/* Copyright (c) 2003-2018, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/config.hpp" #include "libtorrent/aux_/disable_warnings_push.hpp" #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-macros" #endif #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wunknown-pragmas" #pragma clang diagnostic ignored "-Wunused-macros" #pragma clang diagnostic ignored "-Wreserved-id-macro" #endif // these defines are just in case the system we're on needs them for 64 bit file // support #define _FILE_OFFSET_BITS 64 #define _LARGE_FILES 1 #ifndef TORRENT_WINDOWS #include // for iovec #else namespace { struct iovec { void* iov_base; std::size_t iov_len; }; } // anonymous namespace #endif // on mingw this is necessary to enable 64-bit time_t, specifically used for // the stat struct. Without this, modification times returned by stat may be // incorrect and consistently fail resume data #ifndef __MINGW_USE_VC2005_COMPAT # define __MINGW_USE_VC2005_COMPAT #endif #ifdef __clang__ #pragma clang diagnostic pop #endif #ifdef __GNUC__ #pragma GCC diagnostic pop #endif #include "libtorrent/aux_/disable_warnings_pop.hpp" #include "libtorrent/aux_/alloca.hpp" #include "libtorrent/file.hpp" #include "libtorrent/aux_/path.hpp" #include "libtorrent/string_util.hpp" #include "libtorrent/aux_/max_path.hpp" // for TORRENT_MAX_PATH #include // for convert_to_wstring and convert_to_native #include "libtorrent/aux_/escape_string.hpp" #include "libtorrent/assert.hpp" #include "libtorrent/aux_/throw.hpp" #include "libtorrent/aux_/disable_warnings_push.hpp" #include #include // for IOV_MAX #ifdef TORRENT_WINDOWS // windows part #ifndef PtrToPtr64 #define PtrToPtr64(x) (x) #endif #include "libtorrent/utf8.hpp" #include "libtorrent/aux_/win_util.hpp" #ifndef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN #endif #include #include #ifndef TORRENT_MINGW #include // for _getcwd, _mkdir #else #include #endif #include #else // posix part #include #include #include #include #ifdef TORRENT_LINUX // linux specifics #include #ifdef TORRENT_ANDROID #include #define lseek lseek64 #define pread pread64 #define pwrite pwrite64 #define ftruncate ftruncate64 #endif #elif defined __APPLE__ && defined __MACH__ && MAC_OS_X_VERSION_MIN_REQUIRED >= 1050 // mac specifics #include #endif // make sure the _FILE_OFFSET_BITS define worked // on this platform. It's supposed to make file // related functions support 64-bit offsets. // this test makes sure lseek() returns a type // at least 64 bits wide static_assert(sizeof(lseek(0, 0, 0)) >= 8, "64 bit file operations are required"); #endif // posix part #include "libtorrent/aux_/disable_warnings_pop.hpp" #if TORRENT_USE_PREADV # if defined TORRENT_WINDOWS namespace { // wrap the windows function in something that looks // like preadv() and pwritev() // windows only lets us wait for 64 handles at a time, so this function makes // sure we wait for all of them, partially in sequence DWORD wait_for_multiple_objects(int num_handles, HANDLE* h) { int batch_size = std::min(num_handles, MAXIMUM_WAIT_OBJECTS); while (WaitForMultipleObjects(batch_size, h, TRUE, INFINITE) != WAIT_FAILED) { h += batch_size; num_handles -= batch_size; batch_size = std::min(num_handles, MAXIMUM_WAIT_OBJECTS); if (batch_size <= 0) return WAIT_OBJECT_0; } return WAIT_FAILED; } int preadv(HANDLE fd, ::iovec const* bufs, int num_bufs, std::int64_t file_offset) { TORRENT_ALLOCA(ol, OVERLAPPED, num_bufs); std::memset(ol.data(), 0, sizeof(OVERLAPPED) * num_bufs); TORRENT_ALLOCA(h, HANDLE, num_bufs); for (int