/* Copyright (c) 2006, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/pch.hpp" #include #include #include #include "libtorrent/io.hpp" #include "libtorrent/hasher.hpp" #include "libtorrent/alert_types.hpp" #include "libtorrent/alert.hpp" #include "libtorrent/socket.hpp" #include "libtorrent/aux_/session_impl.hpp" #include "libtorrent/kademlia/node_id.hpp" #include "libtorrent/kademlia/rpc_manager.hpp" #include "libtorrent/kademlia/routing_table.hpp" #include "libtorrent/kademlia/node.hpp" #include "libtorrent/kademlia/refresh.hpp" #include "libtorrent/kademlia/find_data.hpp" namespace libtorrent { namespace dht { void incoming_error(entry& e, char const* msg); using detail::write_endpoint; int search_torrent_entry::match(char const* in_tags[], int num_tags) const { int ret = 0; for (int i = 0; i < num_tags; ++i) { char const* t = in_tags[i]; std::map::const_iterator j = tags.find(t); if (j == tags.end()) continue; // weigh the score by how popular this tag is in this torrent ret += 100 * j->second / total_tag_points; } return ret; } bool search_torrent_entry::tick() { int sum = 0; for (std::map::iterator i = tags.begin() , end(tags.end()); i != end;) { i->second = (i->second * 2) / 3; sum += i->second; if (i->second > 0) { ++i; continue; } tags.erase(i++); } total_tag_points = sum; sum = 0; for (std::map::iterator i = name.begin() , end(name.end()); i != end;) { i->second = (i->second * 2) / 3; sum += i->second; if (i->second > 0) { ++i; continue; } name.erase(i++); } total_name_points = sum; return total_tag_points == 0; } void search_torrent_entry::publish(std::string const& torrent_name, char const* in_tags[] , int num_tags) { for (int i = 0; i < num_tags; ++i) { char const* t = in_tags[i]; std::map::iterator j = tags.find(t); if (j != tags.end()) ++j->second; else tags[t] = 1; ++total_tag_points; // TODO: limit the number of tags } name[torrent_name] += 1; ++total_name_points; // TODO: limit the number of names } void search_torrent_entry::get_name(std::string& t) const { std::map::const_iterator max = name.begin(); for (std::map::const_iterator i = name.begin() , end(name.end()); i != end; ++i) { if (i->second > max->second) max = i; } t = max->first; } void search_torrent_entry::get_tags(std::string& t) const { for (std::map::const_iterator i = tags.begin() , end(tags.end()); i != end; ++i) { if (i != tags.begin()) t += " "; t += i->first; } } #ifdef _MSC_VER namespace { char rand() { return (char)std::rand(); } } #endif // TODO: configurable? enum { announce_interval = 30 }; #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_DEFINE_LOG(node) #endif // remove peers that have timed out void purge_peers(std::set& peers) { for (std::set::iterator i = peers.begin() , end(peers.end()); i != end;) { // the peer has timed out if (i->added + minutes(int(announce_interval * 1.5f)) < time_now()) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "peer timed out at: " << i->addr; #endif peers.erase(i++); } else ++i; } } void nop() {} node_impl::node_impl(libtorrent::alert_manager& alerts , bool (*f)(void*, entry&, udp::endpoint const&, int) , dht_settings const& settings, node_id nid, address const& external_address , external_ip_fun ext_ip, void* userdata) : m_settings(settings) , m_id(nid == (node_id::min)() || !verify_id(nid, external_address) ? generate_id(external_address) : nid) , m_table(m_id, 