/* Copyright (c) 2007-2016, Arvid Norberg, Steven Siloti All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/config.hpp" #include "libtorrent/storage.hpp" #include "libtorrent/disk_io_thread.hpp" #include "libtorrent/disk_buffer_holder.hpp" #include "libtorrent/alloca.hpp" #include "libtorrent/invariant_check.hpp" #include "libtorrent/error_code.hpp" #include "libtorrent/error.hpp" #include "libtorrent/file_pool.hpp" #include "libtorrent/torrent_info.hpp" #include "libtorrent/platform_util.hpp" #include #include #include #include #include #include "libtorrent/time.hpp" #include "libtorrent/disk_buffer_pool.hpp" #include "libtorrent/disk_io_job.hpp" #include "libtorrent/alert_types.hpp" #include "libtorrent/uncork_interface.hpp" #include "libtorrent/performance_counters.hpp" #include "libtorrent/alert_manager.hpp" #include "libtorrent/debug.hpp" #if TORRENT_USE_RLIMIT #include #endif #define DEBUG_DISK_THREAD 0 #if DEBUG_DISK_THREAD #include #define DLOG(...) debug_log(__VA_ARGS__) #else #define DLOG(...) do {} while(false) #endif namespace libtorrent { #if TORRENT_USE_ASSERTS #define TORRENT_PIECE_ASSERT(cond, piece) \ do { if (!(cond)) { assert_print_piece(piece); assert_fail(#cond, __LINE__, __FILE__, TORRENT_FUNCTION, 0); } } TORRENT_WHILE_0 #define TORRENT_PIECE_ASSERT_FAIL(piece) \ do { assert_print_piece(piece); assert_fail("", __LINE__, __FILE__, TORRENT_FUNCTION, 0); } TORRENT_WHILE_0 #else #define TORRENT_PIECE_ASSERT(cond, piece) do {} TORRENT_WHILE_0 #define TORRENT_PIECE_ASSERT_FAIL(piece) do {} TORRENT_WHILE_0 #endif // TORRENT_USE_ASSERTS namespace { #if DEBUG_DISK_THREAD void debug_log(char const* fmt, ...) { #if DEBUG_DISK_THREAD static std::mutex log_mutex; static const time_point start = clock_type::now(); va_list v; va_start(v, fmt); char usr[2048]; int len = vsnprintf(usr, sizeof(usr), fmt, v); static bool prepend_time = true; if (!prepend_time) { prepend_time = (usr[len-1] == '\n'); std::unique_lock l(log_mutex); fputs(usr, stderr); return; } va_end(v); char buf[2300]; int t = total_milliseconds(clock_type::now() - start); std::snprintf(buf, sizeof(buf), "%05d: [%p] %s", t, pthread_self(), usr); prepend_time = (usr[len-1] == '\n'); std::unique_lock l(log_mutex); fputs(buf, stderr); #else TORRENT_UNUSED(fmt); #endif } #endif // DEBUG_DISK_THREAD int file_flags_for_job(disk_io_job* j , bool const coalesce_buffers) { int ret = 0; if (!(j->flags & disk_io_job::sequential_access)) ret |= file::random_access; if (coalesce_buffers) ret |= file::coalesce_buffers; return ret; } } // anonymous namespace // ------- disk_io_thread ------ disk_io_thread::disk_io_thread(io_service& ios , counters& cnt , void* userdata , int block_size) : m_abort(false) , m_num_running_threads(0) , m_generic_io_jobs(*this, generic_thread) , m_generic_threads(m_generic_io_jobs, ios) , m_hash_io_jobs(*this, hasher_thread) , m_hash_threads(m_hash_io_jobs, ios) , m_userdata(userdata) , m_last_cache_expiry(min_time()) , m_last_file_check(clock_type::now()) , m_file_pool(40) , m_disk_cache(block_size, ios, std::bind(&disk_io_thread::trigger_cache_trim, this)) , m_cache_check_state(cache_check_idle) , m_stats_counters(cnt) , m_ios(ios) , m_last_disk_aio_performance_warning(min_time()) , m_outstanding_reclaim_message(false) #if TORRENT_USE_ASSERTS , m_magic(0x1337) , m_jobs_aborted(false) #endif { ADD_OUTSTANDING_ASYNC("disk_io_thread::work"); error_code ec; m_disk_cache.set_settings(m_settings, ec); TORRENT_ASSERT(!ec); // deduct some margin for epoll/kqueue, log files, // futexes, shared objects etc. // 80% of the available file descriptors should go to connections // 20% goes towards regular files const int max_files = (std::min)((std::max)(5 , (max_open_files() - 20) * 2 / 10) , m_file_pool.size_limit()); m_file_pool.resize(max_files); } disk_io_thread::~disk_io_thread() { DLOG("destructing