/* Copyright (c) 2007, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/config.hpp" #include #include #include // for wcstombscstombs #include "libtorrent/enum_net.hpp" #include "libtorrent/broadcast_socket.hpp" #include "libtorrent/error_code.hpp" #if BOOST_VERSION < 103500 #include #else #include #endif #if defined TORRENT_BSD || defined TORRENT_SOLARIS #include #include #include #include #include #include #include #endif #if defined TORRENT_BSD #include #endif #if defined TORRENT_WINDOWS || defined TORRENT_MINGW #ifndef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN #endif #include #include #endif #if defined TORRENT_LINUX #include #include #include #include #include #include #include #include #include #include #include #include #include #include #endif namespace libtorrent { namespace { address inaddr_to_address(in_addr const* ina, int len = 4) { typedef asio::ip::address_v4::bytes_type bytes_t; bytes_t b; std::memset(&b[0], 0, b.size()); if (len > 0) std::memcpy(&b[0], ina, (std::min)(len, int(b.size()))); return address_v4(b); } #if TORRENT_USE_IPV6 address inaddr6_to_address(in6_addr const* ina6, int len = 16) { typedef asio::ip::address_v6::bytes_type bytes_t; bytes_t b; std::memset(&b[0], 0, b.size()); if (len > 0) std::memcpy(&b[0], ina6, (std::min)(len, int(b.size()))); return address_v6(b); } #endif int sockaddr_len(sockaddr const* sin) { #if defined TORRENT_WINDOWS || TORRENT_MINGW || defined TORRENT_LINUX return sin->sa_family == AF_INET ? sizeof(sockaddr_in) : sizeof(sockaddr_in6); #else return sin->sa_len; #endif } address sockaddr_to_address(sockaddr const* sin, int assume_family = -1) { if (sin->sa_family == AF_INET || assume_family == AF_INET) return inaddr_to_address(&((sockaddr_in const*)sin)->sin_addr , sockaddr_len(sin) - offsetof(sockaddr, sa_data)); #if TORRENT_USE_IPV6 else if (sin->sa_family == AF_INET6 || assume_family == AF_INET6) return inaddr6_to_address(&((sockaddr_in6 const*)sin)->sin6_addr , sockaddr_len(sin) - offsetof(sockaddr, sa_data)); #endif return address(); } #if defined TORRENT_LINUX int read_nl_sock(int sock, char *buf, int bufsize, int seq, int pid) { nlmsghdr* nl_hdr; int msg_len = 0; do { int read_len = recv(sock, buf, bufsize - msg_len, 0); if (read_len < 0) return -1; nl_hdr = (nlmsghdr*)buf; if ((NLMSG_OK(nl_hdr, read_len) == 0) || (nl_hdr->nlmsg_type == NLMSG_ERROR)) return -1; if (nl_hdr->nlmsg_type == NLMSG_DONE) break; buf += read_len; msg_len += read_len; if ((nl_hdr->nlmsg_flags & NLM_F_MULTI) == 0) break; } while((nl_hdr->nlmsg_seq != seq) || (nl_hdr->nlmsg_pid != pid)); return msg_len; } bool parse_route(int s, nlmsghdr* nl_hdr, ip_route* rt_info) { rtmsg* rt_msg = (rtmsg*)NLMSG_DATA(nl_hdr); if((rt_msg->rtm_family != AF_INET && rt_msg->rtm_family != AF_INET6) || (rt_msg->rtm_table != RT_TABLE_MAIN && rt_msg->rtm_table != RT_TABLE_LOCAL)) return false; int if_index = 0; int rt_len = RTM_PAYLOAD(nl_hdr); for (rtattr* rt_attr = (rtattr*)RTM_RTA(rt_msg); RTA_OK(rt_attr,rt_len); rt_attr = RTA_NEXT(rt_attr,rt_len)) { switch(rt_attr->rta_type) { case RTA_OIF: if_index = *(int*)RTA_DATA(rt_attr); break; case RTA_GATEWAY: #if TORRENT_USE_IPV6 if (rt_msg->rtm_family == AF_INET6) { rt_info->gateway = inaddr6_to_address((in6_addr*)RTA_DATA(rt_attr)); } else #endif { rt_info->gateway = inaddr_to_address((in_addr*)RTA_DATA(rt_attr)); } break; case RTA_DST: #if TORRENT_USE_IPV6 if (rt_msg->rtm_family == AF_INET6) { rt_info->destination = inaddr6_to_address((in6_addr*)RTA_DATA(rt_attr)); } else #endif { rt_info->destination = inaddr_to_address((in_addr*)RTA_DATA(rt_attr)); } break; } } if_indextoname(if_index, rt_info->name); ifreq req; memset(&req, 0, sizeof(req)); if_indextoname(if_index, req.ifr_name); ioctl(s, SIOCGIFMTU, &req); rt_info->mtu = req.ifr_mtu; // obviously this doesn't work correctly. How do you get the netmask for a route? // if (ioctl(s, SIOCGIFNETMASK, &req) == 0) { // rt_info->netmask = sockaddr_to_address(&req.ifr_addr, req.ifr_addr.sa_family); // } return true; } #endif #if defined TORRENT_BSD bool parse_route(int s, rt_msghdr* rtm, ip_route* rt_info) { sockaddr* rti_info[RTAX_MAX]; sockaddr* sa = (sockaddr*)(rtm + 1); for (int i = 0; i < RTAX_MAX; ++i) { if ((rtm->rtm_addrs & (1 << i)) == 0) { rti_info[i] = 0; continue; } rti_info[i] = sa; #define ROUNDUP(a) \ ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) sa = (sockaddr*)((char*)(sa) + ROUNDUP(sa->sa_len)); #undef ROUNDUP } sa = rti_info[RTAX_GATEWAY]; if (sa == 0 || rti_info[RTAX_DST] == 0 || rti_info[RTAX_NETMASK] == 0 || (sa->sa_family != AF_INET #if TORRENT_USE_IPV6 && sa->sa_family != AF_INET6 #endif )) return false; rt_info->gateway = sockaddr_to_address(rti_info[RTAX_GATEWAY]); rt_info->destination = sockaddr_to_address(rti_info[RTAX_DST]); rt_info->netmask = sockaddr_to_address(rti_info[RTAX_NETMASK] , rt_info->destination.is_v4() ? AF_INET : AF_INET6); if_indextoname(rtm->rtm_index, rt_info->name); ifreq req; memset(&req, 0, sizeof(req)); if_indextoname(rtm->rtm_index, req.ifr_name); if (ioctl(s, SIOCGIFMTU, &req) < 0) return false; rt_info->mtu = req.ifr_mtu; return true; } #endif #ifdef TORRENT_BSD bool verify_sockaddr(sockaddr_in* sin) { return (sin->sin_len == sizeof(sockaddr_in) && sin->sin_family == AF_INET) #if TORRENT_USE_IPV6 || (sin->sin_len == sizeof(sockaddr_in6) && sin->sin_family == AF_INET6) #endif ; } #endif }} // namespace libtorrent { // return (a1 & mask) == (a2 & mask) bool match_addr_mask(address const& a1, address const& a2, address const& mask) { // all 3 addresses needs to belong to the same family if (a1.is_v4() != a2.is_v4()) return false; if (a1.is_v4() != mask.is_v4()) return false; #if TORRENT_USE_IPV6 if (a1.is_v6()) { address_v6::bytes_type b1; address_v6::bytes_type b2; address_v6::bytes_type m; b1 = a1.to_v6().to_bytes(); b2 = a2.to_v6().to_bytes(); m = mask.to_v6().to_bytes(); for (int i = 0; i < b1.size(); ++i) b1[i] &= m[i]; return