8, settings) , m_rpc(m_id, m_table, f, userdata, ext_ip) , m_last_tracker_tick(time_now()) , m_alerts(alerts) , m_send(f) , m_userdata(userdata) { m_secret[0] = std::rand(); m_secret[1] = std::rand(); } bool node_impl::verify_token(std::string const& token, char const* info_hash , udp::endpoint const& addr) { if (token.length() != 4) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "token of incorrect length: " << token.length(); #endif return false; } hasher h1; error_code ec; std::string address = addr.address().to_string(ec); if (ec) return false; h1.update(&address[0], address.length()); h1.update((char*)&m_secret[0], sizeof(m_secret[0])); h1.update((char*)info_hash, sha1_hash::size); sha1_hash h = h1.final(); if (std::equal(token.begin(), token.end(), (signed char*)&h[0])) return true; hasher h2; h2.update(&address[0], address.length()); h2.update((char*)&m_secret[1], sizeof(m_secret[1])); h2.update((char*)info_hash, sha1_hash::size); h = h2.final(); if (std::equal(token.begin(), token.end(), (signed char*)&h[0])) return true; return false; } std::string node_impl::generate_token(udp::endpoint const& addr, char const* info_hash) { std::string token; token.resize(4); hasher h; error_code ec; std::string address = addr.address().to_string(ec); TORRENT_ASSERT(!ec); h.update(&address[0], address.length()); h.update((char*)&m_secret[0], sizeof(m_secret[0])); h.update(info_hash, sha1_hash::size); sha1_hash hash = h.final(); std::copy(hash.begin(), hash.begin() + 4, (signed char*)&token[0]); return token; } void node_impl::refresh(node_id const& id , find_data::nodes_callback const& f) { boost::intrusive_ptr r(new dht::refresh(*this, id, f)); r->start(); } void node_impl::bootstrap(std::vector const& nodes , find_data::nodes_callback const& f) { boost::intrusive_ptr r(new dht::bootstrap(*this, m_id, f)); #ifdef TORRENT_DHT_VERBOSE_LOGGING int count = 0; #endif for (std::vector::const_iterator i = nodes.begin() , end(nodes.end()); i != end; ++i) { #ifdef TORRENT_DHT_VERBOSE_LOGGING ++count; #endif r->add_entry(node_id(0), *i, observer::flag_initial); } #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "bootstrapping with " << count << " nodes"; #endif r->start(); } int node_impl::bucket_size(int bucket) { return m_table.bucket_size(bucket); } void node_impl::new_write_key() { m_secret[1] = m_secret[0]; m_secret[0] = std::rand(); } void node_impl::unreachable(udp::endpoint const& ep) { m_rpc.unreachable(ep); } void node_impl::incoming(msg const& m) { // is this a reply? lazy_entry const* y_ent = m.message.dict_find_string("y"); if (!y_ent || y_ent->string_length() == 0) { entry e; incoming_error(e, "missing 'y' entry"); m_send(m_userdata, e, m.addr, 0); return; } char y = *(y_ent->string_ptr()); switch (y) { case 'r': { node_id id; if (m_rpc.incoming(m, &id)) refresh(id, boost::bind(&nop)); break; } case 'q': { TORRENT_ASSERT(m.message.dict_find_string_value("y") == "q"); entry e; incoming_request(m, e); m_send(m_userdata, e, m.addr, 0); break; } case 'e': { #ifdef TORRENT_DHT_VERBOSE_LOGGING lazy_entry const* err = m.message.dict_find_list("e"); if (err && err->list_size() >= 2) { TORRENT_LOG(node) << "INCOMING ERROR: " << err->list_string_value_at(1); } #endif break; } } } namespace { void announce_fun(std::vector > const& v , node_impl& node, int listen_port, sha1_hash const& ih) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "sending announce_peer [ ih: " << ih << " p: " << listen_port << " nodes: " << v.size() << " ]" ; #endif // create a dummy traversal_algorithm