disk_io_thread\n"); #if TORRENT_USE_ASSERTS // by now, all pieces should have been evicted std::pair pieces = m_disk_cache.all_pieces(); TORRENT_ASSERT(pieces.first == pieces.second); #endif TORRENT_ASSERT(m_magic == 0x1337); #if TORRENT_USE_ASSERTS m_magic = 0xdead; #endif } void disk_io_thread::abort(bool wait) { // abuse the job mutex to make setting m_abort and checking the thread count atomic // see also the comment in thread_fun std::unique_lock l(m_job_mutex); if (m_abort.exchange(true)) return; bool const no_threads = m_num_running_threads == 0; l.unlock(); if (no_threads) { abort_jobs(); } // even if there are no threads it doesn't hurt to abort the pools // it prevents threads from being started after an abort which is a good // defensive programming measure m_generic_threads.abort(wait); m_hash_threads.abort(wait); } // TODO: 1 it would be nice to have the number of threads be set dynamically void disk_io_thread::set_num_threads(int const i) { TORRENT_ASSERT(m_magic == 0x1337); // add one hasher thread for every three generic threads int const num_hash_threads = i / 4; m_generic_threads.set_max_threads(i - num_hash_threads); m_hash_threads.set_max_threads(num_hash_threads); } void disk_io_thread::reclaim_block(block_cache_reference ref) { TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(ref.storage); m_blocks_to_reclaim.push_back(ref); if (m_outstanding_reclaim_message) return; m_ios.post(std::bind(&disk_io_thread::commit_reclaimed_blocks, this)); m_outstanding_reclaim_message = true; } void disk_io_thread::commit_reclaimed_blocks() { TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(m_outstanding_reclaim_message); m_outstanding_reclaim_message = false; std::unique_lock l(m_cache_mutex); for (int i = 0; i < m_blocks_to_reclaim.size(); ++i) m_disk_cache.reclaim_block(m_blocks_to_reclaim[i]); m_blocks_to_reclaim.clear(); } void disk_io_thread::set_settings(settings_pack const* pack, alert_manager& alerts) { TORRENT_ASSERT(m_magic == 0x1337); std::unique_lock l(m_cache_mutex); apply_pack(pack, m_settings); error_code ec; m_disk_cache.set_settings(m_settings, ec); if (ec && alerts.should_post()) { alerts.emplace_alert(ec); } } // flush all blocks that are below p->hash.offset, since we've // already hashed those blocks, they won't cause any read-back int disk_io_thread::try_flush_hashed(cached_piece_entry* p, int cont_block , jobqueue_t& completed_jobs, std::unique_lock& l) { TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(l.owns_lock()); TORRENT_ASSERT(cont_block > 0); if (p->hash == 0 && !p->hashing_done) { DLOG("try_flush_hashed: (%d) no hash\n", int(p->piece)); return 0; } if (p->num_dirty == 0) { DLOG("try_flush_hashed: no dirty blocks\n"); return 0; } // end is one past the end // round offset up to include the last block, which might // have an odd size int block_size = m_disk_cache.block_size(); int end = p->hashing_done ? p->blocks_in_piece : (p->hash->offset + block_size - 1) / block_size; // nothing has been hashed yet, don't flush anything if (end == 0 && !p->need_readback) return 0; // the number of contiguous blocks we need to be allowed to flush int block_limit = (std::min)(cont_block, int(p->blocks_in_piece)); // if everything has been hashed, we might as well flush everything // regardless of the contiguous block restriction if (end == int(p->blocks_in_piece)) block_limit = 1; if (p->need_readback) { // if this piece needs a read-back already, don't // try to keep it from being flushed, since we'll // need to read it back regardless. Flushing will // save blocks that can be used to "save" other // pieces from being fllushed prematurely end = int(p->blocks_in_piece); } // count number of blocks that would be flushed int num_blocks = 0; for (int i = end-1; i >= 0; --i) num_blocks += (p->blocks[i].dirty && !p->blocks[i].pending); // we did not