/* Copyright (c) 2006-2018, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef ROUTING_TABLE_HPP #define ROUTING_TABLE_HPP #include "libtorrent/aux_/disable_warnings_push.hpp" #include #include #include #include #include #include #include #include #include "libtorrent/aux_/disable_warnings_pop.hpp" #include #include #include #include #include namespace libtorrent { #ifndef TORRENT_NO_DEPRECATE struct session_status; #endif struct dht_routing_bucket; } namespace libtorrent { namespace dht { struct dht_logger; typedef std::vector bucket_t; struct routing_table_node { bucket_t replacements; bucket_t live_nodes; }; // differences in the implementation from the description in // the paper: // // * Nodes are not marked as being stale, they keep a counter // that tells how many times in a row they have failed. When // a new node is to be inserted, the node that has failed // the most times is replaced. If none of the nodes in the // bucket has failed, then it is put in the replacement // cache (just like in the paper). namespace impl { template inline void forwarder(void* userdata, node_entry const& node) { F* f = reinterpret_cast(userdata); (*f)(node); } } class TORRENT_EXTRA_EXPORT routing_table : boost::noncopyable { public: // TODO: 3 to improve memory locality and scanning performance, turn the // routing table into a single vector with boundaries for the nodes instead. // Perhaps replacement nodes should be in a separate vector. typedef std::vector table_t; routing_table(node_id const& id, int bucket_size , dht_settings const& settings , dht_logger* log); #ifndef TORRENT_NO_DEPRECATE void status(session_status& s) const; #endif void status(std::vector& s) const; void node_failed(node_id const& id, udp::endpoint const& ep); // adds an endpoint that will never be added to // the routing table void add_router_node(udp::endpoint router); // iterates over the router nodes added typedef std::set::const_iterator router_iterator; router_iterator router_begin() const { return m_router_nodes.begin(); } router_iterator router_end() const { return m_router_nodes.end(); } enum add_node_status_t { failed_to_add = 0, node_added, need_bucket_split }; add_node_status_t add_node_impl(node_entry e); bool add_node(node_entry e); // this function is called every time the node sees // a sign of a node being alive. This node will either // be inserted in the k-buckets or be moved to the top // of its bucket. bool node_seen(node_id const& id, udp::endpoint ep, int rtt); // this may add a node to the routing table and mark it as // not pinged. If the bucket the node falls into is full, // the node will be ignored. void heard_about(node_id const& id, udp::endpoint const& ep); // change our node ID. This can be expensive since nodes must be moved around // and potentially dropped void update_node_id(node_id id); node_entry const* next_refresh(); enum { // nodes that have not been pinged are considered failed by this flag include_failed = 1 }; // fills the vector with the count nodes from our buckets that // are nearest to the given id. void find_node(node_id const& id, std::vector& l , int options, int count = 0); void remove_node(node_entry* n , table_t::iterator bucket) ; int bucket_size(int bucket) const { int num_buckets = m_buckets.size(); if (num_buckets == 0) return 0; if (bucket >= num_buckets) bucket = num_buckets - 1; table_t::const_iterator i = m_buckets.begin(); std::advance(i, bucket); return int(i->live_nodes.size()); } template void for_each_node(F f) { for_each_node(&impl::forwarder, &impl::forwarder, reinterpret_cast(&f)); } void for_each_node(void (*)(void*, node_entry const&) , void (*)(void*, node_entry const&), void* userdata) const; int bucket_size() const { return m_bucket_size; } // returns the number of nodes in the main buckets, number of nodes in the // replacement buckets and the number of nodes in the main buckets that have // been pinged and confirmed up boost::tuple size() const; boost::int64_t num_global_nodes() const; // the number of bits down we have full buckets // i.e. essentially the number of full buckets // we have int depth() const; int num_active_buckets() const { return m_buckets.size(); } #if defined TORRENT_DEBUG // used for debug and monitoring purposes. This will print out // the state of the routing table to the given stream void print_state(std::ostream& os) const; #endif int bucket_limit(int bucket) const; #if TORRENT_USE_INVARIANT_CHECKS void check_invariant() const; #endif bool is_full(int bucket) const; private: #ifndef TORRENT_DISABLE_LOGGING dht_logger* m_log; #endif table_t::iterator find_bucket(node_id const& id); void split_bucket(); // return a pointer the node_entry with the given endpoint // or 0 if we don't have such a node. Both the address and the // port has to match node_entry* find_node(udp::endpoint const& ep , routing_table::table_t::iterator* bucket); dht_settings const& m_settings; // (k-bucket, replacement cache) pairs // the first entry is the bucket the furthest // away from our own ID. Each time the bucket // closest to us (m_buckets.back()) has more than // bucket size nodes in it, another bucket is // added to the end and it's split up between them table_t m_buckets; node_id m_id; // our own node id // the last seen depth (i.e. levels in the routing table) // it's mutable because it's updated by depth(), which is const mutable int m_depth; // the last time we refreshed our own bucket // refreshed every 15 minutes mutable time_point m_last_self_refresh; // this is a set of all the endpoints that have // been identified as router nodes. They will // be used in searches, but they will never // be added to the routing table. std::set m_router_nodes; // these are all the IPs that are in the routing // table. It's used to only allow a single entry // per IP in the whole table. Currently only for // IPv4 boost::unordered_multiset m_ips; // constant called k in paper int m_bucket_size; }; } } // namespace libtorrent::dht #endif // ROUTING_TABLE_HPP