boost::intrusive_ptr algo( new traversal_algorithm(node, (node_id::min)())); // store on the first k nodes for (std::vector >::const_iterator i = v.begin() , end(v.end()); i != end; ++i) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << " distance: " << (160 - distance_exp(ih, i->first.id)); #endif void* ptr = node.m_rpc.allocate_observer(); if (ptr == 0) return; observer_ptr o(new (ptr) announce_observer(algo, i->first.ep(), i->first.id)); #ifdef TORRENT_DEBUG o->m_in_constructor = false; #endif entry e; e["y"] = "q"; e["q"] = "announce_peer"; entry& a = e["a"]; a["info_hash"] = ih.to_string(); a["port"] = listen_port; a["token"] = i->second; node.m_rpc.invoke(e, i->first.ep(), o); } } } void node_impl::add_router_node(udp::endpoint router) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "adding router node: " << router; #endif m_table.add_router_node(router); } void node_impl::add_node(udp::endpoint node) { // ping the node, and if we get a reply, it // will be added to the routing table void* ptr = m_rpc.allocate_observer(); if (ptr == 0) return; // create a dummy traversal_algorithm // this is unfortunately necessary for the observer // to free itself from the pool when it's being released boost::intrusive_ptr algo( new traversal_algorithm(*this, (node_id::min)())); observer_ptr o(new (ptr) null_observer(algo, node, node_id(0))); #ifdef TORRENT_DEBUG o->m_in_constructor = false; #endif entry e; e["y"] = "q"; e["q"] = "ping"; m_rpc.invoke(e, node, o); } void node_impl::announce(sha1_hash const& info_hash, int listen_port , boost::function const&)> f) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "announcing [ ih: " << info_hash << " p: " << listen_port << " ]" ; #endif // search for nodes with ids close to id or with peers // for info-hash id. then send announce_peer to them. boost::intrusive_ptr ta(new find_data(*this, info_hash, f , boost::bind(&announce_fun, _1, boost::ref(*this) , listen_port, info_hash))); ta->start(); } void node_impl::tick() { node_id target; if (m_table.need_refresh(target)) refresh(target, boost::bind(&nop)); } time_duration node_impl::connection_timeout() { time_duration d = m_rpc.tick(); ptime now(time_now()); if (now - m_last_tracker_tick < minutes(2)) return d; m_last_tracker_tick = now; for (feed_table_t::iterator i = m_feeds.begin(); i != m_feeds.end();) { if (i->second.last_seen + minutes(60) > now) { ++i; continue; } m_feeds.erase(i++); } // look through all peers and see if any have timed out for (table_t::iterator i = m_map.begin(), end(m_map.end()); i != end;) { torrent_entry& t = i->second; node_id const& key = i->first; ++i; purge_peers(t.peers); // if there are no more peers, remove the entry altogether if (t.peers.empty()) { table_t::iterator i = m_map.find(key); if (i != m_map.end()) m_map.erase(i); } } return d; } void node_impl::status(session_status& s) { mutex_t::scoped_lock l(m_mutex); m_table.status(s); s.dht_torrents = int(m_map.size()); s.active_requests.clear(); s.dht_total_allocations = m_rpc.num_allocated_observers(); for (std::set::iterator i = m_running_requests.begin() , end(m_running_requests.end()); i != end; ++i) { s.active_requests.push_back(dht_lookup()); dht_lookup& l = s.active_requests.back(); (*i)->status(l); } } bool node_impl::lookup_torrents(sha1_hash const& target , entry& reply, char* tags) const { // if (m_alerts.should_post()) // m_alerts.post_alert(dht_find_torrents_alert(info_hash)); search_table_t::const_iterator