/* Copyright (c) 2007, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Disk queue elevator patch by Morten Husveit */ #include "libtorrent/storage.hpp" #include "libtorrent/disk_io_thread.hpp" #include "libtorrent/disk_buffer_holder.hpp" #include "libtorrent/alloca.hpp" #include "libtorrent/invariant_check.hpp" #include "libtorrent/error_code.hpp" #include "libtorrent/error.hpp" #include #include #include "libtorrent/time.hpp" #if TORRENT_USE_MLOCK && !defined TORRENT_WINDOWS #include #endif namespace libtorrent { disk_buffer_pool::disk_buffer_pool(int block_size) : m_block_size(block_size) , m_in_use(0) #ifndef TORRENT_DISABLE_POOL_ALLOCATOR , m_pool(block_size, m_settings.cache_buffer_chunk_size) #endif { #if defined TORRENT_DISK_STATS || defined TORRENT_STATS m_allocations = 0; #endif #ifdef TORRENT_DISK_STATS m_log.open("disk_buffers.log", std::ios::trunc); m_categories["read cache"] = 0; m_categories["write cache"] = 0; m_disk_access_log.open("disk_access.log", std::ios::trunc); #endif #ifdef TORRENT_DEBUG m_magic = 0x1337; #endif } #ifdef TORRENT_DEBUG disk_buffer_pool::~disk_buffer_pool() { TORRENT_ASSERT(m_magic == 0x1337); m_magic = 0; } #endif #if defined TORRENT_DEBUG || defined TORRENT_DISK_STATS bool disk_buffer_pool::is_disk_buffer(char* buffer , mutex::scoped_lock& l) const { TORRENT_ASSERT(m_magic == 0x1337); #ifdef TORRENT_DISK_STATS if (m_buf_to_category.find(buffer) == m_buf_to_category.end()) return false; #endif #ifdef TORRENT_DISABLE_POOL_ALLOCATOR return true; #else return m_pool.is_from(buffer); #endif } bool disk_buffer_pool::is_disk_buffer(char* buffer) const { mutex::scoped_lock l(m_pool_mutex); return is_disk_buffer(buffer, l); } #endif char* disk_buffer_pool::allocate_buffer(char const* category) { mutex::scoped_lock l(m_pool_mutex); TORRENT_ASSERT(m_magic == 0x1337); #ifdef TORRENT_DISABLE_POOL_ALLOCATOR char* ret = page_aligned_allocator::malloc(m_block_size); #else char* ret = (char*)m_pool.ordered_malloc(); m_pool.set_next_size(m_settings.cache_buffer_chunk_size); #endif ++m_in_use; #if TORRENT_USE_MLOCK if (m_settings.lock_disk_cache) { #ifdef TORRENT_WINDOWS VirtualLock(ret, m_block_size); #else mlock(ret, m_block_size); #endif } #endif #if defined TORRENT_DISK_STATS || defined TORRENT_STATS ++m_allocations; #endif #ifdef TORRENT_DISK_STATS ++m_categories[category]; m_buf_to_category[ret] = category; m_log << log_time() << " " << category << ": " << m_categories[category] << "\n"; #endif TORRENT_ASSERT(ret == 0 || is_disk_buffer(ret, l)); return ret; } #ifdef TORRENT_DISK_STATS void disk_buffer_pool::rename_buffer(char* buf, char const* category) { mutex::scoped_lock l(m_pool_mutex); TORRENT_ASSERT(is_disk_buffer(buf, l)); TORRENT_ASSERT(m_categories.find(m_buf_to_category[buf]) != m_categories.end()); std::string const& prev_category = m_buf_to_category[buf]; --m_categories[prev_category]; m_log << log_time() << " " << prev_category << ": " << m_categories[prev_category] << "\n"; ++m_categories[category]; m_buf_to_category[buf] = category; m_log << log_time() << " " << category << ": " << m_categories[category] << "\n"; TORRENT_ASSERT(m_categories.find(m_buf_to_category[buf]) != m_categories.end()); } #endif void disk_buffer_pool::free_buffer(char* buf) { TORRENT_ASSERT(buf); mutex::scoped_lock l(m_pool_mutex); TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(is_disk_buffer(buf, l)); #if defined TORRENT_DISK_STATS || defined TORRENT_STATS --m_allocations; #endif #ifdef TORRENT_DISK_STATS TORRENT_ASSERT(m_categories.find(m_buf_to_category[buf]) != m_categories.end()); std::string const& category = m_buf_to_category[buf]; --m_categories[category]; m_log << log_time() << " " << category << ": " << m_categories[category] << "\n"; m_buf_to_category.erase(buf); #endif #if TORRENT_USE_MLOCK if (m_settings.lock_disk_cache) { #ifdef TORRENT_WINDOWS VirtualUnlock(buf, m_block_size); #else munlock(buf, m_block_size); #endif } #endif #ifdef TORRENT_DISABLE_POOL_ALLOCATOR page_aligned_allocator::free(buf); #else m_pool.ordered_free(buf); #endif --m_in_use; } char* disk_buffer_pool::allocate_buffers(int num_blocks, char const* category) { mutex::scoped_lock l(m_pool_mutex); TORRENT_ASSERT(m_magic == 0x1337); #ifdef TORRENT_DISABLE_POOL_ALLOCATOR char* ret = page_aligned_allocator::malloc(m_block_size * num_blocks); #else char* ret = (char*)m_pool.ordered_malloc(num_blocks); m_pool.set_next_size(m_settings.cache_buffer_chunk_size); #endif m_in_use += num_blocks; #if TORRENT_USE_MLOCK if (m_settings.lock_disk_cache) { #ifdef TORRENT_WINDOWS VirtualLock(ret, m_block_size * num_blocks); #else mlock(ret, m_block_size * num_blocks); #endif } #endif #if defined TORRENT_DISK_STATS || defined TORRENT_STATS m_allocations += num_blocks; #endif #ifdef TORRENT_DISK_STATS m_categories[category] += num_blocks; m_buf_to_category[ret] = category; m_log << log_time() << " " << category << ": " << m_categories[category] << "\n"; #endif TORRENT_ASSERT(ret == 0 || is_disk_buffer(ret, l)); return ret; } void disk_buffer_pool::free_buffers(char* buf, int num_blocks) { TORRENT_ASSERT(buf); TORRENT_ASSERT(num_blocks >= 1); mutex::scoped_lock l(m_pool_mutex); TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(is_disk_buffer(buf, l)); #if defined TORRENT_DISK_STATS || defined TORRENT_STATS m_allocations -= num_blocks; #endif #ifdef TORRENT_DISK_STATS TORRENT_ASSERT(m_categories.find(m_buf_to_category[buf]) != m_categories.end()); std::string const& category = m_buf_to_category[buf]; m_categories[category] -= num_blocks; m_log << log_time() << " " << category << ": " << m_categories[category] << "\n"; m_buf_to_category.erase(buf); #endif #if TORRENT_USE_MLOCK if (m_settings.lock_disk_cache) { #ifdef TORRENT_WINDOWS VirtualUnlock(buf, m_block_size * num_blocks); #else munlock(buf, m_block_size * num_blocks); #endif } #endif #ifdef TORRENT_DISABLE_POOL_ALLOCATOR page_aligned_allocator::free(buf); #else m_pool.ordered_free(buf, num_blocks); #endif m_in_use -= num_blocks; } void disk_buffer_pool::release_memory() { TORRENT_ASSERT(m_magic == 0x1337); #ifndef TORRENT_DISABLE_POOL_ALLOCATOR mutex::scoped_lock