/* Copyright (c) 2003-2016, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TORRENT_SHA1_HASH_HPP_INCLUDED #define TORRENT_SHA1_HASH_HPP_INCLUDED #include #include #include #include #include "libtorrent/config.hpp" #include "libtorrent/assert.hpp" #include "libtorrent/aux_/byteswap.hpp" #include "libtorrent/aux_/ffs.hpp" #include "libtorrent/aux_/typed_span.hpp" #if TORRENT_USE_IOSTREAM #include #endif // TORRENT_USE_IOSTREAM namespace libtorrent { // TODO: find a better place for these functions namespace aux { TORRENT_EXTRA_EXPORT void bits_shift_left(typed_span number, int n); TORRENT_EXTRA_EXPORT void bits_shift_right(typed_span number, int n); } // This type holds an N digest or any other kind of N bits // sequence. It implements a number of convenience functions, such // as bit operations, comparison operators etc. // // This data structure is 32 bits aligned, like it's the case for // each SHA-N specification. template class digest32 { static_assert(N % 32 == 0, "N must be a multiple of 32"); enum { number_size = N / 32 }; public: // the size of the hash in bytes static constexpr std::size_t size() { return N / 8; } // constructs an all-zero digest digest32() noexcept { clear(); } digest32(digest32 const&) noexcept = default; digest32& operator=(digest32 const&) noexcept = default; // returns an all-F digest. i.e. the maximum value // representable by an N bit number (N/8 bytes). This is // a static member function. static digest32 max() { digest32 ret; std::memset(ret.m_number, 0xff, size()); return ret; } // returns an all-zero digest. i.e. the minimum value // representable by an N bit number (N/8 bytes). This is // a static member function. static digest32 min() { digest32 ret; // all bits are already 0 return ret; } // copies N/8 bytes from the pointer provided, into the digest. // The passed in string MUST be at least N/8 bytes. 0-terminators // are ignored, ``s`` is treated like a raw memory buffer. explicit digest32(char const* s) { if (s == nullptr) clear(); else std::memcpy(m_number, s, size()); } #ifndef TORRENT_NO_DEPRECATE TORRENT_DEPRECATED explicit digest32(std::string const& s) { assign(s.data()); } #endif explicit digest32(span s) { assign(s); } void assign(span s) { TORRENT_ASSERT(s.size() >= N / 8); std::size_t const sl = s.size() < size() ? s.size() : size(); std::memcpy(m_number, s.data(), sl); } void assign(char const* str) { std::memcpy(m_number, str, size()); } char const* data() const { return reinterpret_cast(&m_number[0]); } char* data() { return reinterpret_cast(&m_number[0]); } // set the digest to all zeros. void clear() noexcept { std::memset(m_number, 0, size()); } // return true if the digest is all zero. bool is_all_zeros() const { for (int i = 0; i < number_size; ++i) if (m_number[i] != 0) return false; return true; } // shift left ``n`` bits. digest32& operator<<=(int n) { aux::bits_shift_left({m_number, number_size}, n); return *this; } // shift right ``n`` bits. digest32& operator>>=(int n) { aux::bits_shift_right({m_number, number_size}, n); return *this; } // standard comparison operators bool operator==(digest32 const& n) const { return std::equal(n.m_number, n.m_number + number_size, m_number); } bool operator!=(digest32 const& n) const { return !std::equal(n.m_number, n.m_number + number_size, m_number); } bool operator<(digest32 const& n) const { for (int i = 0; i < number_size; ++i) { std::uint32_t const lhs = aux::network_to_host(m_number[i]); std::uint32_t const rhs = aux::network_to_host(n.m_number[i]); if (lhs < rhs) return true; if (lhs > rhs) return false; } return false; } int count_leading_zeroes() const { return aux::count_leading_zeros({m_number, number_size}); } // returns a bit-wise negated copy of the digest digest32 operator~() const { digest32 ret; for (int i = 0; i < number_size; ++i) ret.m_number[i] = ~m_number[i]; return ret; } // returns the bit-wise XOR of the two digests. digest32 operator^(digest32 const& n) const { digest32 ret = *this; ret ^= n; return ret; } // in-place bit-wise XOR with the passed in digest. digest32& operator^=(digest32 const& n) { for (int i = 0; i < number_size; ++i) m_number[i] ^= n.m_number[i]; return *this; } // returns the bit-wise AND of the two digests. digest32 operator&(digest32 const& n) const { digest32 ret = *this; ret &= n; return ret; } // in-place bit-wise AND of the passed in digest digest32& operator&=(digest32 const& n) { for (int i = 0; i < number_size; ++i) m_number[i] &= n.m_number[i]; return *this; } // in-place bit-wise OR of the two digests. digest32& operator|=(digest32 const& n) { for (int i = 0; i < number_size; ++i) m_number[i] |= n.m_number[i]; return *this; } // accessors for specific bytes std::uint8_t& operator[](std::size_t i) { TORRENT_ASSERT(i < size()); return reinterpret_cast(m_number)[i]; } std::uint8_t const& operator[](std::size_t i) const { TORRENT_ASSERT(i < size()); return reinterpret_cast(m_number)[i]; } using const_iterator = std::uint8_t const*; using iterator = std::uint8_t*; // start and end iterators for the hash. The value type // of these iterators is ``std::uint8_t``. const_iterator begin() const { return reinterpret_cast(m_number); } const_iterator end() const { return reinterpret_cast(m_number) + size(); } iterator begin() { return reinterpret_cast(m_number); } iterator end() { return reinterpret_cast(m_number) + size(); } // return a copy of the N/8 bytes representing the digest as a std::string. // It's still a binary string with N/8 binary characters. std::string to_string() const { return std::string(reinterpret_cast(&m_number[0]), size()); } private: std::uint32_t m_number[number_size]; }; // This type holds a SHA-1 digest or any other kind of 20 byte // sequence. It implements a number of convenience functions, such // as bit operations, comparison operators etc. // // In libtorrent it is primarily used to hold info-hashes, piece-hashes, // peer IDs, node IDs etc. using sha1_hash = digest32<160>; #if TORRENT_USE_IOSTREAM // print a sha1_hash object to an ostream as 40 hexadecimal digits TORRENT_EXPORT std::ostream& operator<<(std::ostream& os, sha1_hash const& peer); // read 40 hexadecimal digits from an istream into a sha1_hash TORRENT_EXPORT std::istream& operator>>(std::istream& is, sha1_hash& peer); #endif // TORRENT_USE_IOSTREAM } namespace std { template <> struct hash { std::size_t operator()(libtorrent::sha1_hash const& k) const { std::size_t ret; // this is OK because sha1_hash is already a hash std::memcpy(&ret, &k[0], sizeof(ret)); return ret; } }; } #endif // TORRENT_SHA1_HASH_HPP_INCLUDED