first, last; first = m_search_map.lower_bound(std::make_pair(target, (sha1_hash::min)())); last = m_search_map.upper_bound(std::make_pair(target, (sha1_hash::max)())); if (first == last) return false; std::string tags_copy(tags); char const* in_tags[20]; int num_tags = 0; num_tags = split_string(in_tags, 20, &tags_copy[0]); typedef std::pair sort_item; std::vector result; for (; first != last; ++first) { result.push_back(std::make_pair( first->second.match(in_tags, num_tags), first)); } std::sort(result.begin(), result.end() , boost::bind(&sort_item::first, _1) > boost::bind(&sort_item::first, _2)); int num = (std::min)((int)result.size(), m_settings.max_torrent_search_reply); entry::list_type& pe = reply["values"].list(); for (int i = 0; i < num; ++i) { pe.push_back(entry()); entry::list_type& e = pe.back().list(); // push name e.push_back(entry()); result[i].second->second.get_name(e.back().string()); // push tags e.push_back(entry()); result[i].second->second.get_tags(e.back().string()); // push info-hash e.push_back(entry()); e.back().string() = result[i].second->first.second.to_string(); } return true; } bool node_impl::lookup_peers(sha1_hash const& info_hash, int prefix, entry& reply) const { if (m_alerts.should_post()) m_alerts.post_alert(dht_get_peers_alert(info_hash)); table_t::const_iterator i = m_map.lower_bound(info_hash); if (i == m_map.end()) return false; if (i->first != info_hash && prefix == 20) return false; if (prefix != 20) { sha1_hash mask = sha1_hash::max(); mask <<= (20 - prefix) * 8; if ((i->first & mask) != (info_hash & mask)) return false; } torrent_entry const& v = i->second; if (v.peers.empty()) return false; if (!v.name.empty()) reply["n"] = v.name; int num = (std::min)((int)v.peers.size(), m_settings.max_peers_reply); int t = 0; int m = 0; std::set::const_iterator iter = v.peers.begin(); entry::list_type& pe = reply["values"].list(); std::string endpoint; while (m < num) { if ((std::rand() / (RAND_MAX + 1.f)) * (num - t) >= num - m) { ++iter; ++t; } else { endpoint.resize(18); std::string::iterator out = endpoint.begin(); write_endpoint(iter->addr, out); endpoint.resize(out - endpoint.begin()); pe.push_back(entry(endpoint)); ++iter; ++t; ++m; } } return true; } namespace { void write_nodes_entry(entry& r, nodes_t const& nodes) { bool ipv6_nodes = false; entry& n = r["nodes"]; std::back_insert_iterator out(n.string()); for (nodes_t::const_iterator i = nodes.begin() , end(nodes.end()); i != end; ++i) { if (!i->addr.is_v4()) { ipv6_nodes = true; continue; } std::copy(i->id.begin(), i->id.end(), out); write_endpoint(udp::endpoint(i->addr, i->port), out); } if (ipv6_nodes) { entry& p = r["nodes2"]; std::string endpoint; for (nodes_t::const_iterator i = nodes.begin() , end(nodes.end()); i != end; ++i) { if (!i->addr.is_v6()) continue; endpoint.resize(18 + 20); std::string::iterator out = endpoint.begin(); std::copy(i->id.begin(), i->id.end(), out); out += 20; write_endpoint(udp::endpoint(i->addr, i->port), out); endpoint.resize(out - endpoint.begin()); p.list().push_back(entry(endpoint)); } } } } // verifies that a message has all the required // entries and returns them in ret bool verify_message(lazy_entry const* msg, key_desc_t const desc[], lazy_entry const* ret[] , int size , char* error, int error_size) { // clear the return buffer memset(ret, 0, sizeof(ret[0]) * size); // when parsing child nodes, this is the stack // of lazy_entry pointers to