l(m_pool_mutex); m_pool.release_memory(); #endif } // ------- disk_io_thread ------ disk_io_thread::disk_io_thread(io_service& ios , boost::function const& queue_callback , int block_size) : disk_buffer_pool(block_size) , m_abort(false) , m_waiting_to_shutdown(false) , m_queue_buffer_size(0) , m_last_file_check(time_now_hires()) , m_ios(ios) , m_queue_callback(queue_callback) , m_work(io_service::work(m_ios)) , m_disk_io_thread(boost::bind(&disk_io_thread::thread_fun, this)) { #ifdef TORRENT_DISK_STATS m_log.open("disk_io_thread.log", std::ios::trunc); #endif } disk_io_thread::~disk_io_thread() { TORRENT_ASSERT(m_abort == true); } void disk_io_thread::join() { mutex::scoped_lock l(m_queue_mutex); disk_io_job j; m_waiting_to_shutdown = true; j.action = disk_io_job::abort_thread; m_jobs.insert(m_jobs.begin(), j); m_signal.signal(l); l.unlock(); m_disk_io_thread.join(); l.lock(); TORRENT_ASSERT(m_abort == true); m_jobs.clear(); } void disk_io_thread::get_cache_info(sha1_hash const& ih, std::vector& ret) const { mutex::scoped_lock l(m_piece_mutex); ret.clear(); ret.reserve(m_pieces.size()); for (cache_t::const_iterator i = m_pieces.begin() , end(m_pieces.end()); i != end; ++i) { torrent_info const& ti = *i->storage->info(); if (ti.info_hash() != ih) continue; cached_piece_info info; info.piece = i->piece; info.last_use = i->last_use; info.kind = cached_piece_info::write_cache; int blocks_in_piece = (ti.piece_size(i->piece) + (m_block_size) - 1) / m_block_size; info.blocks.resize(blocks_in_piece); for (int b = 0; b < blocks_in_piece; ++b) if (i->blocks[b].buf) info.blocks[b] = true; ret.push_back(info); } for (cache_t::const_iterator i = m_read_pieces.begin() , end(m_read_pieces.end()); i != end; ++i) { torrent_info const& ti = *i->storage->info(); if (ti.info_hash() != ih) continue; cached_piece_info info; info.piece = i->piece; info.last_use = i->last_use; info.kind = cached_piece_info::read_cache; int blocks_in_piece = (ti.piece_size(i->piece) + (m_block_size) - 1) / m_block_size; info.blocks.resize(blocks_in_piece); for (int b = 0; b < blocks_in_piece; ++b) if (i->blocks[b].buf) info.blocks[b] = true; ret.push_back(info); } } cache_status disk_io_thread::status() const { mutex::scoped_lock l(m_piece_mutex); m_cache_stats.total_used_buffers = in_use(); m_cache_stats.queued_bytes = m_queue_buffer_size; return m_cache_stats; } // aborts read operations void disk_io_thread::stop(boost::intrusive_ptr s) { mutex::scoped_lock l(m_queue_mutex); // read jobs are aborted, write and move jobs are syncronized for (std::list::iterator i = m_jobs.begin(); i != m_jobs.end();) { if (i->storage != s) { ++i; continue; } if (i->action == disk_io_job::read) { post_callback(i->callback, *i, -1); m_jobs.erase(i++); continue; } if (i->action == disk_io_job::check_files) { post_callback(i->callback, *i, piece_manager::disk_check_aborted); m_jobs.erase(i++); continue; } ++i; } disk_io_job j; j.action = disk_io_job::abort_torrent; j.storage = s; add_job(j, l); } bool range_overlap(int start1, int length1, int start2, int length2) { return (start1 <= start2 && start1 + length1 > start2) || (start2 <= start1 && start2 + length2 > start1); } namespace { // The semantic of this operator is: // should lhs come before rhs in the job queue bool operator<(disk_io_job const& lhs, disk_io_job const& rhs) { // NOTE: comparison inverted to make higher priority // skip _in_front_of_ lower priority if (lhs.priority > rhs.priority) return true; if (lhs.priority < rhs.priority) return false; if (lhs.storage.get() < rhs.storage.get()) return true; if (lhs.storage.get() > rhs.storage.get()) return false; if (lhs.piece < rhs.piece) return true; if (lhs.piece > rhs.piece) return false; if (lhs.offset < rhs.offset) return true; // if (lhs.offset > rhs.offset) return false; return false; } } disk_io_thread::cache_t::iterator disk_io_thread::find_cached_piece( disk_io_thread::cache_t& cache , disk_io_job const& j, mutex::scoped_lock& l) { for (cache_t::iterator i = cache.begin() , end(cache.end()); i != end; ++i) { if (i->storage != j.storage || i->piece != j.piece) continue; return i; } return cache.end(); } void disk_io_thread::flush_expired_pieces() { ptime now = time_now(); mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; // flush write cache for (;;) { cache_t::iterator i = std::min_element( m_pieces.begin(), m_pieces.end() , bind(&cached_piece_entry::last_use, _1) < bind(&cached_piece_entry::last_use, _2)); if (i == m_pieces.end()) break; int age = total_seconds(now - i->last_use); if (age < m_settings.cache_expiry) break; flush_and_remove(i, l); } // flush read cache for (;;) { cache_t::iterator i = std::min_element( m_read_pieces.begin(), m_read_pieces.end() , bind(&cached_piece_entry::last_use, _1) < bind(&cached_piece_entry::last_use, _2)); if (i == m_read_pieces.end()) break; int age = total_seconds(now - i->last_use); if (age < m_settings.cache_expiry) break; free_piece(*i, l); m_read_pieces.erase(i); } } // returns the number of blocks that were freed int disk_io_thread::free_piece(cached_piece_entry& p, mutex::scoped_lock& l) { int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int ret = 0; for (int i = 0; i < blocks_in_piece; ++i) { if (p.blocks[i].buf == 0) continue; free_buffer(p.blocks[i].buf); ++ret; p.blocks[i].buf = 0; --p.num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; } return ret; } // returns the number of blocks that were freed int disk_io_thread::clear_oldest_read_piece( int num_blocks , cache_t::iterator ignore , mutex::scoped_lock& l) { INVARIANT_CHECK; cache_t::iterator i = std::min_element( m_read_pieces.begin(), m_read_pieces.end() , bind(&cached_piece_entry::last_use, _1) < bind(&cached_piece_entry::last_use, _2)); if (i != m_read_pieces.end() && i != ignore) { // don't replace an entry that is less than one second old if (time_now() - i->last_use < seconds(1)) return 0; int blocks = 0; if (num_blocks >= i->num_blocks) { blocks = free_piece(*i, l); } else { // delete blocks from the start and from the end // until num_blocks have been freed int end = (i->storage->info()->piece_size(i->piece) + m_block_size - 1) / m_block_size - 1; int start = 0; while (num_blocks) { while (i->blocks[start].buf == 0 && start <= end) ++start; if (start > end) break; free_buffer(i->blocks[start].buf); i->blocks[start].buf = 0; ++blocks; --i->num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; --num_blocks; if (!num_blocks) break; while (i->blocks[end].buf == 0 && start <= end) --end; if (start > end) break; free_buffer(i->blocks[end].buf); i->blocks[end].buf = 0; ++blocks; --i->num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; --num_blocks; } } if (i->num_blocks == 0) m_read_pieces.erase(i); return blocks; } return 0; } int contiguous_blocks(disk_io_thread::cached_piece_entry const& b) { int ret = 0; int current = 0; int blocks_in_piece = (b.storage->info()->piece_size(b.piece) + 16 * 1024 - 1) / (16 * 1024); for (int i = 0; i < blocks_in_piece; ++i) { if (b.blocks[i].buf) ++current; else { if (current > ret) ret = current; current = 0; } } if (current > ret) ret = current; return ret; } int disk_io_thread::flush_contiguous_blocks(disk_io_thread::cache_t::iterator e , mutex::scoped_lock& l, int lower_limit) { // first find the largest range of contiguous blocks int len = 0; int current = 0; int pos = 0; int start = 0; int blocks_in_piece = (e->storage->info()->piece_size(e->piece) + m_block_size - 1) / m_block_size; for (int i = 0; i < blocks_in_piece; ++i) { if (e->blocks[i].buf) ++current; else { if (current > len) { len = current; pos = start; } current = 0; start = i + 1; } } if (current > len) { len = current; pos = start; } if (len < lower_limit || len <= 0) return 0; len = flush_range(e, pos, pos + len, l); if (e->num_blocks == 0) m_pieces.erase(e); return len; } // flushes 'blocks' blocks from the cache int disk_io_thread::flush_cache_blocks(mutex::scoped_lock& l , int blocks, cache_t::iterator ignore, int options) { // first look if there are any read cache entries that can // be cleared int ret = 0; int tmp = 0; do { tmp = clear_oldest_read_piece(blocks, ignore, l); blocks -= tmp; ret += tmp; } while (tmp > 0 && blocks > 0); if (options & dont_flush_write_blocks) return ret; if (m_settings.disk_cache_algorithm == session_settings::lru) { while (blocks > 0) { cache_t::iterator i = std::min_element( m_pieces.begin(), m_pieces.end() , bind(&cached_piece_entry::last_use, _1) < bind(&cached_piece_entry::last_use, _2)); if (i == m_pieces.end()) return ret; tmp = flush_and_remove(i, l); blocks -= tmp; ret += tmp; } } else if (m_settings.disk_cache_algorithm == session_settings::largest_contiguous) { while (blocks > 0) { cache_t::iterator i = std::max_element( m_pieces.begin(), m_pieces.end() , bind(&contiguous_blocks, _1) < bind(&contiguous_blocks, _2)); if (i == m_pieces.end()) return ret; tmp = flush_contiguous_blocks(i, l); blocks -= tmp; ret += tmp; } } return ret; } int disk_io_thread::flush_and_remove(disk_io_thread::cache_t::iterator e , mutex::scoped_lock& l) { int ret = flush_range(e, 0, INT_MAX, l); m_pieces.erase(e); return ret; } int disk_io_thread::flush_range(disk_io_thread::cache_t::iterator e , int start, int end, mutex::scoped_lock& l) { INVARIANT_CHECK; TORRENT_ASSERT(start < end); // TODO: copy *e and unlink it before unlocking cached_piece_entry& p = *e; int piece_size = p.storage->info()->piece_size(p.piece); #ifdef TORRENT_DISK_STATS m_log << log_time() << " flushing " << piece_size << std::endl; #endif TORRENT_ASSERT(piece_size > 0); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int buffer_size = 0; int offset = 0; boost::scoped_array buf; file::iovec_t* iov = 0; int iov_counter = 0; if (m_settings.coalesce_writes) buf.reset(new (std::nothrow) char[piece_size]); else iov = TORRENT_ALLOCA(file::iovec_t, blocks_in_piece); end = (std::min)(end, blocks_in_piece); for (int i = start; i <= end; ++i) { if (i == end || p.blocks[i].buf == 0) { if (buffer_size == 0) continue; TORRENT_ASSERT(buffer_size <= i * m_block_size); l.unlock(); if (iov) { p.storage->write_impl(iov, p.piece, (std::min)( i * m_block_size, piece_size) - buffer_size, iov_counter); iov_counter = 0; } else { TORRENT_ASSERT(buf); file::iovec_t b = { buf.get(), buffer_size }; p.storage->write_impl(&b, p.piece, (std::min)( i * m_block_size, piece_size) - buffer_size, 1); } l.lock(); ++m_cache_stats.writes; // std::cerr << " flushing p: " << p.piece << " bytes: " << buffer_size << std::endl; buffer_size = 0; offset = 0; continue; } int block_size = (std::min)(piece_size - i * m_block_size, m_block_size); TORRENT_ASSERT(offset + block_size <= piece_size); TORRENT_ASSERT(offset + block_size > 0); if (!buf) { iov[iov_counter].iov_base = p.blocks[i].buf; iov[iov_counter].iov_len = block_size; ++iov_counter; } else { std::memcpy(buf.get() + offset, p.blocks[i].buf, block_size); offset += m_block_size; } buffer_size += block_size; TORRENT_ASSERT(p.num_blocks > 0); --p.num_blocks; ++m_cache_stats.blocks_written; --m_cache_stats.cache_size; } int ret = 0; disk_io_job j; j.storage = p.storage; j.action = disk_io_job::write; j.buffer = 0; j.piece = p.piece; test_error(j); for (int i = start; i < end; ++i) { if (p.blocks[i].buf == 0) continue; j.buffer_size = (std::min)(piece_size - i * m_block_size, m_block_size); int result = j.error ? -1 : j.buffer_size; j.offset = i * m_block_size; free_buffer(p.blocks[i].buf); post_callback(p.blocks[i].callback, j, result); p.blocks[i].callback.clear(); p.blocks[i].buf = 0; ++ret; } TORRENT_ASSERT(buffer_size == 0); // std::cerr << " flushing p: " << p.piece << " cached_blocks: " << m_cache_stats.cache_size << std::endl; #ifdef TORRENT_DEBUG for (int i = start; i < end; ++i) TORRENT_ASSERT(p.blocks[i].buf == 0); #endif return ret; } // returns -1 on failure int disk_io_thread::cache_block(disk_io_job& j , boost::function& handler , mutex::scoped_lock& l) { INVARIANT_CHECK; TORRENT_ASSERT(find_cached_piece(m_pieces, j, l) == m_pieces.end()); TORRENT_ASSERT((j.offset & (m_block_size-1)) == 0); cached_piece_entry p; int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; // there's no point in caching the piece if // there's only one block in it if (blocks_in_piece <= 1) return -1; #ifdef