i = 0; i < num_bufs; ++i) { ol[i].OffsetHigh = file_offset >> 32; ol[i].Offset = file_offset & 0xffffffff; ol[i].hEvent = CreateEvent(nullptr, TRUE, FALSE, nullptr); h[i] = ol[i].hEvent; if (h[i] == nullptr) { // we failed to create the event, roll-back and return an error for (int j = 0; j < i; ++j) CloseHandle(h[i]); return -1; } file_offset += bufs[i].iov_len; } int ret = 0; for (int i = 0; i < num_bufs; ++i) { DWORD num_read; if (ReadFile(fd, bufs[i].iov_base, DWORD(bufs[i].iov_len), &num_read, &ol[i]) == FALSE && GetLastError() != ERROR_IO_PENDING #ifdef ERROR_CANT_WAIT && GetLastError() != ERROR_CANT_WAIT #endif ) { ret = -1; goto done; } } if (wait_for_multiple_objects(int(h.size()), h.data()) == WAIT_FAILED) { ret = -1; goto done; } for (auto& o : ol) { if (WaitForSingleObject(o.hEvent, INFINITE) == WAIT_FAILED) { ret = -1; break; } DWORD num_read; if (GetOverlappedResult(fd, &o, &num_read, FALSE) == FALSE) { #ifdef ERROR_CANT_WAIT TORRENT_ASSERT(GetLastError() != ERROR_CANT_WAIT); #endif ret = -1; break; } ret += num_read; } done: for (auto hnd : h) CloseHandle(hnd); return ret; } int pwritev(HANDLE fd, ::iovec const* bufs, int num_bufs, std::int64_t file_offset) { TORRENT_ALLOCA(ol, OVERLAPPED, num_bufs); std::memset(ol.data(), 0, sizeof(OVERLAPPED) * num_bufs); TORRENT_ALLOCA(h, HANDLE, num_bufs); for (int i = 0; i < num_bufs; ++i) { ol[i].OffsetHigh = file_offset >> 32; ol[i].Offset = file_offset & 0xffffffff; ol[i].hEvent = CreateEvent(nullptr, TRUE, FALSE, nullptr); h[i] = ol[i].hEvent; if (h[i] == nullptr) { // we failed to create the event, roll-back and return an error for (int j = 0; j < i; ++j) CloseHandle(h[i]); return -1; } file_offset += bufs[i].iov_len; } int ret = 0; for (int i = 0; i < num_bufs; ++i) { DWORD num_written; if (WriteFile(fd, bufs[i].iov_base, DWORD(bufs[i].iov_len), &num_written, &ol[i]) == FALSE && GetLastError() != ERROR_IO_PENDING #ifdef ERROR_CANT_WAIT && GetLastError() != ERROR_CANT_WAIT #endif ) { ret = -1; goto done; } } if (wait_for_multiple_objects(int(h.size()), h.data()) == WAIT_FAILED) { ret = -1; goto done; } for (auto& o : ol) { if (WaitForSingleObject(o.hEvent, INFINITE) == WAIT_FAILED) { ret = -1; break; } DWORD num_written; if (GetOverlappedResult(fd, &o, &num_written, FALSE) == FALSE) { #ifdef ERROR_CANT_WAIT TORRENT_ASSERT(GetLastError() != ERROR_CANT_WAIT); #endif ret = -1; break; } ret += num_written; } done: for (auto hnd : h) CloseHandle(hnd); return ret; } } # else # undef _BSD_SOURCE # define _BSD_SOURCE // deprecated since glibc 2.20 # undef _DEFAULT_SOURCE # define _DEFAULT_SOURCE # include # endif #endif namespace libtorrent { static_assert(!(open_mode::rw_mask & open_mode::sparse), "internal flags error"); static_assert(!(open_mode::rw_mask & open_mode::attribute_mask), "internal flags error"); static_assert(!(open_mode::sparse & open_mode::attribute_mask), "internal flags error"); directory::directory(std::string const& path, error_code& ec) : m_done(false) { ec.clear(); std::string p{ path }; #ifdef TORRENT_WINDOWS // the path passed to FindFirstFile() must be // a pattern p.append((!p.empty() && p.back() != '\\') ? "\\*" : "*"); #else // the path passed to opendir() may not // end with a / if (!p.empty() && p.back() == '/') p.pop_back(); #endif native_path_string f = convert_to_native_path_string(p); #ifdef TORRENT_WINDOWS m_inode = 0; m_handle = FindFirstFileW(f.c_str(), &m_fd); if (m_handle == INVALID_HANDLE_VALUE) { ec.assign(GetLastError(), system_category()); m_done = true; return; } #else m_handle = ::opendir(f.c_str()); if (m_handle == nullptr) { ec.assign(errno, system_category()); m_done = true; return; } // read the first entry next(ec); #endif } directory::~directory() { #ifdef TORRENT_WINDOWS if (m_handle != INVALID_HANDLE_VALUE) FindClose(m_handle); #else if (m_handle) ::closedir(m_handle); #endif } std::uint64_t directory::inode() const { return m_inode; } std::string directory::file() const { #ifdef TORRENT_WINDOWS return convert_from_native_path(m_fd.cFileName); #else return convert_from_native(m_name); #endif } void directory::next(error_code& ec) { ec.clear(); #ifdef TORRENT_WINDOWS if (FindNextFileW(m_handle, &m_fd) == 0) { m_done = true; int err = GetLastError(); if (err != ERROR_NO_MORE_FILES) ec.assign(err, system_category()); } ++m_inode; #else struct dirent* de; errno = 0; if ((de = ::readdir(m_handle)) != nullptr) { m_inode = de->d_ino; m_name = de->d_name; } else { if (errno) ec.assign(errno, system_category()); m_done = true; } #endif } #ifndef INVALID_HANDLE_VALUE #define INVALID_HANDLE_VALUE (-1) #endif #ifdef TORRENT_WINDOWS struct overlapped_t { overlapped_t() { std::memset(&ol, 0, sizeof(ol)); ol.hEvent = CreateEvent(0, true, false, 0); } ~overlapped_t() { if (ol.hEvent != INVALID_HANDLE_VALUE) CloseHandle(ol.hEvent); } int wait(HANDLE file, error_code& ec) { if (ol.hEvent != INVALID_HANDLE_VALUE && WaitForSingleObject(ol.hEvent, INFINITE) == WAIT_FAILED) { ec.assign(GetLastError(), system_category()); return -1; } DWORD ret; if (GetOverlappedResult(file, &ol, &ret, false) == 0) { DWORD last_error = GetLastError(); if (last_error != ERROR_HANDLE_EOF) { #ifdef ERROR_CANT_WAIT TORRENT_ASSERT(last_error != ERROR_CANT_WAIT); #endif ec.assign(last_error, system_category()); return -1; } } return ret; } OVERLAPPED ol; }; #endif // TORRENT_WINDOWS #ifdef TORRENT_WINDOWS bool get_manage_volume_privs(); // this needs to be run before CreateFile bool file::has_manage_volume_privs = get_manage_volume_privs(); #endif file::file() : m_file_handle(INVALID_HANDLE_VALUE) {} file::file(std::string const& path, open_mode_t const mode, error_code& ec) : m_file_handle(INVALID_HANDLE_VALUE) { // the return value is not important, since the // error code contains the same information open(path, mode, ec); } file::~file() { close(); } bool file::open(std::string const& path, open_mode_t mode, error_code& ec) { close(); native_path_string file_path = convert_to_native_path_string(path); #ifdef TORRENT_WINDOWS struct win_open_mode_t { DWORD rw_mode; DWORD create_mode; }; static std::array const mode_array{ { // read_only {GENERIC_READ, OPEN_EXISTING}, // write_only {GENERIC_WRITE, OPEN_ALWAYS}, // read_write {GENERIC_WRITE | GENERIC_READ, OPEN_ALWAYS}, }}; static std::array const attrib_array{ { FILE_ATTRIBUTE_NORMAL, // no attrib FILE_ATTRIBUTE_HIDDEN, // hidden FILE_ATTRIBUTE_NORMAL, // executable FILE_ATTRIBUTE_HIDDEN, // hidden + executable }}; TORRENT_ASSERT(static_cast(mode & open_mode::rw_mask) < mode_array.size()); win_open_mode_t const& m = mode_array[static_cast(mode & open_mode::rw_mask)]; DWORD a = attrib_array[static_cast(mode & open_mode::attribute_mask) >> 7]; // one might think it's a good idea to pass in FILE_FLAG_RANDOM_ACCESS. It // turns out that it isn't. That flag will break your operating system: // http://support.microsoft.com/kb/2549369 DWORD const flags = ((mode & open_mode::random_access) ? 