return to lazy_entry const* stack[5]; int stack_ptr = -1; if (msg->type() != lazy_entry::dict_t) { snprintf(error, error_size, "not a dictionary"); return false; } ++stack_ptr; stack[stack_ptr] = msg; for (int i = 0; i < size; ++i) { key_desc_t const& k = desc[i]; // fprintf(stderr, "looking for %s in %s\n", k.name, print_entry(*msg).c_str()); ret[i] = msg->dict_find(k.name); if (ret[i] && ret[i]->type() != k.type) ret[i] = 0; if (ret[i] == 0 && (k.flags & key_desc_t::optional) == 0) { // the key was not found, and it's not an optiona key snprintf(error, error_size, "missing '%s' key", k.name); return false; } if (k.size > 0 && ret[i] && k.type == lazy_entry::string_t) { bool invalid = false; if (k.flags & key_desc_t::size_divisible) invalid = (ret[i]->string_length() % k.size) != 0; else invalid = ret[i]->string_length() != k.size; if (invalid) { // the string was not of the required size ret[i] = 0; if ((k.flags & key_desc_t::optional) == 0) { snprintf(error, error_size, "invalid value for '%s'", k.name); return false; } } } if (k.flags & key_desc_t::parse_children) { TORRENT_ASSERT(k.type == lazy_entry::dict_t); if (ret[i]) { ++stack_ptr; TORRENT_ASSERT(stack_ptr < int(sizeof(stack)/sizeof(stack[0]))); msg = ret[i]; stack[stack_ptr] = msg; } else { // skip all children while (i < size && (desc[i].flags & key_desc_t::last_child) == 0) ++i; // if this assert is hit, desc is incorrect TORRENT_ASSERT(i < size); } } else if (k.flags & key_desc_t::last_child) { TORRENT_ASSERT(stack_ptr > 0); --stack_ptr; msg = stack[stack_ptr]; } } return true; } void incoming_error(entry& e, char const* msg) { e["y"] = "e"; entry::list_type& l = e["e"].list(); l.push_back(entry(203)); l.push_back(entry(msg)); } // build response void node_impl::incoming_request(msg const& m, entry& e) { e = entry(entry::dictionary_t); e["y"] = "r"; e["t"] = m.message.dict_find_string_value("t"); key_desc_t top_desc[] = { {"q", lazy_entry::string_t, 0, 0}, {"a", lazy_entry::dict_t, 0, 0}, }; lazy_entry const* top_level[2]; char error_string[200]; if (!verify_message(&m.message, top_desc, top_level, 2, error_string, sizeof(error_string))) { incoming_error(e, error_string); return; } char const* query = top_level[0]->string_cstr(); lazy_entry const* arg_ent = top_level[1]; lazy_entry const* node_id_ent = arg_ent->dict_find_string("id"); if (node_id_ent == 0 || node_id_ent->string_length() != 20) { incoming_error(e, "missing 'id' key"); return; } node_id id(node_id_ent->string_ptr()); m_table.heard_about(id, m.addr); entry& reply = e["r"]; m_rpc.add_our_id(reply); // if this nodes ID doesn't match its IP, tell it what // its IP is if (!verify_id(id, m.addr.address())) reply["ip"] = address_to_bytes(m.addr.address()); if (strcmp(query, "ping") == 0) { // we already have 't' and 'id' in the response // no more left to add } else if (strcmp(query, "get_peers") == 0) { key_desc_t msg_desc[] = { {"info_hash", lazy_entry::string_t, 20, 0}, {"ifhpfxl", lazy_entry::int_t, 0, key_desc_t::optional}, }; lazy_entry const* msg_keys[2]; if (!verify_message(arg_ent, msg_desc, msg_keys, 2, error_string, sizeof(error_string))) { incoming_error(e, error_string); return; } reply["token"] = generate_token(m.addr, msg_keys[0]->string_ptr()); sha1_hash info_hash(msg_keys[0]->string_ptr()); nodes_t n; // always return nodes as well as peers m_table.find_node(info_hash, n, 0); write_nodes_entry(reply, n); int prefix = msg_keys[1] ? int(msg_keys[1]->int_value()) : 