satisfy the block_limit requirement // i.e. too few blocks would be flushed at this point, put it off if (block_limit > num_blocks) return 0; // if the cache line size is larger than a whole piece, hold // off flushing this piece until enough adjacent pieces are // full as well. int cont_pieces = cont_block / p->blocks_in_piece; // at this point, we may enforce flushing full cache stripes even when // they span multiple pieces. This won't necessarily work in the general // case, because it assumes that the piece picker will have an affinity // to download whole stripes at a time. This is why this setting is turned // off by default, flushing only one piece at a time if (cont_pieces <= 1 || m_settings.get_bool(settings_pack::allow_partial_disk_writes)) { DLOG("try_flush_hashed: (%d) blocks_in_piece: %d end: %d\n" , int(p->piece), int(p->blocks_in_piece), end); return flush_range(p, 0, end, completed_jobs, l); } // piece range int range_start = (p->piece / cont_pieces) * cont_pieces; int range_end = (std::min)(range_start + cont_pieces, p->storage->files()->num_pieces()); // look through all the pieces in this range to see if // they are ready to be flushed. If so, flush them all, // otherwise, hold off bool range_full = true; cached_piece_entry* first_piece = nullptr; DLOG("try_flush_hashed: multi-piece: "); for (int i = range_start; i < range_end; ++i) { if (i == p->piece) { if (i == range_start) first_piece = p; DLOG("[%d self] ", i); continue; } cached_piece_entry* pe = m_disk_cache.find_piece(p->storage.get(), i); if (pe == nullptr) { DLOG("[%d nullptr] ", i); range_full = false; break; } if (i == range_start) first_piece = pe; // if this is a read-cache piece, it has already been flushed if (pe->cache_state != cached_piece_entry::write_lru) { DLOG("[%d read-cache] ", i); continue; } int hash_cursor = pe->hash ? pe->hash->offset / block_size : 0; // if the piece has all blocks, and they're all dirty, and they've // all been hashed, then this piece is eligible for flushing if (pe->num_dirty == pe->blocks_in_piece && (pe->hashing_done || hash_cursor == pe->blocks_in_piece || m_settings.get_bool(settings_pack::disable_hash_checks))) { DLOG("[%d hash-done] ", i); continue; } if (pe->num_dirty < pe->blocks_in_piece) { DLOG("[%d dirty:%d] ", i, int(pe->num_dirty)); } else if (pe->hashing_done == 0 && hash_cursor < pe->blocks_in_piece) { DLOG("[%d cursor:%d] ", i, hash_cursor); } else { DLOG("[%d xx] ", i); } // TOOD: in this case, the piece should probably not be flushed yet. are there // any more cases where it should? range_full = false; break; } if (!range_full) { DLOG("not flushing\n"); return 0; } DLOG("\n"); // now, build a iovec for all pieces that we want to flush, so that they // can be flushed in a single atomic operation. This is especially important // when there are more than 1 disk thread, to make sure they don't // interleave in undesired places. // in order to remember where each piece boundary ended up in the iovec, // we keep the indices in the iovec_offset array cont_pieces = range_end - range_start; file::iovec_t* iov = TORRENT_ALLOCA(file::iovec_t, p->blocks_in_piece * cont_pieces); int* flushing = TORRENT_ALLOCA(int, p->blocks_in_piece * cont_pieces); // this is the offset into iov and flushing for each piece int* iovec_offset = TORRENT_ALLOCA(int, cont_pieces + 1); int iov_len = 0; // this is the block index each piece starts at int block_start = 0; // keep track of the pieces that have had their refcount incremented // so we know to decrement them later int* refcount_pieces = TORRENT_ALLOCA(int, cont_pieces); for (int i = 0; i < cont_pieces; ++i) { cached_piece_entry* pe; if (i == p->piece) pe = p; else pe = m_disk_cache.find_piece(p->storage.get(), range_start + i); if (pe == nullptr || pe->cache_state != cached_piece_entry::write_lru) { refcount_pieces[i] = 