memcmp(&b1[0], &b2[0], b1.size()); } #endif return (a1.to_v4().to_ulong() & mask.to_v4().to_ulong()) == (a2.to_v4().to_ulong() & mask.to_v4().to_ulong()); } bool in_local_network(io_service& ios, address const& addr, error_code& ec) { std::vector net = enum_net_interfaces(ios, ec); if (ec) return false; for (std::vector::iterator i = net.begin() , end(net.end()); i != end; ++i) { if (match_addr_mask(addr, i->interface_address, i->netmask)) return true; } return false; } #if defined TORRENT_WINDOWS || defined TORRENT_MINGW address build_netmask(int bits, int family) { if (family == AF_INET) { typedef asio::ip::address_v4::bytes_type bytes_t; bytes_t b; std::memset(&b[0], 0xff, b.size()); for (int i = sizeof(bytes_t)/8-1; i > 0; --i) { if (bits < 8) { b[i] <<= bits; break; } b[i] = 0; bits -= 8; } return address_v4(b); } #if TORRENT_USE_IPV6 else if (family == AF_INET6) { typedef asio::ip::address_v6::bytes_type bytes_t; bytes_t b; std::memset(&b[0], 0xff, b.size()); for (int i = sizeof(bytes_t)/8-1; i > 0; --i) { if (bits < 8) { b[i] <<= bits; break; } b[i] = 0; bits -= 8; } return address_v6(b); } #endif else { return address(); } } #endif std::vector enum_net_interfaces(io_service& ios, error_code& ec) { std::vector ret; // covers linux, MacOS X and BSD distributions #if defined TORRENT_LINUX || defined TORRENT_BSD || defined TORRENT_SOLARIS int s = socket(AF_INET, SOCK_DGRAM, 0); if (s < 0) { ec = error_code(errno, asio::error::system_category); return ret; } ifconf ifc; char buf[1024]; ifc.ifc_len = sizeof(buf); ifc.ifc_buf = buf; if (ioctl(s, SIOCGIFCONF, &ifc) < 0) { ec = error_code(errno, asio::error::system_category); close(s); return ret; } char *ifr = (char*)ifc.ifc_req; int remaining = ifc.ifc_len; while (remaining) { ifreq const& item = *reinterpret_cast(ifr); if (item.ifr_addr.sa_family == AF_INET #if TORRENT_USE_IPV6 || item.ifr_addr.sa_family == AF_INET6 #endif ) { ip_interface iface; iface.interface_address = sockaddr_to_address(&item.ifr_addr); strcpy(iface.name, item.ifr_name); ifreq req; memset(&req, 0, sizeof(req)); strncpy(req.ifr_name, item.ifr_name, IF_NAMESIZE); if (ioctl(s, SIOCGIFMTU, &req) < 0) { ec = error_code(errno, asio::error::system_category); close(s); return ret; } iface.mtu = req.ifr_mtu; memset(&req, 0, sizeof(req)); strncpy(req.ifr_name, item.ifr_name, IF_NAMESIZE); if (ioctl(s, SIOCGIFNETMASK, &req) < 0) { #if TORRENT_USE_IPV6 if (iface.interface_address.is_v6()) { // this is expected to fail (at least on MacOS X) iface.netmask = address_v6::any(); } else #endif { ec = error_code(errno, asio::error::system_category); close(s); return ret; } } else { iface.netmask = sockaddr_to_address(&req.ifr_addr, item.ifr_addr.sa_family); } ret.push_back(iface); } #if defined TORRENT_BSD int current_size = item.ifr_addr.sa_len + IFNAMSIZ; #elif defined TORRENT_LINUX || defined TORRENT_SOLARIS int current_size = sizeof(ifreq); #endif ifr += current_size; remaining -= current_size; } close(s); #elif defined