20; if (prefix > 20) prefix = 20; else if (prefix < 4) prefix = 4; bool ret = lookup_peers(info_hash, prefix, reply); (void)ret; #ifdef TORRENT_DHT_VERBOSE_LOGGING if (ret) TORRENT_LOG(node) << " values: " << reply["values"].list().size(); #endif } else if (strcmp(query, "find_node") == 0) { key_desc_t msg_desc[] = { {"target", lazy_entry::string_t, 20, 0}, }; lazy_entry const* msg_keys[1]; if (!verify_message(arg_ent, msg_desc, msg_keys, 1, error_string, sizeof(error_string))) { incoming_error(e, error_string); return; } sha1_hash target(msg_keys[0]->string_ptr()); // TODO: find_node should write directly to the response entry nodes_t n; m_table.find_node(target, n, 0); write_nodes_entry(reply, n); } else if (strcmp(query, "announce_peer") == 0) { #ifdef TORRENT_DHT_VERBOSE_LOGGING extern int g_failed_announces; #endif key_desc_t msg_desc[] = { {"info_hash", lazy_entry::string_t, 20, 0}, {"port", lazy_entry::int_t, 0, 0}, {"token", lazy_entry::string_t, 0, 0}, {"n", lazy_entry::string_t, 0, key_desc_t::optional}, }; lazy_entry const* msg_keys[4]; if (!verify_message(arg_ent, msg_desc, msg_keys, 4, error_string, sizeof(error_string))) { #ifdef TORRENT_DHT_VERBOSE_LOGGING ++g_failed_announces; #endif incoming_error(e, error_string); return; } int port = int(msg_keys[1]->int_value()); if (port < 0 || port >= 65536) { #ifdef TORRENT_DHT_VERBOSE_LOGGING ++g_failed_announces; #endif incoming_error(e, "invalid port"); return; } sha1_hash info_hash(msg_keys[0]->string_ptr()); if (m_alerts.should_post()) m_alerts.post_alert(dht_announce_alert( m.addr.address(), port, info_hash)); if (!verify_token(msg_keys[2]->string_value(), msg_keys[0]->string_ptr(), m.addr)) { #ifdef TORRENT_DHT_VERBOSE_LOGGING ++g_failed_announces; #endif incoming_error(e, "invalid token"); return; } // the token was correct. That means this // node is not spoofing its address. So, let // the table get a chance to add it. m_table.node_seen(id, m.addr); if (!m_map.empty() && int(m_map.size()) >= m_settings.max_torrents) { // we need to remove some. Remove the ones with the // fewest peers int num_peers = m_map.begin()->second.peers.size(); table_t::iterator candidate = m_map.begin(); for (table_t::iterator i = m_map.begin() , end(m_map.end()); i != end; ++i) { if (int(i->second.peers.size()) > num_peers) continue; if (i->first == info_hash) continue; num_peers = i->second.peers.size(); candidate = i; } m_map.erase(candidate); } torrent_entry& v = m_map[info_hash]; // the peer announces a torrent name, and we don't have a name // for this torrent. Store it. if (msg_keys[3] && v.name.empty()) { std::string name = msg_keys[3]->string_value(); if (name.size() > 50) name.resize(50); v.name = name; } peer_entry e; e.addr = tcp::endpoint(m.addr.address(), port); e.added = time_now(); std::set::iterator i = v.peers.find(e); if (i != v.peers.end()) v.peers.erase(i++); v.peers.insert(i, e); #ifdef TORRENT_DHT_VERBOSE_LOGGING extern int g_announces; ++g_announces; #endif } /* else if (strcmp(query, "find_torrent") == 0) { key_desc_t msg_desc[] = { {"target", lazy_entry::string_t, 20, 0}, {"tags", lazy_entry::string_t, 0, 0}, }; lazy_entry const* msg_keys[2]; if (!verify_message(arg_ent, msg_desc, msg_keys, 2, error_string, sizeof(error_string))) { incoming_error(e, error_string); return; } reply["token"] = generate_token(m.addr, msg_keys[0]->string_ptr()); sha1_hash target(msg_keys[0]->string_ptr()); nodes_t n; // always return