0 : FILE_FLAG_SEQUENTIAL_SCAN) | a | FILE_FLAG_OVERLAPPED | ((mode & open_mode::no_cache) ? FILE_FLAG_WRITE_THROUGH : 0); handle_type handle = CreateFileW(file_path.c_str(), m.rw_mode , FILE_SHARE_READ | FILE_SHARE_WRITE , 0, m.create_mode, flags, 0); if (handle == INVALID_HANDLE_VALUE) { ec.assign(GetLastError(), system_category()); TORRENT_ASSERT(ec); return false; } m_file_handle = handle; // try to make the file sparse if supported // only set this flag if the file is opened for writing if ((mode & open_mode::sparse) && (mode & open_mode::rw_mask) != open_mode::read_only) { DWORD temp; overlapped_t ol; BOOL ret = ::DeviceIoControl(native_handle(), FSCTL_SET_SPARSE, 0, 0 , 0, 0, &temp, &ol.ol); error_code error; if (ret == FALSE && GetLastError() == ERROR_IO_PENDING) ol.wait(native_handle(), error); } #else // TORRENT_WINDOWS // rely on default umask to filter x and w permissions // for group and others int permissions = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH; if ((mode & open_mode::attribute_executable)) permissions |= S_IXGRP | S_IXOTH | S_IXUSR; #ifdef O_BINARY static const int mode_array[] = {O_RDONLY | O_BINARY, O_WRONLY | O_CREAT | O_BINARY, O_RDWR | O_CREAT | O_BINARY}; #else static const int mode_array[] = {O_RDONLY, O_WRONLY | O_CREAT, O_RDWR | O_CREAT}; #endif int open_mode = 0 #ifdef O_NOATIME | ((mode & open_mode::no_atime) ? O_NOATIME : 0) #endif #ifdef O_SYNC | ((mode & open_mode::no_cache) ? O_SYNC : 0) #endif ; handle_type handle = ::open(file_path.c_str() , mode_array[static_cast(mode & open_mode::rw_mask)] | open_mode , permissions); #ifdef O_NOATIME // O_NOATIME is not allowed for files we don't own // so, if we get EPERM when we try to open with it // try again without O_NOATIME if (handle == -1 && (mode & open_mode::no_atime) && errno == EPERM) { mode &= ~open_mode::no_atime; open_mode &= ~O_NOATIME; handle = ::open(file_path.c_str() , mode_array[static_cast(mode & open_mode::rw_mask)] | open_mode , permissions); } #endif if (handle == -1) { ec.assign(errno, system_category()); TORRENT_ASSERT(ec); return false; } m_file_handle = handle; #ifdef DIRECTIO_ON // for solaris if ((mode & open_mode::no_cache)) { int yes = 1; directio(native_handle(), DIRECTIO_ON); } #endif #ifdef F_NOCACHE // for BSD/Mac if ((mode & open_mode::no_cache)) { int yes = 1; ::fcntl(native_handle(), F_NOCACHE, &yes); #ifdef F_NODIRECT // it's OK to temporarily cache written pages ::fcntl(native_handle(), F_NODIRECT, &yes); #endif } #endif #ifdef POSIX_FADV_RANDOM if ((mode & open_mode::random_access)) { // disable read-ahead // NOTE: in android this function was introduced in API 21, // but the constant POSIX_FADV_RANDOM is there for lower // API levels, just don't add :: to allow a macro workaround posix_fadvise(native_handle(), 0, 0, POSIX_FADV_RANDOM); } #endif #endif m_open_mode = mode; TORRENT_ASSERT(is_open()); return true; } bool file::is_open() const { return m_file_handle != INVALID_HANDLE_VALUE; } #ifdef TORRENT_WINDOWS // returns true if the given file has any regions that are // sparse, i.e. not allocated. bool is_sparse(HANDLE file) { LARGE_INTEGER file_size; if (!GetFileSizeEx(file, &file_size)) return false; overlapped_t ol; if (ol.ol.hEvent == nullptr) return false; #ifndef FSCTL_QUERY_ALLOCATED_RANGES typedef struct _FILE_ALLOCATED_RANGE_BUFFER { LARGE_INTEGER FileOffset; LARGE_INTEGER Length; } FILE_ALLOCATED_RANGE_BUFFER; #define FSCTL_QUERY_ALLOCATED_RANGES ((0x9 << 16) | (1 << 14) | (51 << 2) | 3) #endif FILE_ALLOCATED_RANGE_BUFFER in; in.FileOffset.QuadPart = 0; in.Length.QuadPart = file_size.QuadPart; FILE_ALLOCATED_RANGE_BUFFER out[2]; DWORD returned_bytes = 0; BOOL ret = DeviceIoControl(file, FSCTL_QUERY_ALLOCATED_RANGES, (void*)&in, sizeof(in) , out, sizeof(out), &returned_bytes, &ol.ol); if (ret == FALSE && GetLastError() == ERROR_IO_PENDING) { error_code ec; returned_bytes = ol.wait(file, ec); if (ec) return true; } else if (ret == FALSE) { return true; } // if we have more than one range in the file, we're sparse if (returned_bytes != sizeof(FILE_ALLOCATED_RANGE_BUFFER)) { return true; } return (in.Length.QuadPart != out[0].Length.QuadPart); } #endif void file::close() { if (!is_open()) return; #ifdef TORRENT_WINDOWS // if this file is open for writing, has the sparse // flag set, but there are no sparse regions, unset // the flag open_mode_t const rw_mode = m_open_mode & open_mode::rw_mask; if ((rw_mode != open_mode::read_only) && (m_open_mode & open_mode::sparse) && !is_sparse(native_handle())) { overlapped_t ol; // according to MSDN, clearing the sparse flag of a file only // works on windows vista and later #ifdef TORRENT_MINGW typedef struct _FILE_SET_SPARSE_BUFFER { BOOLEAN SetSparse; } FILE_SET_SPARSE_BUFFER; #endif DWORD temp; FILE_SET_SPARSE_BUFFER b; b.SetSparse = FALSE; BOOL ret = ::DeviceIoControl(native_handle(), FSCTL_SET_SPARSE, &b, sizeof(b) , 0, 0, &temp, &ol.ol); error_code ec; if (ret == FALSE && GetLastError() == ERROR_IO_PENDING) { ol.wait(native_handle(), ec); } } CloseHandle(native_handle()); #else if (m_file_handle != INVALID_HANDLE_VALUE) ::close(m_file_handle); #endif m_file_handle = INVALID_HANDLE_VALUE; m_open_mode = open_mode_t{}; } namespace { void gather_copy(span bufs, char* dst) { std::size_t offset = 0; for (auto buf : bufs) { std::memcpy(dst + offset, buf.data(), buf.size()); offset += buf.size(); } } void scatter_copy(span bufs, char const* src) { std::size_t offset = 0; for (auto buf : bufs) { std::memcpy(buf.data(), src + offset, buf.size()); offset += buf.size(); } } bool coalesce_read_buffers(span& bufs , iovec_t& tmp) { auto const buf_size = aux::numeric_cast(bufs_size(bufs)); auto buf = new char[buf_size]; tmp = { buf, buf_size }; bufs = span(tmp); return true; } void coalesce_read_buffers_end(span bufs , char* const buf, bool const copy) { if (copy) scatter_copy(bufs, buf); delete[] buf; } bool coalesce_write_buffers(span& bufs , iovec_t& tmp) { auto const buf_size = aux::numeric_cast(bufs_size(bufs)); auto buf = new char[buf_size]; gather_copy(bufs, buf); tmp = { buf, buf_size }; bufs = span(tmp); return true; } #if TORRENT_USE_PREADV namespace { int bufs_size(span<::iovec> bufs) { std::size_t size = 0; for (auto buf : bufs) size += buf.iov_len; return int(size); } } #endif // TORRENT_USE_PREADV template std::int64_t iov(Fun f, handle_type fd, std::int64_t file_offset , span bufs, error_code& ec) { #if TORRENT_USE_PREADV TORRENT_ALLOCA(vec, ::iovec, bufs.size()); auto it = vec.begin(); for (auto const& b : bufs) { it->iov_base = b.data(); it->iov_len = b.size(); ++it; } int ret = 0; while (!vec.empty()) { #ifdef IOV_MAX auto const nbufs = vec.first(std::min(int(vec.size()), IOV_MAX)); #else auto const nbufs = vec; #endif int tmp_ret = 0; tmp_ret = f(fd, nbufs.data(), int(nbufs.size()), file_offset); if (tmp_ret < 0) { #ifdef TORRENT_WINDOWS ec.assign(GetLastError(), system_category()); #else ec.assign(errno, system_category()); #endif return -1; } file_offset += tmp_ret; ret += tmp_ret; // we got a short read/write. It's either 0, and we're at EOF, or we // just need to issue the read/write operation again. In either case, // punt that to the upper layer, as reissuing the operations is // complicated here int