TORRENT_WINDOWS || defined TORRENT_MINGW // Load Iphlpapi library HMODULE iphlp = LoadLibraryA("Iphlpapi.dll"); if (iphlp) { // Get GetAdaptersAddresses() pointer typedef ULONG (WINAPI *GetAdaptersAddresses_t)(ULONG,ULONG,PVOID,PIP_ADAPTER_ADDRESSES,PULONG); GetAdaptersAddresses_t GetAdaptersAddresses = (GetAdaptersAddresses_t)GetProcAddress( iphlp, "GetAdaptersAddresses"); if (GetAdaptersAddresses) { PIP_ADAPTER_ADDRESSES adapter_addresses = 0; ULONG out_buf_size = 0; if (GetAdaptersAddresses(AF_UNSPEC, GAA_FLAG_SKIP_MULTICAST | GAA_FLAG_SKIP_DNS_SERVER | GAA_FLAG_SKIP_ANYCAST, NULL, adapter_addresses, &out_buf_size) != ERROR_BUFFER_OVERFLOW) { FreeLibrary(iphlp); ec = asio::error::operation_not_supported; return std::vector(); } adapter_addresses = (IP_ADAPTER_ADDRESSES*)malloc(out_buf_size); if (!adapter_addresses) { FreeLibrary(iphlp); ec = asio::error::no_memory; return std::vector(); } if (GetAdaptersAddresses(AF_UNSPEC, GAA_FLAG_SKIP_MULTICAST | GAA_FLAG_SKIP_DNS_SERVER | GAA_FLAG_SKIP_ANYCAST, NULL, adapter_addresses, &out_buf_size) == NO_ERROR) { for (PIP_ADAPTER_ADDRESSES adapter = adapter_addresses; adapter != 0; adapter = adapter->Next) { ip_interface r; strncpy(r.name, adapter->AdapterName, sizeof(r.name)); r.name[sizeof(r.name)-1] = 0; r.mtu = adapter->Mtu; IP_ADAPTER_UNICAST_ADDRESS* unicast = adapter->FirstUnicastAddress; while (unicast) { r.interface_address = sockaddr_to_address(unicast->Address.lpSockaddr); ret.push_back(r); unicast = unicast->Next; } } } // Free memory free(adapter_addresses); FreeLibrary(iphlp); return ret; } FreeLibrary(iphlp); } SOCKET s = socket(AF_INET, SOCK_DGRAM, 0); if (s == SOCKET_ERROR) { ec = error_code(WSAGetLastError(), asio::error::system_category); return ret; } INTERFACE_INFO buffer[30]; DWORD size; if (WSAIoctl(s, SIO_GET_INTERFACE_LIST, 0, 0, buffer, sizeof(buffer), &size, 0, 0) != 0) { ec = error_code(WSAGetLastError(), asio::error::system_category); closesocket(s); return ret; } closesocket(s); int n = size / sizeof(INTERFACE_INFO); ip_interface iface; for (int i = 0; i < n; ++i) { iface.interface_address = sockaddr_to_address(&buffer[i].iiAddress.Address); if (iface.interface_address == address_v4::any()) continue; iface.netmask = sockaddr_to_address(&buffer[i].iiNetmask.Address , iface.interface_address.is_v4() ? AF_INET : AF_INET6); iface.name[0] = 0; iface.mtu = 1500; // how to get the MTU? ret.push_back(iface); } #else #warning THIS OS IS NOT RECOGNIZED, enum_net_interfaces WILL PROBABLY NOT WORK // make a best guess of the interface we're using and its IP udp::resolver r(ios); udp::resolver::iterator i = r.resolve(udp::resolver::query(asio::ip::host_name(ec), "0"), ec); if (ec) return ret; ip_interface iface; for (;i != udp::resolver_iterator(); ++i) { iface.interface_address = i->endpoint().address(); iface.mtu = 1500; if (iface.interface_address.is_v4()) iface.netmask = address_v4::netmask(iface.interface_address.to_v4()); ret.push_back(iface); } #endif return