and we shouldn't add the second one to our // routing table int cutoff = rhs->target_addr().is_v4() ? 4 : 64; int dist = cidr_distance(lhs->target_addr(), rhs->target_addr()); return dist <= cutoff; } void traversal_algorithm::add_entry(node_id const& id, udp::endpoint addr, unsigned char flags) { TORRENT_ASSERT(m_node.m_rpc.allocation_size() >= sizeof(find_data_observer)); void* ptr = m_node.m_rpc.allocate_observer(); if (ptr == 0) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(traversal) << "[" << this << "] failed to allocate memory for observer. aborting!"; #endif done(); return; } observer_ptr o = new_observer(ptr, addr, id); if (id.is_all_zeros()) { o->set_id(generate_random_id()); o->flags |= observer::flag_no_id; } o->flags |= flags; std::vector::iterator i = std::lower_bound( m_results.begin() , m_results.end() , o , boost::bind( compare_ref , boost::bind(&observer::id, _1) , boost::bind(&observer::id, _2) , m_target ) ); if (i == m_results.end() || (*i)->id() != id) { if (m_node.settings().restrict_search_ips && !(flags & observer::flag_initial)) { // don't allow multiple entries from IPs very close to each other std::vector::iterator j = std::find_if( m_results.begin(), m_results.end(), boost::bind(&compare_ip_cidr, _1, o)); if (j != m_results.end()) { // we already have a node in this search with an IP very // close to this one. We know that it's not the same, because // it claims a different node-ID. Ignore this to avoid attacks #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(traversal) << "[" << this << "] IGNORING result " << "id: " << o->id() << " address: " << o->target_addr() << " existing node: " << (*j)->id() << " " << (*j)->target_addr() << " distance: " << distance_exp(m_target, o->id()); #endif return; } } TORRENT_ASSERT(std::find_if(m_results.begin(), m_results.end() , boost::bind(&observer::id, _1) == id) == m_results.end()); #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(traversal) << "[" << this << "] ADD id: " << id << " address: " << addr << " distance: " << distance_exp(m_target, id) << " invoke-count: " << m_invoke_count; #endif i = m_results.insert(i, o); } if (m_results.size() > 100) { #if defined TORRENT_DEBUG || TORRENT_RELEASE_ASSERTS for (int i = 100; i < m_results.size(); ++i) m_results[i]->m_was_abandoned = true; #endif m_results.resize(100); } } void traversal_algorithm::start() { // in case the routing table is empty, use the // router nodes in the table if (m_results.empty()) add_router_entries(); init(); bool is_done = add_requests(); if (is_done) done(); } void* traversal_algorithm::allocate_observer() { return m_node.m_rpc.allocate_observer(); } void traversal_algorithm::free_observer(void* ptr) { m_node.m_rpc.free_observer(ptr); } char const* traversal_algorithm::name() const { return "traversal_algorithm"; } void traversal_algorithm::traverse(node_id const& id, udp::endpoint addr) { #ifdef TORRENT_DHT_VERBOSE_LOGGING if (id.is_all_zeros()) { TORRENT_LOG(traversal) << time_now_string() << "[" << this << "] WARNING node returned a list which included a node with id 0"; } #endif add_entry(id, addr, 0); } void traversal_algorithm::finished(observer_ptr o) { #ifdef TORRENT_DEBUG std::vector::iterator i = std::find( m_results.begin(), m_results.end(), o); TORRENT_ASSERT(i != m_results.end() || m_results.size() == 100); #endif // if this flag is set, it means we increased the // branch factor for it, and we should restore it if (o->flags & observer::flag_short_timeout) { TORRENT_ASSERT(m_branch_factor > 0); --m_branch_factor; } TORRENT_ASSERT(o->flags & observer::flag_queried); o->flags |= observer::flag_alive; ++m_responses; --m_invoke_count; TORRENT_ASSERT(m_invoke_count >= 0); bool is_done = add_requests(); if (is_done) done(); } // prevent request means that the total number of requests has // overflown. This query failed because it was the oldest one. // So, if this is true, don't make another request void traversal_algorithm::failed(observer_ptr o, int flags) { TORRENT_ASSERT(m_invoke_count >= 0); if (m_results.empty()) return; TORRENT_ASSERT(o->flags & observer::flag_queried); if (flags & short_timeout) { // short timeout means that it has been more than // two seconds since we sent the request, and that // we'll most likely not get a response. But, in case // we do get a late response, keep the handler // around for some more, but open up the slot // by increasing the branch factor if ((o->flags & observer::flag_short_timeout) == 0) ++m_branch_factor; o->flags |= observer::flag_short_timeout; #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(traversal) << "[" << this << "] 1ST_TIMEOUT " << " id: " << o->id() << " distance: " << distance_exp(m_target, o->id()) << " addr: " << o->target_ep() << " branch-factor: " << m_branch_factor << " invoke-count: " << m_invoke_count; #endif } else { o->flags |= observer::flag_failed; // if this flag is set, it means we increased the // branch factor for it, and we should restore it if (o->flags & observer::flag_short_timeout) --m_branch_factor; #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(traversal) << "[" << this << "] TIMEOUT " << " id: " << o->id() << " distance: " << distance_exp(m_target, o->id()) << " addr: " << o->target_ep() << " branch-factor: " << m_branch_factor << " invoke-count: " << m_invoke_count; #endif // don't tell the routing table about // node ids that we just generated ourself if ((o->flags & observer::flag_no_id) == 0) m_node.m_table.node_failed(o->id(), o->target_ep()); ++m_timeouts; --m_invoke_count; TORRENT_ASSERT(m_invoke_count >= 0); } if (flags & prevent_request) { --m_branch_factor; if (m_branch_factor <= 