TORRENT_DISK_STATS rename_buffer(j.buffer, "write cache"); #endif p.piece = j.piece; p.storage = j.storage; p.last_use = time_now(); p.num_blocks = 1; p.blocks.reset(new (std::nothrow) cached_block_entry[blocks_in_piece]); if (!p.blocks) return -1; int block = j.offset / m_block_size; // std::cerr << " adding cache entry for p: " << j.piece << " block: " << block << " cached_blocks: " << m_cache_stats.cache_size << std::endl; p.blocks[block].buf = j.buffer; p.blocks[block].callback.swap(handler); ++m_cache_stats.cache_size; m_pieces.push_back(p); return 0; } // fills a piece with data from disk, returns the total number of bytes // read or -1 if there was an error int disk_io_thread::read_into_piece(cached_piece_entry& p, int start_block , int options, int num_blocks, mutex::scoped_lock& l) { TORRENT_ASSERT(num_blocks > 0); int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int end_block = start_block; int num_read = 0; int iov_counter = 0; file::iovec_t* iov = TORRENT_ALLOCA(file::iovec_t, (std::min)(blocks_in_piece - start_block, num_blocks)); int piece_offset = start_block * m_block_size; int ret = 0; boost::scoped_array buf; for (int i = start_block; i < blocks_in_piece && ((options & ignore_cache_size) || in_use() < m_settings.cache_size); ++i) { int block_size = (std::min)(piece_size - piece_offset, m_block_size); TORRENT_ASSERT(piece_offset <= piece_size); // this is a block that is already allocated // free it an allocate a new one if (p.blocks[i].buf) { free_buffer(p.blocks[i].buf); --p.num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; } p.blocks[i].buf = allocate_buffer("read cache"); // the allocation failed, break if (p.blocks[i].buf == 0) { free_piece(p, l); return -1; } ++p.num_blocks; ++m_cache_stats.cache_size; ++m_cache_stats.read_cache_size; ++end_block; ++num_read; iov[iov_counter].iov_base = p.blocks[i].buf; iov[iov_counter].iov_len = block_size; ++iov_counter; piece_offset += m_block_size; if (num_read >= num_blocks) break; } if (end_block == start_block) { // something failed. Free all buffers // we just allocated free_piece(p, l); return -2; } TORRENT_ASSERT(iov_counter <= (std::min)(blocks_in_piece - start_block, num_blocks)); // the buffer_size is the size of the buffer we need to read // all these blocks. const int buffer_size = (std::min)((end_block - start_block) * m_block_size , piece_size - start_block * m_block_size); TORRENT_ASSERT(buffer_size > 0); TORRENT_ASSERT(buffer_size <= piece_size); TORRENT_ASSERT(buffer_size + start_block * m_block_size <= piece_size); if (m_settings.coalesce_reads) buf.reset(new (std::nothrow) char[buffer_size]); if (buf) { l.unlock(); file::iovec_t b = { buf.get(), buffer_size }; ret = p.storage->read_impl(&b, p.piece, start_block * m_block_size, 1); l.lock(); ++m_cache_stats.reads; if (p.storage->error()) { free_piece(p, l); return -1; } if (ret != buffer_size) { // this means the file wasn't big enough for this read p.storage->get_storage_impl()->set_error("" , errors::file_too_short); free_piece(p, l); return -1; } int offset = 0; for (int i = 0; i < iov_counter; ++i) { TORRENT_ASSERT(iov[i].iov_base); TORRENT_ASSERT(iov[i].iov_len > 0); TORRENT_ASSERT(offset + iov[i].iov_len <= buffer_size); std::memcpy(iov[i].iov_base, buf.get() + offset, iov[i].iov_len); offset += iov[i].iov_len; } } else { l.unlock(); ret = p.storage->read_impl(iov, p.piece, start_block * m_block_size, iov_counter); l.lock(); ++m_cache_stats.reads; if (p.storage->error()) { free_piece(p, l); return -1; } if (ret != buffer_size) { // this means the file wasn't big enough for this read p.storage->get_storage_impl()->set_error("" , errors::file_too_short); free_piece(p, l); return -1; } } TORRENT_ASSERT(ret == buffer_size); return ret; } // returns -1 on read error, -2 on out of memory error or the number of bytes read // this function ignores the cache size limit, it will read the entire // piece regardless of the offset in j // this is used for seed-mode, where we need to read the entire piece to calculate // the hash int disk_io_thread::cache_read_piece(disk_io_job const& j, mutex::scoped_lock& l) { INVARIANT_CHECK; int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; if (in_use() + blocks_in_piece > m_settings.cache_size) flush_cache_blocks(l, in_use() + blocks_in_piece - m_settings.cache_size, m_read_pieces.end()); cached_piece_entry p; p.piece = j.piece; p.storage = j.storage; p.last_use = time_now(); p.num_blocks = 0; p.blocks.reset(new (std::nothrow) cached_block_entry[blocks_in_piece]); if (!p.blocks) return -1; int ret = read_into_piece(p, 0, ignore_cache_size, INT_MAX, l); if (ret >= 0) m_read_pieces.push_back(p); return ret; } // returns -1 on read error, -2 if there isn't any space in the cache // or the number of bytes read int disk_io_thread::cache_read_block(disk_io_job const& j, mutex::scoped_lock& l) { INVARIANT_CHECK; int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int start_block = j.offset / m_block_size; int blocks_to_read = blocks_in_piece - start_block; blocks_to_read = (std::min)(blocks_to_read, (std::max)((m_settings.cache_size + m_cache_stats.read_cache_size - in_use())/2, 3)); blocks_to_read = (std::min)(blocks_to_read, m_settings.read_cache_line_size); if (in_use() + blocks_to_read > m_settings.cache_size) if (flush_cache_blocks(l, in_use() + blocks_to_read - m_settings.cache_size , m_read_pieces.end(), dont_flush_write_blocks) == 0) return -2; cached_piece_entry p; p.piece = j.piece; p.storage = j.storage; p.last_use = time_now(); p.num_blocks = 0; p.blocks.reset(new (std::nothrow) cached_block_entry[blocks_in_piece]); if (!p.blocks) return -1; int ret = read_into_piece(p, start_block, 0, blocks_to_read, l); if (ret >= 0) m_read_pieces.push_back(p); return ret; } #ifdef TORRENT_DEBUG void disk_io_thread::check_invariant() const { int cached_write_blocks = 0; for (cache_t::const_iterator i = m_pieces.begin() , end(m_pieces.end()); i != end; ++i) { cached_piece_entry const& p = *i; TORRENT_ASSERT(p.blocks); if (!p.storage) continue; int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int blocks = 0; for (int k = 0; k < blocks_in_piece; ++k) { if (p.blocks[k].buf) { #ifndef TORRENT_DISABLE_POOL_ALLOCATOR TORRENT_ASSERT(is_disk_buffer(p.blocks[k].buf)); #endif ++blocks; } } // TORRENT_ASSERT(blocks == p.num_blocks); cached_write_blocks += blocks; } int cached_read_blocks = 0; for (cache_t::const_iterator i = m_read_pieces.begin() , end(m_read_pieces.end()); i != end; ++i) { cached_piece_entry const& p = *i; TORRENT_ASSERT(p.blocks); int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int blocks = 0; for (int k = 0; k < blocks_in_piece; ++k) { if (p.blocks[k].buf) { #ifndef TORRENT_DISABLE_POOL_ALLOCATOR TORRENT_ASSERT(is_disk_buffer(p.blocks[k].buf)); #endif ++blocks; } } // TORRENT_ASSERT(blocks == p.num_blocks); cached_read_blocks += blocks; } TORRENT_ASSERT(cached_read_blocks + cached_write_blocks == m_cache_stats.cache_size); TORRENT_ASSERT(cached_read_blocks == m_cache_stats.read_cache_size); #ifdef TORRENT_DISK_STATS int read_allocs = m_categories.find(std::string("read cache"))->second; int write_allocs = m_categories.find(std::string("write cache"))->second; TORRENT_ASSERT(cached_read_blocks == read_allocs); TORRENT_ASSERT(cached_write_blocks == write_allocs); #endif // when writing, there may be a one block difference, right before an old piece // is flushed TORRENT_ASSERT(m_cache_stats.cache_size <= m_settings.cache_size + 1); } #endif int disk_io_thread::read_piece_from_cache_and_hash(disk_io_job const& j, sha1_hash& h) { TORRENT_ASSERT(j.buffer); mutex::scoped_lock l(m_piece_mutex); cache_t::iterator p = find_cached_piece(m_read_pieces, j, l); bool hit = true; int ret = 0; int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; if (p != m_read_pieces.end() && p->num_blocks != blocks_in_piece) { // we have the piece in the cache, but not all of the blocks ret = read_into_piece(*p, 0, ignore_cache_size, blocks_in_piece, l); hit = false; if (ret < 0) return ret; TORRENT_ASSERT(!m_read_pieces.empty()); TORRENT_ASSERT(p->piece == j.piece); TORRENT_ASSERT(p->storage == j.storage); } // if the piece cannot be found in the cache, // read the whole piece starting at the block // we got a request for. if (p == m_read_pieces.end()) { ret = cache_read_piece(j, l); hit = false; if (ret < 0) return ret; p = m_read_pieces.end(); --p; TORRENT_ASSERT(!m_read_pieces.empty()); TORRENT_ASSERT(p->piece == j.piece); TORRENT_ASSERT(p->storage == j.storage); } hasher ctx; for (int i = 0; i < blocks_in_piece; ++i) { TORRENT_ASSERT(p->blocks[i].buf); ctx.update((char const*)p->blocks[i].buf, (std::min)(piece_size, m_block_size)); piece_size -= m_block_size; } h = ctx.final(); ret = copy_from_piece(p, hit, j, l); TORRENT_ASSERT(ret > 0); if (ret < 0) return ret; // if read cache is disabled or we exceeded the // limit, remove this piece from the cache if (in_use() >= m_settings.cache_size || !m_settings.use_read_cache) { TORRENT_ASSERT(!m_read_pieces.empty()); TORRENT_ASSERT(p->piece == j.piece); TORRENT_ASSERT(p->storage == j.storage); if (p != m_read_pieces.end()) { free_piece(*p, l); m_read_pieces.erase(p); } } ret = j.buffer_size; ++m_cache_stats.blocks_read; if (hit) ++m_cache_stats.blocks_read_hit; return ret; } // this doesn't modify the read cache, it only // checks to see if the given read request can // be fully satisfied from the given cached piece // this is similar to copy_from_piece() but it // doesn't do anything but determining if it's a // cache hit or not bool disk_io_thread::is_cache_hit(cache_t::iterator p , disk_io_job const& j, mutex::scoped_lock& l) { int block = j.offset / m_block_size; int block_offset = j.offset & (m_block_size-1); int size = j.buffer_size; int min_blocks_to_read = block_offset > 0 ? 2 : 1; TORRENT_ASSERT(size <= m_block_size); int start_block = block; // if we have to read more than one block, and // the first block is there, make sure we test // for the second block if (p->blocks[start_block].buf != 0 && min_blocks_to_read > 1) ++start_block; return p->blocks[start_block].buf != 0; } int disk_io_thread::copy_from_piece(cache_t::iterator p, bool& hit , disk_io_job const& j, mutex::scoped_lock& l) { TORRENT_ASSERT(j.buffer); // copy from the cache and update the last use timestamp int block = j.offset / m_block_size; int block_offset = j.offset & (m_block_size-1); int buffer_offset = 0; int size = j.buffer_size; int min_blocks_to_read = block_offset > 0 ? 2 : 1; TORRENT_ASSERT(size <= m_block_size); int start_block = block; if (p->blocks[start_block].buf != 0 && min_blocks_to_read > 1) ++start_block; // if block_offset > 0, we need to read two blocks, and then // copy parts of both, because it's not aligned to the block // boundaries if (p->blocks[start_block].buf == 0) { int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int end_block = start_block; while (end_block < blocks_in_piece && p->blocks[end_block].buf == 0) ++end_block; int blocks_to_read = end_block - block; blocks_to_read = (std::min)(blocks_to_read, (std::max)((m_settings.cache_size + m_cache_stats.read_cache_size - in_use())/2, 3)); blocks_to_read = (std::min)(blocks_to_read, m_settings.read_cache_line_size); blocks_to_read = (std::max)(blocks_to_read, min_blocks_to_read); if (in_use() + blocks_to_read > m_settings.cache_size) if (flush_cache_blocks(l, in_use() + blocks_to_read - m_settings.cache_size , p, dont_flush_write_blocks) == 0) return -2; int ret = read_into_piece(*p, block, 0, blocks_to_read, l); hit = false; if (ret < 0) return ret; if (ret < size + block_offset) return -2; TORRENT_ASSERT(p->blocks[block].buf); } p->last_use = time_now(); while (size > 0) { TORRENT_ASSERT(p->blocks[block].buf); int to_copy = (std::min)(m_block_size - block_offset, size); std::memcpy(j.buffer + buffer_offset , p->blocks[block].buf + block_offset , to_copy); size -= to_copy; block_offset = 0; buffer_offset += to_copy; ++block; } return j.buffer_size; } int disk_io_thread::try_read_from_cache(disk_io_job const& j) { TORRENT_ASSERT(j.buffer); mutex::scoped_lock l(m_piece_mutex); if (!m_settings.use_read_cache) return -2; cache_t::iterator p = find_cached_piece(m_read_pieces, j, l); bool hit = true; int ret = 0; // if the piece cannot be