========================= libtorrent python binding ========================= :Author: Arvid Norberg, arvid@rasterbar.com .. contents:: Table of contents :depth: 2 :backlinks: none building ======== Building the libtorrent python bindings will produce a shared library (DLL) which is a python module that can be imported in a python program. The only supported build system for the bindings are currently boost build. To set up your build environment, you need to add some settings to your ``$BOOST_BUILD_PATH/user-config.jam``. Make sure your user config contains the following line:: using python : 2.3 ; Set the version to the version of python you have installed or want to use. If you've installed python in a non-standard location, you have to add the prefix path used when you installed python as a second option. Like this:: using python : 2.3 : /usr ; The bindings require *at least* python version 2.2. For more information on how to install and set up boost-build, see the `building libtorrent`_ section. .. _`building libtorrent`: building.html#step-2-setup-bbv2 Once you have boost-build set up, you cd to the ``bindings/python`` directory and invoke ``bjam`` with the apropriate settings. For the available build variants, see `libtorrent build options`_. .. _`libtorrent build options`: building.html#step-3-building-libtorrent For example:: $ bjam dht-support=on release link=static On Mac OS X, this will produce the following python module:: bin/darwin-4.0/release/dht-support-on/link-static/logging-none/threading-multi/libtorrent.so using ===== The python interface is nearly identical to the C++ interface. Please refer to the `main library reference`_. .. _`main library reference`: manual.html For an example python program, see ``client.py`` in the ``bindings/python`` directory. A very simple example usage of the module would be something like this:: import libtorrent as lt import time ses = lt.session() ses.listen_on(6881, 6891) e = lt.bdecode(open("test.torrent", 'rb').read()) info = lt.torrent_info(e) h = ses.add_torrent(info, "./", compact_mode = True) while (not h.is_seed()): s = h.status() state_str = ['queued', 'checking', 'connecting', 'downloading metadata', \ 'downloading', 'finished', 'seeding', 'allocating'] print '%.2f%% complete (down: %.1f kb/s up: %.1f kB/s peers: %d) %s' % \ (s.progress * 100, s.download_rate / 1000, s.upload_rate / 1000, \ s.num_peers, state_str[s.state]) time.sleep(1)