0) m_branch_factor = 1; } bool is_done = add_requests(); if (is_done) done(); } void traversal_algorithm::done() { #ifdef TORRENT_DHT_VERBOSE_LOGGING int results_target = m_num_target_nodes; int closest_target = 160; for (std::vector::iterator i = m_results.begin() , end(m_results.end()); i != end && results_target > 0; ++i) { boost::intrusive_ptr o = *i; if (o->flags & observer::flag_alive) { TORRENT_ASSERT(o->flags & observer::flag_queried); TORRENT_LOG(traversal) << "[" << this << "] " << results_target << " id: " << o->id() << " distance: " << distance_exp(m_target, o->id()) << " address: " << o->target_ep(); --results_target; int dist = distance_exp(m_target, o->id()); if (dist < closest_target) closest_target = dist; } } TORRENT_LOG(traversal) << "[" << this << "] COMPLETED " << "distance: " << closest_target; #endif // delete all our references to the observer objects so // they will in turn release the traversal algorithm m_results.clear(); } bool traversal_algorithm::add_requests() { int results_target = m_num_target_nodes; // this only counts outstanding requests at the top of the // target list. This is <= m_invoke count. m_invoke_count // is the total number of outstanding requests, including // old ones that may be waiting on nodes much farther behind // the current point we've reached in the search. int outstanding = 0; // if we're doing aggressive lookups, we keep branch-factor // outstanding requests _at the tops_ of the result list. Otherwise // we just keep any branch-factor outstanding requests bool agg = m_node.settings().aggressive_lookups; // Find the first node that hasn't already been queried. // and make sure that the 'm_branch_factor' top nodes // stay queried at all times (obviously ignoring failed nodes) // and without surpassing the 'result_target' nodes (i.e. k=8) // this is a slight variation of the original paper which instead // limits the number of outstanding requests, this limits the // number of good outstanding requests. It will use more traffic, // but is intended to speed up lookups for (std::vector::iterator i = m_results.begin() , end(m_results.end()); i != end && results_target > 0 && (agg ? outstanding < m_branch_factor : m_invoke_count < m_branch_factor); ++i) { observer* o = i->get(); if (o->flags & observer::flag_alive) { TORRENT_ASSERT(o->flags & observer::flag_queried); --results_target; continue; } if (o->flags & observer::flag_queried) { // if it's queried, not alive and not failed, it // must be currently in flight if ((o->flags & observer::flag_failed) == 0) ++outstanding; continue; } #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(traversal) << "[" << this << "] INVOKE " << " nodes-left: " << (m_results.end() - i) << " top-invoke-count: " << outstanding << " invoke-count: " << m_invoke_count << " branch-factor: " << m_branch_factor << " distance: " << distance_exp(m_target, (*i)->id()) ; #endif o->flags |= observer::flag_queried; if (invoke(*i)) { TORRENT_ASSERT(m_invoke_count >= 0); ++m_invoke_count; ++outstanding; } else { o->flags |= observer::flag_failed; } } // this is the completion condition. If we found m_num_target_nodes // (i.e. k=8) completed results, without finding any still // outstanding requests, we're done. // also, if invoke count is 0, it means we didn't even find 'k' // working nodes, we still have to terminate though. return (results_target == 0 && outstanding == 0) || m_invoke_count == 0; } void traversal_algorithm::add_router_entries() { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(traversal) << "[" << this << "] using router nodes to initiate traversal algorithm. " << std::distance(m_node.m_table.router_begin(), m_node.m_table.router_end()) << " routers"; #endif for (routing_table::router_iterator i = m_node.m_table.router_begin() , end(m_node.m_table.router_end()); i != end; ++i) { add_entry(node_id(0), *i, observer::flag_initial); } } void traversal_algorithm::init() { // update the last activity of this bucket m_node.m_table.touch_bucket(m_target); m_branch_factor = m_node.branch_factor(); m_node.add_traversal_algorithm(this); } traversal_algorithm::~traversal_algorithm() { m_node.remove_traversal_algorithm(this); } void traversal_algorithm::status(dht_lookup& l) { l.timeouts = m_timeouts; l.responses = m_responses; l.outstanding_requests = m_invoke_count; l.branch_factor = m_branch_factor; l.type = name(); l.nodes_left = 0; l.first_timeout = 0; int last_sent = INT_MAX; ptime now = time_now(); for (std::vector::iterator i = m_results.begin() , end(m_results.end()); i != end; ++i) { observer& o = **i; if (o.flags & observer::flag_queried) { last_sent = (std::min)(last_sent, int(total_seconds(now - o.sent()))); if (o.has_short_timeout()) ++l.first_timeout; continue; } ++l.nodes_left; } l.last_sent = last_sent; } void traversal_observer::reply(msg const& m) { lazy_entry const* r = m.message.dict_find_dict("r"); if (!r) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(traversal) << "[" << m_algorithm.get() << "] missing response dict"; #endif return; } // look for nodes lazy_entry const* n = r->dict_find_string("nodes"); if (n) { std::vector node_list; char const* nodes = n->string_ptr(); char const* end = nodes + n->string_length(); while (end - nodes >= 26) { node_id id; std::copy(nodes, nodes + 20, id.begin()); nodes += 20; m_algorithm->traverse(id, read_v4_endpoint(nodes)); } } } void traversal_algorithm::abort() { m_num_target_nodes = 0; for (std::vector::iterator i = m_results.begin() , end(m_results.end()); i != end; ++i) { observer& o = **i; if (o.flags & observer::flag_queried) o.flags |= observer::flag_done; } done(); } } } // namespace libtorrent::dht