/* Copyright (c) 2007, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/storage.hpp" #include #include "libtorrent/disk_io_thread.hpp" #ifdef _WIN32 #include #define alloca(s) _alloca(s) #endif #ifdef TORRENT_DISK_STATS #include "libtorrent/time.hpp" #endif namespace libtorrent { disk_io_thread::disk_io_thread(asio::io_service& ios, int block_size) : m_abort(false) , m_queue_buffer_size(0) , m_num_cached_blocks(0) , m_cache_size(512) // 512 * 16kB = 8MB , m_cache_expiry(60) // 1 minute , m_pool(block_size) #ifndef NDEBUG , m_block_size(block_size) #endif , m_writes(0) , m_blocks_written(0) , m_ios(ios) , m_disk_io_thread(boost::ref(*this)) { #ifdef TORRENT_STATS m_allocations = 0; #endif #ifdef TORRENT_DISK_STATS m_log.open("disk_io_thread.log", std::ios::trunc); #endif } disk_io_thread::~disk_io_thread() { TORRENT_ASSERT(m_abort == true); } #ifndef NDEBUG disk_io_job disk_io_thread::find_job(boost::intrusive_ptr s , int action, int piece) const { mutex_t::scoped_lock l(m_mutex); for (std::deque::const_iterator i = m_jobs.begin(); i != m_jobs.end(); ++i) { if (i->storage != s) continue; if ((i->action == action || action == -1) && i->piece == piece) return *i; } if ((m_current.action == action || action == -1) && m_current.piece == piece) return m_current; disk_io_job ret; ret.action = (disk_io_job::action_t)-1; ret.piece = -1; return ret; } #endif void disk_io_thread::join() { mutex_t::scoped_lock l(m_mutex); m_abort = true; m_signal.notify_all(); l.unlock(); m_disk_io_thread.join(); } void disk_io_thread::get_cache_info(sha1_hash const& ih, std::vector& ret) const { mutex_t::scoped_lock l(m_mutex); ret.clear(); ret.reserve(m_pieces.size()); for (std::vector::const_iterator i = m_pieces.begin() , end(m_pieces.end()); i != end; ++i) { torrent_info const& ti = *i->storage->info(); if (ti.info_hash() != ih) continue; cached_piece_info info; info.piece = i->piece; info.last_write = i->last_write; int blocks_in_piece = (ti.piece_size(i->piece) + (16 * 1024) - 1) / (16 * 1024); info.blocks.resize(blocks_in_piece); for (int b = 0; b < blocks_in_piece; ++b) if (i->blocks[b]) info.blocks[b] = true; ret.push_back(info); } } cache_status disk_io_thread::status() const { mutex_t::scoped_lock l(m_mutex); cache_status st; st.blocks_written = m_blocks_written; st.writes = m_writes; st.write_size = m_num_cached_blocks; return st; } void disk_io_thread::set_cache_size(int s) { mutex_t::scoped_lock l(m_mutex); TORRENT_ASSERT(s >= 0); m_cache_size = s; } void disk_io_thread::set_cache_expiry(int ex) { mutex_t::scoped_lock l(m_mutex); TORRENT_ASSERT(ex > 0); m_cache_expiry = ex; } // aborts read operations void disk_io_thread::stop(boost::intrusive_ptr s) { mutex_t::scoped_lock l(m_mutex); // read jobs are aborted, write and move jobs are syncronized for (std::deque::iterator i = m_jobs.begin(); i != m_jobs.end();) { if (i->storage != s) { ++i; continue; } if (i->action == disk_io_job::read) { if (i->callback) m_ios.post(bind(i->callback, -1, *i)); m_jobs.erase(i++); continue; } ++i; } m_signal.notify_all(); } bool range_overlap(int start1, int length1, int start2, int length2) { return (start1 <= start2 && start1 + length1 > start2) || (start2 <= start1 && start2 + length2 > start1); } namespace { // The semantic of this operator is: // shouls lhs come before rhs in the job queue bool operator<(disk_io_job const& lhs, disk_io_job const& rhs) { // NOTE: comparison inverted to make higher priority // skip _in_front_of_ lower priority if (lhs.priority > rhs.priority) return true; if (lhs.priority < rhs.priority) return false; if (lhs.storage.get() < rhs.storage.get()) return true; if (lhs.storage.get() > rhs.storage.get()) return false; if (lhs.piece < rhs.piece) return true; if (lhs.piece > rhs.piece) return false; if (lhs.offset < rhs.offset) return true; // if (lhs.offset > rhs.offset) return false; return false; } } std::vector::iterator disk_io_thread::find_cached_piece( disk_io_job const& j, mutex_t::scoped_lock& l) { TORRENT_ASSERT(l.locked()); for (std::vector::iterator i = m_pieces.begin() , end(m_pieces.end()); i != end; ++i) { if (i->storage != j.storage || i->piece != j.piece) continue; return i; } return m_pieces.end(); } void disk_io_thread::flush_expired_pieces(mutex_t::scoped_lock& l) { ptime now = time_now(); TORRENT_ASSERT(l.locked()); for (;;) { std::vector::iterator i = std::min_element( m_pieces.begin(), m_pieces.end() , bind(&cached_piece_entry::last_write, _1) < bind(&cached_piece_entry::last_write, _2)); if (i == m_pieces.end()) return; int age = total_seconds(now - i->last_write); if (age < m_cache_expiry) return; flush_and_remove(i, l); } } void disk_io_thread::flush_oldest_piece(mutex_t::scoped_lock& l) { TORRENT_ASSERT(l.locked()); std::vector::iterator i = std::min_element( m_pieces.begin(), m_pieces.end() , bind(&cached_piece_entry::last_write, _1) < bind(&cached_piece_entry::last_write, _2)); if (i == m_pieces.end()) return; flush_and_remove(i, l); } void disk_io_thread::flush_and_remove(std::vector::iterator e , mutex_t::scoped_lock& l) { flush(e, l); m_pieces.erase(e); } void disk_io_thread::flush(std::vector::iterator e , mutex_t::scoped_lock& l) { TORRENT_ASSERT(l.locked()); cached_piece_entry& p = *e; int piece_size = p.storage->info()->piece_size(p.piece); #ifdef TORRENT_DISK_STATS m_log << log_time() << " flushing " << piece_size << std::endl; #endif TORRENT_ASSERT(piece_size > 0); // char* buf = (char*)alloca(piece_size); std::vector temp(piece_size); char* buf = &temp[0]; TORRENT_ASSERT(buf != 0); int blocks_in_piece = (piece_size + (16 * 1024) - 1) / (16 * 1024); int buffer_size = 0; int offset = 0; for (int i = 0; i <= blocks_in_piece; ++i) { if (i == blocks_in_piece || p.blocks[i] == 0) { if (buffer_size == 0) continue; TORRENT_ASSERT(buffer_size <= i * 16 * 1024); l.unlock(); p.storage->write_impl(buf, p.piece, (std::min)(i * 16 * 1024, piece_size) - buffer_size, buffer_size); l.lock(); ++m_writes; // std::cerr << " flushing p: " << p.piece << " bytes: " << buffer_size << std::endl; buffer_size = 0; offset = 0; continue; } int block_size = (std::min)(piece_size - offset, 16 * 1024); TORRENT_ASSERT(offset + block_size <= piece_size); TORRENT_ASSERT(offset + block_size > 0); std::memcpy(buf + offset, p.blocks[i], block_size); offset += 16 * 1024; free_buffer(p.blocks[i], l); p.blocks[i] = 0; buffer_size += block_size; ++m_blocks_written; --m_num_cached_blocks; } TORRENT_ASSERT(buffer_size == 0); // std::cerr << " flushing p: " << p.piece << " cached_blocks: " << m_num_cached_blocks << std::endl; #ifndef NDEBUG for (int i = 0; i < blocks_in_piece; ++i) TORRENT_ASSERT(p.blocks[i] == 0); #endif } void disk_io_thread::cache_block(disk_io_job& j, mutex_t::scoped_lock& l) { TORRENT_ASSERT(l.locked()); TORRENT_ASSERT(find_cached_piece(j, l) == m_pieces.end()); cached_piece_entry p; int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + (16 * 1024) - 1) / (16 * 1024); p.piece = j.piece; p.storage = j.storage; p.last_write = time_now(); p.num_blocks = 1; p.blocks.reset(new char*[blocks_in_piece]); std::memset(&p.blocks[0], 0, blocks_in_piece * sizeof(char*)); int block = j.offset / (16 * 1024); // std::cerr << " adding cache entry for p: " << j.piece << " block: " << block << " cached_blocks: " << m_num_cached_blocks << std::endl; p.blocks[block] = j.buffer; ++m_num_cached_blocks; m_pieces.push_back(p); } void disk_io_thread::add_job(disk_io_job const& j , boost::function const& f) { TORRENT_ASSERT(!j.callback); TORRENT_ASSERT(j.storage); TORRENT_ASSERT(j.buffer_size <= 16 * 1024); mutex_t::scoped_lock l(m_mutex); #ifndef NDEBUG if (j.action == disk_io_job::write) { std::vector::iterator p = find_cached_piece(j, l); if (p != m_pieces.end()) { int block = j.offset / (16 * 1024); char const* buffer = p->blocks[block]; TORRENT_ASSERT(buffer == 0); } } #endif std::deque::reverse_iterator i = m_jobs.rbegin(); if (j.action == disk_io_job::read) { // when we're reading, we may not skip // ahead of any write operation that overlaps // the region we're reading for (; i != m_jobs.rend(); i++) { // if *i should come before j, stop // and insert j before i if (*i < j) break; // if we come across a write operation that // overlaps the region we're reading, we need // to stop if (i->action == disk_io_job::write && i->storage == j.storage && i->piece == j.piece && range_overlap(i->offset, i->buffer_size , j.offset, j.buffer_size)) break; } } else if (j.action == disk_io_job::write) { for (; i != m_jobs.rend(); ++i) { if (*i < j) { if (i != m_jobs.rbegin() && i.base()->storage.get() != j.storage.get()) i = m_jobs.rbegin(); break; } } } // if we are placed in front of all other jobs, put it on the back of // the queue, to sweep the disk in the same direction, and to avoid // starvation. The exception is if the priority is higher than the // job at the front of the queue if (i == m_jobs.rend() && (m_jobs.empty() || j.priority <= m_jobs.back().priority)) i = m_jobs.rbegin(); std::deque::iterator k = m_jobs.insert(i.base(), j); k->callback.swap(const_cast&>(f)); if (j.action == disk_io_job::write) m_queue_buffer_size += j.buffer_size; TORRENT_ASSERT(j.storage.get()); m_signal.notify_all(); } char* disk_io_thread::allocate_buffer() { mutex_t::scoped_lock l(m_mutex); return allocate_buffer(l); } void disk_io_thread::free_buffer(char* buf) { mutex_t::scoped_lock l(m_mutex); free_buffer(buf, l); } char* disk_io_thread::allocate_buffer(mutex_t::scoped_lock& l) { TORRENT_ASSERT(l.locked()); #ifdef TORRENT_STATS ++m_allocations; #endif return (char*)m_pool.ordered_malloc(); } void disk_io_thread::free_buffer(char* buf, mutex_t::scoped_lock& l) { TORRENT_ASSERT(l.locked()); #ifdef TORRENT_STATS --m_allocations; #endif m_pool.ordered_free(buf); } void disk_io_thread::operator()() { for (;;) { #ifdef TORRENT_DISK_STATS m_log << log_time() << " idle" << std::endl; #endif mutex_t::scoped_lock l(m_mutex); #ifndef NDEBUG m_current.action = (disk_io_job::action_t)-1; m_current.piece = -1; #endif while (m_jobs.empty() && !m_abort) m_signal.wait(l); if (m_abort && m_jobs.empty()) return; boost::function handler; handler.swap(m_jobs.front().callback); #ifndef NDEBUG m_current = m_jobs.front(); #endif disk_io_job j = m_jobs.front(); m_jobs.pop_front(); m_queue_buffer_size -= j.buffer_size; flush_expired_pieces(l); l.unlock(); int ret = 0; bool free_current_buffer = true; TORRENT_ASSERT(j.storage); #ifdef TORRENT_DISK_STATS ptime start = time_now(); #endif #ifndef BOOST_NO_EXCEPTIONS try { #endif std::string const& error_string = j.storage->error(); if (!error_string.empty()) { std::cout << "ERROR: " << error_string << std::endl; j.str = error_string; j.storage->clear_error(); ret = -1; } else { switch (j.action) { case disk_io_job::read: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " read " << j.buffer_size << std::endl; #endif free_current_buffer = false; if (j.buffer == 0) { j.buffer = allocate_buffer(); TORRENT_ASSERT(j.buffer_size <= m_block_size); if (j.buffer == 0) { ret = -1; j.str = "out of memory"; break; } } ret = j.storage->read_impl(j.buffer, j.piece, j.offset , j.buffer_size); if (ret < 0) { j.str = j.storage->error(); j.storage->clear_error(); } break; } case disk_io_job::write: { mutex_t::scoped_lock l(m_mutex); #ifdef TORRENT_DISK_STATS m_log << log_time() << " write " << j.buffer_size << std::endl; #endif std::vector::iterator p = find_cached_piece(j, l); int block = j.offset / (16 * 1024); TORRENT_ASSERT(j.buffer); TORRENT_ASSERT(j.buffer_size <= m_block_size); if (p != m_pieces.end()) { TORRENT_ASSERT(p->blocks[block] == 0); if (p->blocks[block]) free_buffer(p->blocks[block]); p->blocks[block] = j.buffer; ++m_num_cached_blocks; ++p->num_blocks; p->last_write = time_now(); } else { cache_block(j, l); } free_current_buffer = false; if (m_num_cached_blocks >= m_cache_size) flush_oldest_piece(l); break; } case disk_io_job::hash: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " hash" << std::endl; #endif mutex_t::scoped_lock l(m_mutex); std::vector::iterator i = find_cached_piece(j, l); if (i != m_pieces.end()) flush_and_remove(i, l); l.unlock(); sha1_hash h = j.storage->hash_for_piece_impl(j.piece); std::string const& e = j.storage->error(); if (!e.empty()) { j.str = e; ret = -1; j.storage->clear_error(); break; } j.str.resize(20); std::memcpy(&j.str[0], &h[0], 20); break; } case disk_io_job::move_storage: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " move" << std::endl; #endif ret = j.storage->move_storage_impl(j.str) ? 1 : 0; if (ret != 0) { j.str = j.storage->error(); j.storage->clear_error(); break; } j.str = j.storage->save_path().string(); break; } case disk_io_job::release_files: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " release" << std::endl; #endif mutex_t::scoped_lock l(m_mutex); std::vector::iterator i = std::remove_if( m_pieces.begin(), m_pieces.end(), bind(&cached_piece_entry::storage, _1) == j.storage); for (std::vector::iterator k = i; k != m_pieces.end(); ++k) flush(k, l); m_pieces.erase(i, m_pieces.end()); m_pool.release_memory(); l.unlock(); ret = j.storage->release_files_impl(); if (ret != 0) { j.str = j.storage->error(); j.storage->clear_error(); } break; } case disk_io_job::delete_files: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " delete" << std::endl; #endif mutex_t::scoped_lock l(m_mutex); std::vector::iterator i = std::remove_if( m_pieces.begin(), m_pieces.end(), bind(&cached_piece_entry::storage, _1) == j.storage); for (std::vector::iterator k = i; k != m_pieces.end(); ++k) { torrent_info const& ti = *k->storage->info(); int blocks_in_piece = (ti.piece_size(k->piece) + (16 * 1024) - 1) / (16 * 1024); for (int j = 0; j < blocks_in_piece; ++j) { if (k->blocks[j] == 0) continue; free_buffer(k->blocks[j], l); k->blocks[j] = 0; } } m_pieces.erase(i, m_pieces.end()); m_pool.release_memory(); l.unlock(); ret = j.storage->delete_files_impl(); if (ret != 0) { j.str = j.storage->error(); j.storage->clear_error(); } break; } } } #ifndef BOOST_NO_EXCEPTIONS } catch (std::exception& e) { ret = -1; try { j.str = e.what(); } catch (std::exception&) {} } #endif // if (!handler) std::cerr << "DISK THREAD: no callback specified" << std::endl; // else std::cerr << "DISK THREAD: invoking callback" << std::endl; #ifndef BOOST_NO_EXCEPTIONS try { #endif if (handler) m_ios.post(bind(handler, ret, j)); #ifndef BOOST_NO_EXCEPTIONS } catch (std::exception&) {} #endif #ifndef NDEBUG m_current.storage = 0; m_current.callback.clear(); #endif if (j.buffer && free_current_buffer) free_buffer(j.buffer); } TORRENT_ASSERT(false); } }