const expected_len = bufs_size(nbufs); if (tmp_ret < expected_len) break; vec = vec.subspan(nbufs.size()); } return ret; #elif TORRENT_USE_PREAD std::int64_t ret = 0; for (auto i : bufs) { std::int64_t const tmp_ret = f(fd, i.data(), i.size(), file_offset); if (tmp_ret < 0) { #ifdef TORRENT_WINDOWS ec.assign(GetLastError(), system_category()); #else ec.assign(errno, system_category()); #endif return -1; } file_offset += tmp_ret; ret += tmp_ret; if (tmp_ret < int(i.size())) break; } return ret; #else // not PREADV nor PREAD int ret = 0; #ifdef TORRENT_WINDOWS if (SetFilePointerEx(fd, offs, &offs, FILE_BEGIN) == FALSE) { ec.assign(GetLastError(), system_category()); return -1; } #else if (lseek(fd, file_offset, SEEK_SET) < 0) { ec.assign(errno, system_category()); return -1; } #endif for (auto i : bufs) { int tmp_ret = f(fd, i.data(), i.size()); if (tmp_ret < 0) { #ifdef TORRENT_WINDOWS ec.assign(GetLastError(), system_category()); #else ec.assign(errno, system_category()); #endif return -1; } file_offset += tmp_ret; ret += tmp_ret; if (tmp_ret < int(i.size())) break; } return ret; #endif // USE_PREADV } } // anonymous namespace // this has to be thread safe and atomic. i.e. on posix systems it has to be // turned into a series of pread() calls std::int64_t file::readv(std::int64_t file_offset, span bufs , error_code& ec, open_mode_t flags) { if (m_file_handle == INVALID_HANDLE_VALUE) { #ifdef TORRENT_WINDOWS ec = error_code(ERROR_INVALID_HANDLE, system_category()); #else ec = error_code(boost::system::errc::bad_file_descriptor, generic_category()); #endif return -1; } TORRENT_ASSERT((m_open_mode & open_mode::rw_mask) == open_mode::read_only || (m_open_mode & open_mode::rw_mask) == open_mode::read_write); TORRENT_ASSERT(!bufs.empty()); TORRENT_ASSERT(is_open()); // there's no point in coalescing single buffer writes if (bufs.size() == 1) { flags &= ~open_mode::coalesce_buffers; } iovec_t tmp; span tmp_bufs = bufs; if (flags & open_mode::coalesce_buffers) { if (!coalesce_read_buffers(tmp_bufs, tmp)) // ok, that failed, don't coalesce this read flags &= ~open_mode::coalesce_buffers; } #if TORRENT_USE_PREADV std::int64_t ret = iov(&::preadv, native_handle(), file_offset, tmp_bufs, ec); #elif TORRENT_USE_PREAD std::int64_t ret = iov(&::pread, native_handle(), file_offset, tmp_bufs, ec); #else std::int64_t ret = iov(&::read, native_handle(), file_offset, tmp_bufs, ec); #endif if (flags & open_mode::coalesce_buffers) coalesce_read_buffers_end(bufs , tmp.data(), !ec); return ret; } // This has to be thread safe, i.e. atomic. // that means, on posix this has to be turned into a series of // pwrite() calls std::int64_t file::writev(std::int64_t file_offset, span bufs , error_code& ec, open_mode_t flags) { if (m_file_handle == INVALID_HANDLE_VALUE) { #ifdef TORRENT_WINDOWS ec = error_code(ERROR_INVALID_HANDLE, system_category()); #else ec = error_code(boost::system::errc::bad_file_descriptor, generic_category()); #endif return -1; } TORRENT_ASSERT((m_open_mode & open_mode::rw_mask) == open_mode::write_only || (m_open_mode & open_mode::rw_mask) == open_mode::read_write); TORRENT_ASSERT(!bufs.empty()); TORRENT_ASSERT(is_open()); ec.clear(); // there's no point in coalescing single buffer writes if (bufs.size() == 1) { flags &= ~open_mode::coalesce_buffers; } iovec_t tmp; if (flags & open_mode::coalesce_buffers) { if (!coalesce_write_buffers(bufs, tmp)) // ok, that failed, don't coalesce writes flags &= ~open_mode::coalesce_buffers; } #if TORRENT_USE_PREADV std::int64_t ret = iov(&::pwritev, native_handle(), file_offset, bufs, ec); #elif TORRENT_USE_PREAD std::int64_t ret = iov(&::pwrite, native_handle(), file_offset, bufs, ec); #else std::int64_t ret = iov(&::write, native_handle(), file_offset, bufs, ec); #endif if (flags & open_mode::coalesce_buffers) delete[] tmp.data(); #if TORRENT_USE_FDATASYNC \ && !defined F_NOCACHE && \ !defined DIRECTIO_ON if (m_open_mode & open_mode::no_cache) { if (::fdatasync(native_handle()) != 0 && errno != EINVAL && errno != ENOSYS) { ec.assign(errno, system_category()); } } #endif return ret; } #ifdef TORRENT_WINDOWS bool get_manage_volume_privs() { using OpenProcessToken_t = BOOL (WINAPI*)( HANDLE, DWORD, PHANDLE); using LookupPrivilegeValue_t = BOOL (WINAPI*)( LPCSTR, LPCSTR, PLUID); using AdjustTokenPrivileges_t = BOOL (WINAPI*)( HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD); auto OpenProcessToken = aux::get_library_procedure("OpenProcessToken"); auto LookupPrivilegeValue = aux::get_library_procedure("LookupPrivilegeValueA"); auto AdjustTokenPrivileges = aux::get_library_procedure("AdjustTokenPrivileges"); if (OpenProcessToken == nullptr || LookupPrivilegeValue == nullptr || AdjustTokenPrivileges == nullptr) return false; HANDLE token; if (!OpenProcessToken(GetCurrentProcess() , TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token)) return false; TOKEN_PRIVILEGES privs; if (!LookupPrivilegeValue(nullptr, "SeManageVolumePrivilege" , &privs.Privileges[0].Luid)) { CloseHandle(token); return false; } privs.PrivilegeCount = 1; privs.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; bool ret = AdjustTokenPrivileges(token, FALSE, &privs, 0, nullptr, nullptr) && GetLastError() == ERROR_SUCCESS; CloseHandle(token); return ret; } void set_file_valid_data(HANDLE f, std::int64_t size) { using SetFileValidData_t = BOOL (WINAPI*)(HANDLE, LONGLONG); auto SetFileValidData = aux::get_library_procedure("SetFileValidData"); if (SetFileValidData == nullptr) return; // we don't necessarily expect to have enough // privilege to do this, so ignore errors. SetFileValidData(f, size); } #endif bool file::set_size(std::int64_t s, error_code& ec) { TORRENT_ASSERT(is_open()); TORRENT_ASSERT(s >= 0); #ifdef TORRENT_WINDOWS LARGE_INTEGER offs; LARGE_INTEGER cur_size; if (GetFileSizeEx(native_handle(), &cur_size) == FALSE) { ec.assign(GetLastError(), system_category()); return false; } offs.QuadPart = s; // only set the file size if it's not already at // the right size. We don't want to update the // modification time if we don't have to if (cur_size.QuadPart != s) { if (SetFilePointerEx(native_handle(), offs, &offs, FILE_BEGIN) == FALSE) { ec.assign(GetLastError(), system_category()); return false; } if (::SetEndOfFile(native_handle()) == FALSE) { ec.assign(GetLastError(), system_category()); return false; } if (!(m_open_mode & open_mode::sparse)) { // if the user has permissions, avoid filling // the file with zeroes, but just fill it with // garbage instead set_file_valid_data(m_file_handle, s); } } #else // NON-WINDOWS struct stat st{}; if (::fstat(native_handle(), &st) != 0) { ec.assign(errno, system_category()); return false; } // only truncate the file if it doesn't already // have the right size. We don't want to update if (st.st_size != s && ::ftruncate(native_handle(), s) < 0) { ec.assign(errno, system_category()); return false; } // if we're not in sparse mode, allocate the storage // but only if the number of allocated blocks for the file // is less than the file size. Otherwise we would just // update the modification time of the file for no good // reason. if (!