found in the cache, // read the whole piece starting at the block // we got a request for. if (p == m_read_pieces.end()) { ret = cache_read_block(j, l); hit = false; if (ret < 0) return ret; p = m_read_pieces.end(); --p; TORRENT_ASSERT(!m_read_pieces.empty()); TORRENT_ASSERT(p->piece == j.piece); TORRENT_ASSERT(p->storage == j.storage); } if (p == m_read_pieces.end()) return ret; ret = copy_from_piece(p, hit, j, l); if (ret < 0) return ret; ret = j.buffer_size; ++m_cache_stats.blocks_read; if (hit) ++m_cache_stats.blocks_read_hit; return ret; } size_type disk_io_thread::queue_buffer_size() const { mutex::scoped_lock l(m_queue_mutex); return m_queue_buffer_size; } void disk_io_thread::add_job(disk_io_job const& j , mutex::scoped_lock& l , boost::function const& f) { m_jobs.push_back(j); m_jobs.back().callback.swap(const_cast&>(f)); if (j.action == disk_io_job::write) m_queue_buffer_size += j.buffer_size; m_signal.signal(l); } void disk_io_thread::add_job(disk_io_job const& j , boost::function const& f) { TORRENT_ASSERT(!m_abort); TORRENT_ASSERT(!j.callback); TORRENT_ASSERT(j.storage || j.action == disk_io_job::abort_thread || j.action == disk_io_job::update_settings); TORRENT_ASSERT(j.buffer_size <= m_block_size); mutex::scoped_lock l(m_queue_mutex); add_job(j, l, f); } bool disk_io_thread::test_error(disk_io_job& j) { TORRENT_ASSERT(j.storage); error_code const& ec = j.storage->error(); if (ec) { j.buffer = 0; j.str.clear(); j.error = ec; j.error_file = j.storage->error_file(); #ifdef TORRENT_DEBUG printf("ERROR: '%s' in %s\n", ec.message().c_str(), j.error_file.c_str()); #endif j.storage->clear_error(); return true; } return false; } void disk_io_thread::post_callback( boost::function const& handler , disk_io_job const& j, int ret) { if (!handler) return; m_ios.post(boost::bind(handler, ret, j)); } enum action_flags_t { read_operation = 1 , fence_operation = 2 , buffer_operation = 4 }; static const boost::uint8_t action_flags[] = { read_operation + buffer_operation // read , buffer_operation // write , 0 // hash , fence_operation // move_storage , fence_operation // release_files , fence_operation // delete_files , fence_operation // check_fastresume , read_operation // check_files , fence_operation // save_resume_data , fence_operation // rename_file , fence_operation // abort_thread , fence_operation // clear_read_cache , fence_operation // abort_torrent , 0 // update_settings , read_operation // read_and_hash , 0 // finalize_file }; bool is_fence_operation(disk_io_job const& j) { TORRENT_ASSERT(j.action >= 0 && j.action < sizeof(action_flags)); return action_flags[j.action] & fence_operation; } bool is_read_operation(disk_io_job const& j) { TORRENT_ASSERT(j.action >= 0 && j.action < sizeof(action_flags)); return action_flags[j.action] & read_operation; } bool operation_has_buffer(disk_io_job const& j) { TORRENT_ASSERT(j.action >= 0 && j.action < sizeof(action_flags)); return action_flags[j.action] & buffer_operation; } void disk_io_thread::thread_fun() { size_type elevator_position = 0; int elevator_direction = 1; for (;;) { #ifdef TORRENT_DISK_STATS m_log << log_time() << " idle" << std::endl; #endif mutex::scoped_lock jl(m_queue_mutex); while (m_jobs.empty() && !m_abort) { // if there hasn't been an event in one second // see if we should flush the cache // if (!m_signal.timed_wait(jl, boost::posix_time::seconds(1))) // flush_expired_pieces(); m_signal.wait(jl); m_signal.clear(jl); } if (m_abort && m_jobs.empty()) { jl.unlock(); mutex::scoped_lock l(m_piece_mutex); // flush all disk caches for (cache_t::iterator i = m_pieces.begin() , end(m_pieces.end()); i != end; ++i) flush_range(i, 0, INT_MAX, l); for (cache_t::iterator i = m_read_pieces.begin() , end(m_read_pieces.end()); i != end; ++i) free_piece(*i, l); m_pieces.clear(); m_read_pieces.clear(); // release the io_service to allow the run() call to return // we do this once we stop posting new callbacks to it. m_work.reset(); return; } std::list::iterator selected_job = m_jobs.begin(); if (m_settings.allow_reordered_disk_operations && is_read_operation(*selected_job)) { // Before reading the current block, read any // blocks between the read head and the queued // block, elevator style std::list::iterator best_job, i; size_type score, best_score = (size_type) -1; for (;;) { for (i = m_jobs.begin(); i != m_jobs.end(); ++i) { // ignore fence_operations if (is_fence_operation(*i)) continue; // always prioritize all disk-I/O jobs // that are not read operations if (!is_read_operation(*i)) { best_job = i; best_score = 0; break; } // at this point the operation we're looking // at is a read operation. If this read operation // can be fully satisfied by the read cache, handle // it immediately if (m_settings.use_read_cache) { // unfortunately we need to lock the cache // if the cache querying function would be // made asyncronous, this would not be // necessary anymore mutex::scoped_lock l(m_piece_mutex); cache_t::iterator p = find_cached_piece(m_read_pieces, *i, l); // if it's a cache hit, process the job immediately if (p != m_read_pieces.end() && is_cache_hit(p, *i, l)) { best_job = i; best_score = 0; break; } } // we only need to query for physical offset // for read operations, since those are // the only ones we re-order if (i->phys_offset == -1) i->phys_offset = i->storage->physical_offset(i->piece, i->offset); if (elevator_direction > 0) { score = i->phys_offset - elevator_position; if (i->phys_offset >= elevator_position && (score < best_score || best_score == (size_type)-1)) { best_score = score; best_job = i; } } else { score = elevator_position - i->phys_offset; if (i->phys_offset <= elevator_position && (score < best_score || best_score == (size_type)-1)) { best_score = score; best_job = i; } } } if (best_score != (size_type) -1) break; elevator_direction = -elevator_direction; } selected_job = best_job; // only update the elevator position for read jobs if (is_read_operation(*selected_job)) elevator_position = selected_job->phys_offset; } // if there's a buffer in this job, it will be freed // when this holder is destructed, unless it has