nodes as well as torrents m_table.find_node(target, n, 0); write_nodes_entry(reply, n); lookup_torrents(target, reply, (char*)msg_keys[1]->string_cstr()); } */ else if (strcmp(query, "announce_item") == 0) { feed_item add_item; const static key_desc_t msg_desc[] = { {"target", lazy_entry::string_t, 20, 0}, {"token", lazy_entry::string_t, 0, 0}, {"sig", lazy_entry::string_t, sizeof(add_item.signature), 0}, {"head", lazy_entry::dict_t, 0, key_desc_t::optional | key_desc_t::parse_children}, {"n", lazy_entry::string_t, 0, 0}, {"key", lazy_entry::string_t, 64, 0}, {"seq", lazy_entry::int_t, 0, 0}, {"next", lazy_entry::string_t, 20, key_desc_t::last_child | key_desc_t::size_divisible}, {"item", lazy_entry::dict_t, 0, key_desc_t::optional | key_desc_t::parse_children}, {"key", lazy_entry::string_t, 64, 0}, {"next", lazy_entry::string_t, 20, key_desc_t::last_child | key_desc_t::size_divisible}, }; // attempt to parse the message lazy_entry const* msg_keys[11]; if (!verify_message(arg_ent, msg_desc, msg_keys, 11, error_string, sizeof(error_string))) { incoming_error(e, error_string); return; } sha1_hash target(msg_keys[0]->string_ptr()); // verify the write-token if (!verify_token(msg_keys[1]->string_value(), msg_keys[0]->string_ptr(), m.addr)) { incoming_error(e, "invalid token"); return; } sha1_hash expected_target; sha1_hash item_hash; std::pair buf; if (msg_keys[3]) { // we found the "head" entry add_item.type = feed_item::list_head; add_item.item = *msg_keys[3]; add_item.name = msg_keys[4]->string_value(); add_item.sequence_number = msg_keys[6]->int_value(); buf = msg_keys[3]->data_section(); item_hash = hasher(buf.first, buf.second).final(); hasher h; h.update(add_item.name); h.update((const char*)msg_keys[5]->string_ptr(), msg_keys[5]->string_length()); expected_target = h.final(); } else if (msg_keys[8]) { // we found the "item" entry add_item.type = feed_item::list_item; add_item.item = *msg_keys[8]; buf = msg_keys[8]->data_section(); item_hash = hasher(buf.first, buf.second).final(); expected_target = item_hash; } else { incoming_error(e, "missing head or item"); return; } if (buf.second > 1024) { incoming_error(e, "message too big"); return; } // verify that the key matches the target if (expected_target != target) { incoming_error(e, "invalid target"); return; } memcpy(add_item.signature, msg_keys[2]->string_ptr(), sizeof(add_item.signature)); // #error verify signature by comparing it to item_hash m_table.node_seen(id, m.addr); feed_table_t::iterator i = m_feeds.find(target); if (i == m_feeds.end()) { // make sure we don't add too many items if (int(m_feeds.size()) >= m_settings.max_feed_items) { // delete the least important one (i.e. the one // the fewest peers are announcing) feed_table_t::iterator j = std::min_element(m_feeds.begin(), m_feeds.end() , boost::bind(&feed_item::num_announcers , boost::bind(&feed_table_t::value_type::second, _1))); TORRENT_ASSERT(j != m_feeds.end()); // std::cerr << " removing: " << i->second.item << std::endl; m_feeds.erase(j); } boost::tie(i, boost::tuples::ignore) = m_feeds.insert(std::make_pair(target, add_item)); } feed_item& f = i->second; if (f.type != add_item.type) return; f.last_seen = time_now(); if (add_item.sequence_number > f.sequence_number) { f.item.swap(add_item.item); f.name.swap(add_item.name); f.sequence_number = add_item.sequence_number; memcpy(f.signature, add_item.signature, sizeof(f.signature)); } // maybe increase num_announcers if