(m_open_mode & open_mode::sparse) && std::int64_t(st.st_blocks) < (s + st.st_blksize - 1) / st.st_blksize) { // How do we know that the file is already allocated? // if we always try to allocate the space, we'll update // the modification time without actually changing the file // but if we don't do anything if the file size is #ifdef F_PREALLOCATE fstore_t f = {F_ALLOCATECONTIG, F_PEOFPOSMODE, 0, s, 0}; if (fcntl(native_handle(), F_PREALLOCATE, &f) < 0) { // It appears Apple's new filesystem (APFS) does not // support this control message and fails with EINVAL // if so, just skip it if (errno != EINVAL) { if (errno != ENOSPC) { ec.assign(errno, system_category()); return false; } // ok, let's try to allocate non contiguous space then f.fst_flags = F_ALLOCATEALL; if (fcntl(native_handle(), F_PREALLOCATE, &f) < 0) { ec.assign(errno, system_category()); return false; } } } #endif // F_PREALLOCATE #ifdef F_ALLOCSP64 flock64 fl64; fl64.l_whence = SEEK_SET; fl64.l_start = 0; fl64.l_len = s; if (fcntl(native_handle(), F_ALLOCSP64, &fl64) < 0) { ec.assign(errno, system_category()); return false; } #endif // F_ALLOCSP64 #if TORRENT_HAS_FALLOCATE // if fallocate failed, we have to use posix_fallocate // which can be painfully slow // if you get a compile error here, you might want to // define TORRENT_HAS_FALLOCATE to 0. int const ret = posix_fallocate(native_handle(), 0, s); // posix_allocate fails with EINVAL in case the underlying // filesystem does not support this operation if (ret != 0 && ret != EINVAL) { ec.assign(ret, system_category()); return false; } #endif // TORRENT_HAS_FALLOCATE } #endif // TORRENT_WINDOWS return true; } std::int64_t file::get_size(error_code& ec) const { #ifdef TORRENT_WINDOWS LARGE_INTEGER file_size; if (!GetFileSizeEx(native_handle(), &file_size)) { ec.assign(GetLastError(), system_category()); return -1; } return file_size.QuadPart; #else struct stat fs = {}; if (::fstat(native_handle(), &fs) != 0) { ec.assign(errno, system_category()); return -1; } return fs.st_size; #endif } std::int64_t file::sparse_end(std::int64_t start) const { #ifdef TORRENT_WINDOWS #ifndef FSCTL_QUERY_ALLOCATED_RANGES typedef struct _FILE_ALLOCATED_RANGE_BUFFER { LARGE_INTEGER FileOffset; LARGE_INTEGER Length; } FILE_ALLOCATED_RANGE_BUFFER; #define FSCTL_QUERY_ALLOCATED_RANGES ((0x9 << 16) | (1 << 14) | (51 << 2) | 3) #endif // TORRENT_MINGW FILE_ALLOCATED_RANGE_BUFFER buffer; DWORD bytes_returned = 0; FILE_ALLOCATED_RANGE_BUFFER in; error_code ec; std::int64_t file_size = get_size(ec); if (ec) return start; in.FileOffset.QuadPart = start; in.Length.QuadPart = file_size - start; if (!DeviceIoControl(native_handle(), FSCTL_QUERY_ALLOCATED_RANGES , &in, sizeof(FILE_ALLOCATED_RANGE_BUFFER) , &buffer, sizeof(FILE_ALLOCATED_RANGE_BUFFER), &bytes_returned, 0)) { if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) return start; } // if there are no allocated regions within the rest // of the file, return the end of the file if (bytes_returned == 0) return file_size; // assume that this range overlaps the start of the // region we were interested in, and that start actually // resides in an allocated region. if (buffer.FileOffset.QuadPart < start) return start; // return the offset to the next allocated region return buffer.FileOffset.QuadPart; #elif defined SEEK_DATA // this is supported on solaris std::int64_t ret = ::lseek(native_handle(), start, SEEK_DATA); if (ret < 0) return start; return start; #else return start; #endif } }