ret; } address get_default_gateway(io_service& ios, error_code& ec) { std::vector ret = enum_routes(ios, ec); #if defined TORRENT_WINDOWS || defined TORRENT_MINGW std::vector::iterator i = std::find_if(ret.begin(), ret.end() , boost::bind(&is_loopback, boost::bind(&ip_route::destination, _1))); #else std::vector::iterator i = std::find_if(ret.begin(), ret.end() , boost::bind(&ip_route::destination, _1) == address()); #endif if (i == ret.end()) return address(); return i->gateway; } std::vector enum_routes(io_service& ios, error_code& ec) { std::vector ret; #if defined TORRENT_BSD /* struct rt_msg { rt_msghdr m_rtm; char buf[512]; }; rt_msg m; int len = sizeof(rt_msg); bzero(&m, len); m.m_rtm.rtm_type = RTM_GET; m.m_rtm.rtm_flags = RTF_UP | RTF_GATEWAY; m.m_rtm.rtm_version = RTM_VERSION; m.m_rtm.rtm_addrs = RTA_DST | RTA_GATEWAY | RTA_NETMASK; m.m_rtm.rtm_seq = 0; m.m_rtm.rtm_msglen = len; int s = socket(PF_ROUTE, SOCK_RAW, AF_UNSPEC); if (s == -1) { ec = error_code(errno, asio::error::system_category); return std::vector(); } int n = write(s, &m, len); if (n == -1) { ec = error_code(errno, asio::error::system_category); close(s); return std::vector(); } else if (n != len) { ec = asio::error::operation_not_supported; close(s); return std::vector(); } bzero(&m, len); n = read(s, &m, len); if (n == -1) { ec = error_code(errno, asio::error::system_category); close(s); return std::vector(); } for (rt_msghdr* ptr = &m.m_rtm; (char*)ptr < ((char*)&m.m_rtm) + n; ptr = (rt_msghdr*)(((char*)ptr) + ptr->rtm_msglen)) { std::cout << " rtm_msglen: " << ptr->rtm_msglen << std::endl; std::cout << " rtm_type: " << ptr->rtm_type << std::endl; if (ptr->rtm_errno) { ec = error_code(ptr->rtm_errno, asio::error::system_category); return std::vector(); } if (m.m_rtm.rtm_flags & RTF_UP == 0 || m.m_rtm.rtm_flags & RTF_GATEWAY == 0) { ec = asio::error::operation_not_supported; return address_v4::any(); } if (ptr->rtm_addrs & RTA_DST == 0 || ptr->rtm_addrs & RTA_GATEWAY == 0 || ptr->rtm_addrs & RTA_NETMASK == 0) { ec = asio::error::operation_not_supported; return std::vector(); } if (ptr->rtm_msglen > len - ((char*)ptr - ((char*)&m.m_rtm))) { ec = asio::error::operation_not_supported; return std::vector(); } int min_len = sizeof(rt_msghdr) + 2 * sizeof(sockaddr_in); if (m.m_rtm.rtm_msglen < min_len) { ec = asio::error::operation_not_supported; return std::vector(); } ip_route r; // destination char* p = m.buf; sockaddr_in* sin = (sockaddr_in*)p; r.destination = sockaddr_to_address((sockaddr*)p); // gateway p += sin->sin_len; sin = (sockaddr_in*)p; r.gateway = sockaddr_to_address((sockaddr*)p); // netmask p += sin->sin_len; sin = (sockaddr_in*)p; r.netmask = sockaddr_to_address((sockaddr*)p); ret.push_back(r); } close(s); */ int mib[6] = { CTL_NET, PF_ROUTE, 0, AF_UNSPEC, NET_RT_DUMP, 0}; size_t needed = 0; if (sysctl(mib, 6, 0, &needed, 0, 0) < 0) { ec = error_code(errno, asio::error::system_category); return std::vector(); } if (needed <= 