been // released. disk_buffer_holder holder(*this , operation_has_buffer(*selected_job) ? selected_job->buffer : 0); boost::function handler; handler.swap(selected_job->callback); disk_io_job j = *selected_job; m_jobs.erase(selected_job); if (j.action == disk_io_job::write) { TORRENT_ASSERT(m_queue_buffer_size >= j.buffer_size); m_queue_buffer_size -= j.buffer_size; } bool post = false; if (m_queue_buffer_size + j.buffer_size >= m_settings.max_queued_disk_bytes && m_queue_buffer_size < m_settings.max_queued_disk_bytes && m_queue_callback && m_settings.max_queued_disk_bytes > 0) { // we just dropped below the high watermark of number of bytes // queued for writing to the disk. Notify the session so that it // can trigger all the connections waiting for this event post = true; } jl.unlock(); if (post) m_ios.post(m_queue_callback); flush_expired_pieces(); int ret = 0; TORRENT_ASSERT(j.storage || j.action == disk_io_job::abort_thread || j.action == disk_io_job::update_settings); #ifdef TORRENT_DISK_STATS ptime start = time_now(); #endif #ifndef BOOST_NO_EXCEPTIONS try { #endif if (j.storage && j.storage->get_storage_impl()->m_settings == 0) j.storage->get_storage_impl()->m_settings = &m_settings; switch (j.action) { case disk_io_job::update_settings: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " update_settings " << std::endl; #endif TORRENT_ASSERT(j.buffer); session_settings const& s = *((session_settings*)j.buffer); TORRENT_ASSERT(s.cache_size >= 0); TORRENT_ASSERT(s.cache_expiry > 0); m_settings = s; break; } case disk_io_job::abort_torrent: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " abort_torrent " << std::endl; #endif mutex::scoped_lock jl(m_queue_mutex); for (std::list::iterator i = m_jobs.begin(); i != m_jobs.end();) { if (i->storage != j.storage) { ++i; continue; } if (i->action == disk_io_job::check_files) { post_callback(i->callback, *i, piece_manager::disk_check_aborted); m_jobs.erase(i++); continue; } ++i; } break; } case disk_io_job::abort_thread: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " abort_thread " << std::endl; #endif mutex::scoped_lock jl(m_queue_mutex); for (std::list::iterator i = m_jobs.begin(); i != m_jobs.end();) { if (i->action == disk_io_job::read) { post_callback(i->callback, *i, -1); m_jobs.erase(i++); continue; } if (i->action == disk_io_job::check_files) { post_callback(i->callback, *i, piece_manager::disk_check_aborted); m_jobs.erase(i++); continue; } ++i; } m_abort = true; break; } case disk_io_job::read_and_hash: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " read_and_hash " << j.buffer_size << std::endl; #endif INVARIANT_CHECK; TORRENT_ASSERT(j.buffer == 0); j.buffer = allocate_buffer("send buffer"); TORRENT_ASSERT(j.buffer_size <= m_block_size); if (j.buffer == 0) { ret = -1; #if BOOST_VERSION == 103500 j.error = error_code(boost::system::posix_error::not_enough_memory , get_posix_category()); #elif BOOST_VERSION > 103500 j.error = error_code(boost::system::errc::not_enough_memory , get_posix_category()); #else j.error = error::no_memory; #endif j.str.clear(); break; } disk_buffer_holder read_holder(*this, j.buffer); // read the entire piece and verify the piece hash // since we need to check the hash, this function // will ignore the cache size limit (at least for // reading and hashing, not for keeping it around) sha1_hash h; ret = read_piece_from_cache_and_hash(j, h); // -2 means there's no space in the read cache // or that the read cache is disabled if (ret == -1) { test_error(j); break; } if (!m_settings.disable_hash_checks) ret = (j.storage->info()->hash_for_piece(j.piece) == h)?ret:-3; if (ret == -3) { j.storage->mark_failed(j.piece); j.error = errors::failed_hash_check; j.str.clear(); j.buffer = 0; break; } TORRENT_ASSERT(j.buffer == read_holder.get()); read_holder.release(); #if TORRENT_DISK_STATS rename_buffer(j.buffer, "released send buffer"); #endif break; } case disk_io_job::finalize_file: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " finalize_file " << j.piece << std::endl; #endif j.storage->finalize_file(j.piece); break; } case disk_io_job::read: { if (test_error(j)) { ret = -1; break; } #ifdef TORRENT_DISK_STATS m_log << log_time() << " read " << j.buffer_size << std::endl; #endif INVARIANT_CHECK; TORRENT_ASSERT(j.buffer == 0); j.buffer = allocate_buffer("send buffer"); TORRENT_ASSERT(j.buffer_size <= m_block_size); if (j.buffer == 0) { ret = -1; #if BOOST_VERSION == 103500 j.error = error_code(boost::system::posix_error::not_enough_memory , get_posix_category()); #elif BOOST_VERSION > 103500 j.error = error_code(boost::system::errc::not_enough_memory , get_posix_category()); #else j.error = error::no_memory; #endif j.str.clear(); break; } disk_buffer_holder read_holder(*this, j.buffer); ret = try_read_from_cache(j); // -2 means there's no space in the read cache // or that the read cache is disabled if (ret == -1) { j.buffer = 0; test_error(j); break; } else if (ret == -2) { file::iovec_t b = { j.buffer, j.buffer_size }; ret = j.storage->read_impl(&b, j.piece, j.offset, 1); if (ret < 0) { test_error(j); break; } if (ret != j.buffer_size) { // this means the file wasn't big enough for this read j.buffer = 0; j.error = errors::file_too_short; j.error_file.clear(); j.str.clear(); ret = -1; break; } ++m_cache_stats.blocks_read; } TORRENT_ASSERT(j.buffer == read_holder.get()); read_holder.release(); #if TORRENT_DISK_STATS rename_buffer(j.buffer, "released send buffer"); #endif break; } case disk_io_job::write: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " write " << j.buffer_size << std::endl; #endif mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; if (in_use() >= m_settings.cache_size) flush_cache_blocks(l, in_use() - m_settings.cache_size + 1, m_read_pieces.end()); cache_t::iterator p = find_cached_piece(m_pieces, j, l); int block = j.offset / m_block_size; TORRENT_ASSERT(j.buffer); TORRENT_ASSERT(j.buffer_size <= m_block_size); if (p != m_pieces.end()) { TORRENT_ASSERT(p->blocks[block].buf == 0); if (p->blocks[block].buf) { free_buffer(p->blocks[block].buf); --m_cache_stats.cache_size; --p->num_blocks; } p->blocks[block].buf = j.buffer; p->blocks[block].callback.swap(handler); #ifdef TORRENT_DISK_STATS rename_buffer(j.buffer, "write cache"); #endif ++m_cache_stats.cache_size; ++p->num_blocks; p->last_use = time_now(); // we might just have created a contiguous range // that meets the requirement to be flushed. try it flush_contiguous_blocks(p, l, m_settings.write_cache_line_size); } else { if (cache_block(j, handler, l) < 0) { l.unlock(); file::iovec_t iov = {j.buffer, j.buffer_size}; ret = j.storage->write_impl(&iov, j.piece, j.offset, 1); l.lock(); if (ret < 0) { test_error(j); break; } break; } } // we've now inserted the buffer // in the cache, we should not // free it at the end holder.release(); if (in_use() > m_settings.cache_size) flush_cache_blocks(l, in_use() - m_settings.cache_size, m_read_pieces.end()); break; } case disk_io_job::hash: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " hash" << std::endl; #endif mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; cache_t::iterator i = find_cached_piece(m_pieces, j, l); if (i != m_pieces.end()) { flush_and_remove(i, l); if (test_error(j)) { ret = -1; j.storage->mark_failed(j.piece); break; } } l.unlock(); if (m_settings.disable_hash_checks) { ret = 0; break; } sha1_hash h = j.storage->hash_for_piece_impl(j.piece); if (test_error(j)) { ret = -1; j.storage->mark_failed(j.piece); break; } ret = (j.storage->info()->hash_for_piece(j.piece) == h)?0:-2; if (ret == -2) j.storage->mark_failed(j.piece); break; } case disk_io_job::move_storage: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " move" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); ret = j.storage->move_storage_impl(j.str); if (ret != 0) { test_error(j); break; } j.str = j.storage->save_path(); break; } case disk_io_job::release_files: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " release" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; for (cache_t::iterator i = m_pieces.begin(); i != m_pieces.end();) { if (i->storage == j.storage) { flush_range(i, 0, INT_MAX, l); i = m_pieces.erase(i); } else { ++i; } } l.unlock(); release_memory(); ret = j.storage->release_files_impl(); if (ret != 0) test_error(j); break; } case disk_io_job::clear_read_cache: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " clear-cache" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; for (cache_t::iterator i = m_read_pieces.begin(); i != m_read_pieces.end();) { if (i->storage == j.storage) { free_piece(*i, l); i = m_read_pieces.erase(i); } else { ++i; } } l.unlock(); release_memory(); ret = 0; break; } case disk_io_job::delete_files: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " delete" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; cache_t::iterator i = std::remove_if( m_pieces.begin(), m_pieces.end(), bind(&cached_piece_entry::storage, _1) == j.storage); for (cache_t::iterator k = i; k != m_pieces.end(); ++k) { torrent_info const& ti = *k->storage->info(); int blocks_in_piece = (ti.piece_size(k->piece) + m_block_size - 1) / m_block_size; for (int j = 0; j < blocks_in_piece; ++j) { if (k->blocks[j].buf == 0) continue; free_buffer(k->blocks[j].buf); k->blocks[j].buf = 0; --m_cache_stats.cache_size; } } m_pieces.erase(i, m_pieces.end()); l.unlock(); release_memory(); ret = j.storage->delete_files_impl(); if (ret != 0) test_error(j); break; } case disk_io_job::check_fastresume: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " check_fastresume" << std::endl; #endif lazy_entry const* rd = (lazy_entry const*)j.buffer; TORRENT_ASSERT(rd != 0); ret = j.storage->check_fastresume(*rd, j.error); break; } case disk_io_job::check_files: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " check_files" << std::endl; #endif int piece_size = j.storage->info()->piece_length(); for (int processed = 0; processed < 4 * 1024 * 1024; processed += piece_size) { ptime now = time_now_hires(); TORRENT_ASSERT(now >= m_last_file_check); #if BOOST_VERSION > 103600 if (now - m_last_file_check < milliseconds(m_settings.file_checks_delay_per_block)) { int sleep_time = m_settings.file_checks_delay_per_block * (piece_size / (16 * 1024)) - total_milliseconds(now - m_last_file_check); if (sleep_time < 0) sleep_time = 0; TORRENT_ASSERT(sleep_time < 5 * 1000); sleep(sleep_time); } m_last_file_check = time_now_hires(); #endif if (m_waiting_to_shutdown) break; ret = j.storage->check_files(j.piece, j.offset, j.error); #ifndef BOOST_NO_EXCEPTIONS try { #endif TORRENT_ASSERT(handler); if (handler && ret == piece_manager::need_full_check) post_callback(handler, j, ret); #ifndef BOOST_NO_EXCEPTIONS } catch (std::exception&) {} #endif if (ret != piece_manager::need_full_check) break; } if (test_error(j)) { ret = piece_manager::fatal_disk_error; break; } TORRENT_ASSERT(ret != -2 || !j.str.empty()); // if the check is not done, add it at the end of the job queue if (ret == piece_manager::need_full_check) { add_job(j, handler); continue; } break; } case disk_io_job::save_resume_data: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " save_resume_data" << std::endl; #endif j.resume_data.reset(new entry(entry::dictionary_t)); j.storage->write_resume_data(*j.resume_data); ret = 0; break; } case disk_io_job::rename_file: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " rename_file" << std::endl; #endif ret = j.storage->rename_file_impl(j.piece, j.str); if (ret != 0) { test_error(j); break; } } } #ifndef BOOST_NO_EXCEPTIONS } catch (std::exception& e) { ret = -1; try { j.str = e.what(); } catch (std::exception&) {} } #endif // if (!handler) std::cerr << "DISK THREAD: no callback specified" << std::endl; // else std::cerr << "DISK THREAD: invoking callback" << std::endl; #ifndef BOOST_NO_EXCEPTIONS try { #endif TORRENT_ASSERT(ret != -2 || !j.str.empty() || j.action == disk_io_job::hash); #if TORRENT_DISK_STATS if ((j.action == disk_io_job::read || j.action == disk_io_job::read_and_hash) && j.buffer != 0) rename_buffer(j.buffer, "posted send buffer"); #endif post_callback(handler, j, ret); #ifndef BOOST_NO_EXCEPTIONS } catch (std::exception&) { TORRENT_ASSERT(false); } #endif } TORRENT_ASSERT(false); } }