/* Copyright (c) 2007-2018, Un Shyam, Arvid Norberg, Steven Siloti All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #if !defined(TORRENT_DISABLE_ENCRYPTION) && !defined(TORRENT_DISABLE_EXTENSIONS) #include "libtorrent/aux_/disable_warnings_push.hpp" #include #include extern "C" { #include "libtorrent/tommath.h" } #include "libtorrent/aux_/disable_warnings_pop.hpp" #include "libtorrent/random.hpp" #include "libtorrent/pe_crypto.hpp" #include "libtorrent/hasher.hpp" #include "libtorrent/assert.hpp" namespace libtorrent { namespace { const unsigned char dh_prime[96] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x3A, 0x36, 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x05, 0x63 }; } struct mp_bigint { mp_bigint() { mp_init(&v); } mp_int* operator&() { return &v; } ~mp_bigint() { mp_clear(&v); } private: // non-copyable mp_bigint(mp_bigint const&); mp_bigint const& operator=(mp_bigint const&); mp_int v; }; // Set the prime P and the generator, generate local public key dh_key_exchange::dh_key_exchange() { // create local key for (int i = 0; i < int(sizeof(m_dh_local_secret)); ++i) m_dh_local_secret[i] = random() & 0xff; mp_bigint prime; mp_bigint secret; mp_bigint key; // TODO 2: use exceptions for error reporting here if (mp_read_unsigned_bin(&prime, dh_prime, sizeof(dh_prime))) { TORRENT_ASSERT(false); return; } if (mp_read_unsigned_bin(&secret , reinterpret_cast(m_dh_local_secret) , sizeof(m_dh_local_secret))) { TORRENT_ASSERT(false); return; } // generator is 2 mp_set_int(&key, 2); // key = (2 ^ secret) % prime if (mp_exptmod(&key, &secret, &prime, &key)) { TORRENT_ASSERT(false); return; } // key is now our local key int const size = mp_unsigned_bin_size(&key); TORRENT_ASSERT(size >= 0); TORRENT_ASSERT(size <= sizeof(m_dh_local_key)); if (size < 0 || size > sizeof(m_dh_local_key)) return; std::memset(m_dh_local_key, 0, sizeof(m_dh_local_key) - size); mp_to_unsigned_bin(&key , reinterpret_cast(m_dh_local_key) + sizeof(m_dh_local_key) - size); } char const* dh_key_exchange::get_local_key() const { return m_dh_local_key; } // compute shared secret given remote public key int dh_key_exchange::compute_secret(char const* remote_pubkey) { TORRENT_ASSERT(remote_pubkey); mp_bigint prime; mp_bigint secret; mp_bigint remote_key; // TODO 2: use exceptions for error reporting here if (mp_read_unsigned_bin(&prime, dh_prime, sizeof(dh_prime))) { TORRENT_ASSERT(false); return -1; } if (mp_read_unsigned_bin(&secret , reinterpret_cast(m_dh_local_secret) , sizeof(m_dh_local_secret))) { TORRENT_ASSERT(false); return -1; } if (mp_read_unsigned_bin(&remote_key , reinterpret_cast(remote_pubkey), 96)) { TORRENT_ASSERT(false); return -1; } if (mp_exptmod(&remote_key, &secret, &prime, &remote_key)) { TORRENT_ASSERT(false); return -1; } // remote_key is now the shared secret int const size = mp_unsigned_bin_size(&remote_key); TORRENT_ASSERT(size >= 0); TORRENT_ASSERT(size <= sizeof(m_dh_shared_secret)); if (size < 0 || size > sizeof(m_dh_shared_secret)) { return -1; } std::memset(m_dh_shared_secret, 0, sizeof(m_dh_shared_secret) - size); mp_to_unsigned_bin(&remote_key , reinterpret_cast(m_dh_shared_secret) + sizeof(m_dh_shared_secret) - size); // calculate the xor mask for the obfuscated hash hasher h; h.update("req3", 4); h.update(m_dh_shared_secret, sizeof(m_dh_shared_secret)); m_xor_mask = h.final(); return 0; } int encryption_handler::encrypt(std::vector& iovec) { TORRENT_ASSERT(!m_send_barriers.empty()); TORRENT_ASSERT(m_send_barriers.front().enc_handler); int to_process = m_send_barriers.front().next; if (to_process != INT_MAX) { for (std::vector::iterator i = iovec.begin(); to_process >= 0; ++i) { if (to_process == 0) { iovec.erase(i, iovec.end()); break; } else if (to_process < boost::asio::buffer_size(*i)) { *i = boost::asio::mutable_buffer(boost::asio::buffer_cast(*i), to_process); iovec.erase(++i, iovec.end()); to_process = 0; break; } to_process -= boost::asio::buffer_size(*i); } TORRENT_ASSERT(to_process == 0); } #if defined TORRENT_DEBUG || defined TORRENT_RELEASE_ASSERTS to_process = 0; for (std::vector::iterator i = iovec.begin(); i != iovec.end(); ++i) to_process += boost::asio::buffer_size(*i); #endif int next_barrier = 0; if (iovec.empty() || (next_barrier = m_send_barriers.front().enc_handler->encrypt(iovec))) { if (m_send_barriers.front().next != INT_MAX) { if (m_send_barriers.size() == 1) // transitioning back to plaintext next_barrier = INT_MAX; m_send_barriers.pop_front(); } #if defined TORRENT_DEBUG || defined TORRENT_RELEASE_ASSERTS if (next_barrier != INT_MAX) { int overhead = 0; for (std::vector::iterator i = iovec.begin(); i != iovec.end(); ++i) overhead += boost::asio::buffer_size(*i); TORRENT_ASSERT(overhead + to_process == next_barrier); } #endif } else { iovec.clear(); } return next_barrier; } int encryption_handler::decrypt(crypto_receive_buffer& recv_buffer, std::size_t& bytes_transferred) { TORRENT_ASSERT(!is_recv_plaintext()); int consume = 0; if (recv_buffer.crypto_packet_finished()) { std::vector wr_buf; recv_buffer.mutable_buffers(wr_buf, bytes_transferred); int packet_size = 0; int produce = bytes_transferred; m_dec_handler->decrypt(wr_buf, consume, produce, packet_size); TORRENT_ASSERT(packet_size || produce); TORRENT_ASSERT(packet_size >= 0); bytes_transferred = produce; if (packet_size) recv_buffer.crypto_cut(consume, packet_size); } else bytes_transferred = 0; return consume; } bool encryption_handler::switch_send_crypto(boost::shared_ptr crypto , int pending_encryption) { bool place_barrier = false; if (!m_send_barriers.empty()) { std::list::iterator end = m_send_barriers.end(); --end; for (std::list::iterator b = m_send_barriers.begin(); b != end; ++b) pending_encryption -= b->next; TORRENT_ASSERT(pending_encryption >= 0); m_send_barriers.back().next = pending_encryption; } else if (crypto) place_barrier = true; if (crypto) m_send_barriers.push_back(barrier(crypto, INT_MAX)); return place_barrier; } void encryption_handler::switch_recv_crypto(boost::shared_ptr crypto , crypto_receive_buffer& recv_buffer) { m_dec_handler = crypto; int packet_size = 0; if (crypto) { int consume = 0; int produce = 0; std::vector wr_buf; crypto->decrypt(wr_buf, consume, produce, packet_size); TORRENT_ASSERT(wr_buf.empty()); TORRENT_ASSERT(consume == 0); TORRENT_ASSERT(produce == 0); } recv_buffer.crypto_reset(packet_size); } rc4_handler::rc4_handler() : m_encrypt(false) , m_decrypt(false) { m_rc4_incoming.x = 0; m_rc4_incoming.y = 0; m_rc4_outgoing.x = 0; m_rc4_outgoing.y = 0; } void rc4_handler::set_incoming_key(unsigned char const* key, int len) { m_decrypt = true; rc4_init(key, len, &m_rc4_incoming); // Discard first 1024 bytes char buf[1024]; std::vector vec(1, boost::asio::mutable_buffer(buf, 1024)); int consume = 0; int produce = 0; int packet_size = 0; decrypt(vec, consume, produce, packet_size); } void rc4_handler::set_outgoing_key(unsigned char const* key, int len) { m_encrypt = true; rc4_init(key, len, &m_rc4_outgoing); // Discard first 1024 bytes char buf[1024]; std::vector vec(1, boost::asio::mutable_buffer(buf, 1024)); encrypt(vec); } int rc4_handler::encrypt(std::vector& buf) { if (!m_encrypt) return 0; if (buf.empty()) return 0; int bytes_processed = 0; for (std::vector::iterator i = buf.begin(); i != buf.end(); ++i) { unsigned char* pos = boost::asio::buffer_cast(*i); int len = boost::asio::buffer_size(*i); TORRENT_ASSERT(len >= 0); TORRENT_ASSERT(pos); bytes_processed += len; rc4_encrypt(pos, len, &m_rc4_outgoing); } buf.clear(); return bytes_processed; } void rc4_handler::decrypt(std::vector& buf , int& consume , int& produce , int& packet_size) { // these are out-parameters that are not set TORRENT_UNUSED(consume); TORRENT_UNUSED(packet_size); if (!m_decrypt) return; int bytes_processed = 0; for (std::vector::iterator i = buf.begin(); i != buf.end(); ++i) { unsigned char* pos = boost::asio::buffer_cast(*i); int len = boost::asio::buffer_size(*i); TORRENT_ASSERT(len >= 0); TORRENT_ASSERT(pos); bytes_processed += len; rc4_encrypt(pos, len, &m_rc4_incoming); } buf.clear(); produce = bytes_processed; } } // namespace libtorrent // All this code is based on libTomCrypt (http://www.libtomcrypt.com/) // this library is public domain and has been specially // tailored for libtorrent by Arvid Norberg void rc4_init(const unsigned char* in, unsigned long len, rc4 *state) { size_t const key_size = sizeof(state->buf); unsigned char key[key_size], tmp, *s; int keylen, x, y, j; TORRENT_ASSERT(state != 0); TORRENT_ASSERT(len <= key_size); if (len > key_size) len = key_size; state->x = 0; while (len--) { state->buf[state->x++] = *in++; } /* extract the key */ s = state->buf; std::memcpy(key, s, key_size); keylen = state->x; /* make RC4 perm and shuffle */ for (x = 0; x < key_size; ++x) { s[x] = x; } for (j = x = y = 0; x < key_size; x++) { y = (y + state->buf[x] + key[j++]) & 255; if (j == keylen) { j = 0; } tmp = s[x]; s[x] = s[y]; s[y] = tmp; } state->x = 0; state->y = 0; } unsigned long rc4_encrypt(unsigned char *out, unsigned long outlen, rc4 *state) { unsigned char x, y, *s, tmp; unsigned long n; TORRENT_ASSERT(out != 0); TORRENT_ASSERT(state != 0); n = outlen; x = state->x; y = state->y; s = state->buf; while (outlen--) { x = (x + 1) & 255; y = (y + s[x]) & 255; tmp = s[x]; s[x] = s[y]; s[y] = tmp; tmp = (s[x] + s[y]) & 255; *out++ ^= s[tmp]; } state->x = x; state->y = y; return n; } #endif // #if !defined(TORRENT_DISABLE_ENCRYPTION) && !defined(TORRENT_DISABLE_EXTENSIONS)