0) { return std::vector(); } boost::scoped_array buf(new (std::nothrow) char[needed]); if (buf.get() == 0) { ec = asio::error::no_memory; return std::vector(); } if (sysctl(mib, 6, buf.get(), &needed, 0, 0) < 0) { ec = error_code(errno, asio::error::system_category); return std::vector(); } char* end = buf.get() + needed; int s = socket(AF_INET, SOCK_DGRAM, 0); if (s < 0) { ec = error_code(errno, asio::error::system_category); return std::vector(); } rt_msghdr* rtm; for (char* next = buf.get(); next < end; next += rtm->rtm_msglen) { rtm = (rt_msghdr*)next; if (rtm->rtm_version != RTM_VERSION) continue; ip_route r; if (parse_route(s, rtm, &r)) ret.push_back(r); } close(s); #elif defined TORRENT_WINDOWS || defined TORRENT_MINGW /* move this to enum_net_interfaces // Load Iphlpapi library HMODULE iphlp = LoadLibraryA("Iphlpapi.dll"); if (!iphlp) { ec = asio::error::operation_not_supported; return std::vector(); } // Get GetAdaptersInfo() pointer typedef DWORD (WINAPI *GetAdaptersInfo_t)(PIP_ADAPTER_INFO, PULONG); GetAdaptersInfo_t GetAdaptersInfo = (GetAdaptersInfo_t)GetProcAddress(iphlp, "GetAdaptersInfo"); if (!GetAdaptersInfo) { FreeLibrary(iphlp); ec = asio::error::operation_not_supported; return std::vector(); } PIP_ADAPTER_INFO adapter_info = 0; ULONG out_buf_size = 0; if (GetAdaptersInfo(adapter_info, &out_buf_size) != ERROR_BUFFER_OVERFLOW) { FreeLibrary(iphlp); ec = asio::error::operation_not_supported; return std::vector(); } adapter_info = (IP_ADAPTER_INFO*)malloc(out_buf_size); if (!adapter_info) { FreeLibrary(iphlp); ec = asio::error::no_memory; return std::vector(); } if (GetAdaptersInfo(adapter_info, &out_buf_size) == NO_ERROR) { for (PIP_ADAPTER_INFO adapter = adapter_info; adapter != 0; adapter = adapter->Next) { ip_route r; r.destination = address::from_string(adapter->IpAddressList.IpAddress.String, ec); r.gateway = address::from_string(adapter->GatewayList.IpAddress.String, ec); r.netmask = address::from_string(adapter->IpAddressList.IpMask.String, ec); strncpy(r.name, adapter->AdapterName, sizeof(r.name)); if (ec) { ec = error_code(); continue; } ret.push_back(r); } } // Free memory free(adapter_info); FreeLibrary(iphlp); */ // Load Iphlpapi library HMODULE iphlp = LoadLibraryA("Iphlpapi.dll"); if (!iphlp) { ec = asio::error::operation_not_supported; return std::vector(); } typedef DWORD (WINAPI *GetIpForwardTable2_t)( ADDRESS_FAMILY, PMIB_IPFORWARD_TABLE2*); typedef void (WINAPI *FreeMibTable_t)(PVOID Memory); GetIpForwardTable2_t GetIpForwardTable2 = (GetIpForwardTable2_t)GetProcAddress( iphlp, "GetIpForwardTable2"); FreeMibTable_t FreeMibTable = (FreeMibTable_t)GetProcAddress( iphlp, "FreeMibTable"); if (GetIpForwardTable2 && FreeMibTable) { MIB_IPFORWARD_TABLE2* routes = NULL; int res = GetIpForwardTable2(AF_UNSPEC, &routes); if (res == NO_ERROR) { for (int i = 0; i < routes->NumEntries; ++i) { ip_route r; r.gateway = sockaddr_to_address((const sockaddr*)&routes->Table[i].NextHop); r.destination = sockaddr_to_address( (const sockaddr*)&routes->Table[i].DestinationPrefix.Prefix); r.netmask = build_netmask(routes->Table[i].SitePrefixLength , routes->Table[i].DestinationPrefix.Prefix.si_family); MIB_IFROW ifentry; ifentry.dwIndex = routes->Table[i].InterfaceIndex; if (GetIfEntry(&ifentry) == NO_ERROR) { wcstombs(r.name, ifentry.wszName, sizeof(r.name)); r.mtu = ifentry.dwMtu; ret.push_back(r); } } } if (routes) FreeMibTable(routes); FreeLibrary(iphlp); return ret; } // Get GetIpForwardTable() pointer typedef DWORD (WINAPI *GetIpForwardTable_t)(PMIB_IPFORWARDTABLE pIpForwardTable,PULONG pdwSize,BOOL bOrder); GetIpForwardTable_t GetIpForwardTable = (GetIpForwardTable_t)GetProcAddress( iphlp, "GetIpForwardTable"); if (!GetIpForwardTable) { FreeLibrary(iphlp); ec = asio::error::operation_not_supported; return std::vector(); } MIB_IPFORWARDTABLE* routes = NULL; ULONG out_buf_size = 0; if (GetIpForwardTable(routes, &out_buf_size, FALSE) != ERROR_INSUFFICIENT_BUFFER) { FreeLibrary(iphlp); ec = asio::error::operation_not_supported; return std::vector(); } routes = (MIB_IPFORWARDTABLE*)malloc(out_buf_size); if (!routes) { FreeLibrary(iphlp); ec = asio::error::no_memory; return std::vector(); } if (GetIpForwardTable(routes, &out_buf_size, FALSE) == NO_ERROR) { for (int i = 0; i < routes->dwNumEntries; ++i) { ip_route r; r.destination = inaddr_to_address((in_addr const*)&routes->table[i].dwForwardDest); r.netmask = inaddr_to_address((in_addr const*)&routes->table[i].dwForwardMask); r.gateway = inaddr_to_address((in_addr const*)&routes->table[i].dwForwardNextHop); MIB_IFROW ifentry; ifentry.dwIndex = routes->table[i].dwForwardIfIndex; if (GetIfEntry(&ifentry) == NO_ERROR) { wcstombs(r.name, ifentry.wszName, sizeof(r.name)); r.name[sizeof(r.name)-1] = 0; r.mtu = ifentry.dwMtu; ret.push_back(r); } } } // Free memory free(routes); FreeLibrary(iphlp); #elif defined TORRENT_LINUX enum { BUFSIZE = 8192 }; int sock = socket(PF_ROUTE, SOCK_DGRAM, NETLINK_ROUTE); if (sock < 0) { ec = error_code(errno, asio::error::system_category); return std::vector(); } int seq = 0; char msg[BUFSIZE]; memset(msg, 0, BUFSIZE); nlmsghdr* nl_msg = (nlmsghdr*)msg; nl_msg->nlmsg_len = NLMSG_LENGTH(sizeof(rtmsg)); nl_msg->nlmsg_type = RTM_GETROUTE; nl_msg->nlmsg_flags = NLM_F_DUMP | NLM_F_REQUEST; nl_msg->nlmsg_seq = seq++; nl_msg->nlmsg_pid = getpid(); if (send(sock, nl_msg, nl_msg->nlmsg_len, 0) < 0) { ec = error_code(errno, asio::error::system_category); close(sock); return std::vector(); } int len = read_nl_sock(sock, msg, BUFSIZE, seq, getpid()); if (len < 0) { ec = error_code(errno, asio::error::system_category); close(sock); return std::vector(); } int s = socket(AF_INET, SOCK_DGRAM, 0); if (s < 0) { ec = error_code(errno, asio::error::system_category); return std::vector(); } for (; NLMSG_OK(nl_msg, len); nl_msg = NLMSG_NEXT(nl_msg, len)) { ip_route r; if (parse_route(s, nl_msg, &r)) ret.push_back(r); } close(s); close(sock); #endif return ret; } }