we haven't seen this IP before sha1_hash iphash; hash_address(m.addr.address(), iphash); if (!f.ips.find(iphash)) { f.ips.set(iphash); ++f.num_announcers; } } else if (strcmp(query, "get_item") == 0) { key_desc_t msg_desc[] = { {"target", lazy_entry::string_t, 20, 0}, {"key", lazy_entry::string_t, 64, 0}, {"n", lazy_entry::string_t, 0, key_desc_t::optional}, }; // attempt to parse the message lazy_entry const* msg_keys[3]; if (!verify_message(arg_ent, msg_desc, msg_keys, 3, error_string, sizeof(error_string))) { incoming_error(e, error_string); return; } sha1_hash target(msg_keys[0]->string_ptr()); // verify that the key matches the target // we can only do this for list heads, where // we have the name. if (msg_keys[2]) { hasher h; h.update(msg_keys[2]->string_ptr(), msg_keys[2]->string_length()); h.update(msg_keys[1]->string_ptr(), msg_keys[1]->string_length()); if (h.final() != target) { incoming_error(e, "invalid target"); return; } } reply["token"] = generate_token(m.addr, msg_keys[0]->string_ptr()); nodes_t n; // always return nodes as well as peers m_table.find_node(target, n, 0); write_nodes_entry(reply, n); feed_table_t::iterator i = m_feeds.find(target); if (i != m_feeds.end()) { feed_item const& f = i->second; if (f.type == feed_item::list_head) reply["head"] = f.item; else reply["item"] = f.item; reply["sig"] = std::string((char*)f.signature, sizeof(f.signature)); } } /* else if (strcmp(query, "announce_torrent") == 0) { key_desc_t msg_desc[] = { {"target", lazy_entry::string_t, 20, 0}, {"info_hash", lazy_entry::string_t, 20, 0}, {"name", lazy_entry::string_t, 0, 0}, {"tags", lazy_entry::string_t, 0, 0}, {"token", lazy_entry::string_t, 0, 0}, }; lazy_entry const* msg_keys[5]; if (!verify_message(arg_ent, msg_desc, msg_keys, 5, error_string, sizeof(error_string))) { incoming_error(e, error_string); return; } // if (m_alerts.should_post()) // m_alerts.post_alert(dht_announce_torrent_alert( // m.addr.address(), name, tags, info_hash)); if (!verify_token(msg_keys[4]->string_value(), msg_keys[0]->string_ptr(), m.addr)) { incoming_error(e, "invalid token in announce"); return; } sha1_hash target(msg_keys[0]->string_ptr()); sha1_hash info_hash(msg_keys[1]->string_ptr()); // the token was correct. That means this // node is not spoofing its address. So, let // the table get a chance to add it. m_table.node_seen(id, m.addr); search_table_t::iterator i = m_search_map.find(std::make_pair(target, info_hash)); if (i == m_search_map.end()) { boost::tie(i, boost::tuples::ignore) = m_search_map.insert(std::make_pair(std::make_pair(target, info_hash) , search_torrent_entry())); } char const* in_tags[20]; int num_tags = 0; num_tags = split_string(in_tags, 20, (char*)msg_keys[3]->string_cstr()); i->second.publish(msg_keys[2]->string_value(), in_tags, num_tags); } */ else { // if we don't recognize the message but there's a // 'target' or 'info_hash' in the arguments, treat it // as find_node to be future compatible lazy_entry const* target_ent = arg_ent->dict_find_string("target"); if (target_ent == 0 || target_ent->string_length() != 20) { target_ent = arg_ent->dict_find_string("info_hash"); if (target_ent == 0 || target_ent->string_length() != 20) { incoming_error(e, "unknown message"); return; } } sha1_hash target(target_ent->string_ptr()); nodes_t n; // always return nodes as well as peers m_table.find_node(target, n, 0); write_nodes_entry(reply, n); return; } } } } // namespace libtorrent::dht