0; iovec_offset[i] = iov_len; block_start += p->blocks_in_piece; continue; } iovec_offset[i] = iov_len; refcount_pieces[i] = 1; TORRENT_ASSERT_VAL(pe->cache_state <= cached_piece_entry::read_lru1 || pe->cache_state == cached_piece_entry::read_lru2, pe); #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(piece_log_t::flushing, -1)); #endif ++pe->piece_refcount; iov_len += build_iovec(pe, 0, p->blocks_in_piece , iov + iov_len, flushing + iov_len, block_start); block_start += p->blocks_in_piece; } iovec_offset[cont_pieces] = iov_len; // ok, now we have one (or more, but hopefully one) contiguous // iovec array. Now, flush it to disk TORRENT_ASSERT(first_piece != nullptr); if (iov_len == 0) { // we may not exit here if we incremented any piece refcounters TORRENT_ASSERT(cont_pieces == 0); DLOG(" iov_len: 0 cont_pieces: %d range_start: %d range_end: %d\n" , cont_pieces, range_start, range_end); return 0; } l.unlock(); storage_error error; flush_iovec(first_piece, iov, flushing, iov_len, error); l.lock(); block_start = 0; for (int i = 0; i < cont_pieces; ++i) { cached_piece_entry* pe; if (i == p->piece) pe = p; else pe = m_disk_cache.find_piece(p->storage.get(), range_start + i); if (pe == nullptr) { DLOG("iovec_flushed: piece %d gone!\n", range_start + i); TORRENT_PIECE_ASSERT(refcount_pieces[i] == 0, pe); block_start += p->blocks_in_piece; continue; } if (refcount_pieces[i]) { TORRENT_PIECE_ASSERT(pe->piece_refcount > 0, pe); --pe->piece_refcount; m_disk_cache.maybe_free_piece(pe); } const int block_diff = iovec_offset[i+1] - iovec_offset[i]; iovec_flushed(pe, flushing + iovec_offset[i], block_diff , block_start, error, completed_jobs); block_start += p->blocks_in_piece; } // if the cache is under high pressure, we need to evict // the blocks we just flushed to make room for more write pieces int evict = m_disk_cache.num_to_evict(0); if (evict > 0) m_disk_cache.try_evict_blocks(evict); return iov_len; } // iov and flushing are expected to be arrays to at least pe->blocks_in_piece // items in them. Returns the numner of iovecs written to the iov array. // The same number of block indices are written to the flushing array. These // are block indices that the respecivec iovec structure refers to, since // we might not be able to flush everything as a single contiguous block, // the block indices indicates where the block run is broken // the cache needs to be locked when calling this function // block_base_index is the offset added to every block index written to // the flushing array. This can be used when building iovecs spanning // multiple pieces, the subsequent pieces after the first one, must have // their block indices start where the previous one left off int disk_io_thread::build_iovec(cached_piece_entry* pe, int start, int end , file::iovec_t* iov, int* flushing, int block_base_index) { INVARIANT_CHECK; DLOG("build_iovec: piece=%d [%d, %d)\n" , int(pe->piece), start, end); TORRENT_PIECE_ASSERT(start >= 0, pe); TORRENT_PIECE_ASSERT(start < end, pe); end = (std::min)(end, int(pe->blocks_in_piece)); int piece_size = pe->storage->files()->piece_size(pe->piece); TORRENT_PIECE_ASSERT(piece_size > 0, pe); int iov_len = 0; // the blocks we're flushing int num_flushing = 0; #if DEBUG_DISK_THREAD DLOG("build_iov: piece: %d [", int(pe->piece)); for (int i = 0; i < start; ++i) DLOG("."); #endif int block_size = m_disk_cache.block_size(); int size_left = piece_size; for (int i = start; i < end; ++i, size_left -= block_size) { TORRENT_PIECE_ASSERT(size_left > 0, pe); // don't flush blocks that are empty (buf == 0), not dirty // (read cache blocks), or pending (already being written) if (pe->blocks[i].buf == nullptr || pe->blocks[i].pending || !pe->blocks[i].dirty) { DLOG("-"); continue; } // if we fail to lock the block, it' no longer in the cache bool locked = m_disk_cache.inc_block_refcount(pe, i, block_cache::ref_flushing); // it should always suceed, since it's a dirty block, and // should never have been marked as volatile TORRENT_ASSERT(locked); TORRENT_ASSERT(pe->cache_state != cached_piece_entry::volatile_read_lru); TORRENT_UNUSED(locked); flushing[num_flushing++] = i + block_base_index; iov[iov_len].iov_base = pe->blocks[i].buf; iov[iov_len].iov_len = (std::min)(block_size, size_left); ++iov_len; pe->blocks[i].pending = true; DLOG("x"); } DLOG("]\n"); TORRENT_PIECE_ASSERT(iov_len == num_flushing, pe); return iov_len; } // does the actual writing to disk // the cached_piece_entry is supposed to point to the // first piece, if the iovec spans multiple pieces void disk_io_thread::flush_iovec(cached_piece_entry* pe , file::iovec_t const* iov, int const* flushing , int num_blocks, storage_error& error) { TORRENT_PIECE_ASSERT(!error, pe); TORRENT_PIECE_ASSERT(num_blocks > 0, pe); m_stats_counters.inc_stats_counter(counters::num_writing_threads, 1); time_point start_time = clock_type::now(); int block_size = m_disk_cache.block_size(); #if DEBUG_DISK_THREAD DLOG("flush_iovec: piece: %d [ ", int(pe->piece)); for (int i = 0; i < num_blocks; ++i) DLOG("%d ", flushing[i]); DLOG("]\n"); #endif int const file_flags = m_settings.get_bool(settings_pack::coalesce_writes) ? file::coalesce_buffers : 0; // issue the actual write operation file::iovec_t const* iov_start = iov; int flushing_start = 0; int piece = pe->piece; int blocks_in_piece = pe->blocks_in_piece; bool failed = false; for (int i = 1; i <= num_blocks; ++i) { if (i < num_blocks && flushing[i] == flushing[i-1]+1) continue; int ret = pe->storage->get_storage_impl()->writev(iov_start , i - flushing_start , piece + flushing[flushing_start] / blocks_in_piece , (flushing[flushing_start] % blocks_in_piece) * block_size , file_flags, error); if (ret < 0 || error) failed = true; iov_start = &iov[i]; flushing_start = i; } m_stats_counters.inc_stats_counter(counters::num_writing_threads, -1); if (!failed) { TORRENT_PIECE_ASSERT(!error, pe); std::uint32_t write_time = total_microseconds(clock_type::now() - start_time); m_write_time.add_sample(write_time / num_blocks); m_stats_counters.inc_stats_counter(counters::num_blocks_written, num_blocks); m_stats_counters.inc_stats_counter(counters::num_write_ops); m_stats_counters.inc_stats_counter(counters::disk_write_time, write_time); m_stats_counters.inc_stats_counter(counters::disk_job_time, write_time); #if DEBUG_DISK_THREAD DLOG("flush_iovec: %d\n", num_blocks); #endif } #if DEBUG_DISK_THREAD else { DLOG("flush_iovec: error: (%d) %s\n" , error.ec.value(), error.ec.message().c_str()); } #endif } // It is necessary to call this function with the blocks produced by // build_iovec, to reset their state to not being flushed anymore // the cache needs to be locked when calling this function void disk_io_thread::iovec_flushed(cached_piece_entry* pe , int* flushing, int num_blocks, int block_offset , storage_error const& error , jobqueue_t& completed_jobs) { for (int i = 0; i < num_blocks; ++i) flushing[i] -= block_offset; #if DEBUG_DISK_THREAD DLOG("iovec_flushed: piece: %d block_offset: %d [ " , int(pe->piece), block_offset); for (int i = 0; i < num_blocks; ++i) DLOG("%d ", flushing[i]); DLOG("]\n"); #endif m_disk_cache.blocks_flushed(pe, flushing, num_blocks); int block_size = m_disk_cache.block_size(); if (error) { fail_jobs_impl(error, pe->jobs, completed_jobs); } else { disk_io_job* j = pe->jobs.get_all(); while (j) { disk_io_job* next = j->next; j->next = nullptr; TORRENT_PIECE_ASSERT((j->flags & disk_io_job::in_progress) || !j->storage, pe); TORRENT_PIECE_ASSERT(j->piece == pe->piece, pe); if (j->completed(pe, block_size)) { j->ret = j->d.io.buffer_size; j->error = error; completed_jobs.push_back(j); } else { pe->jobs.push_back(j); } j = next; } } } // issues write operations for blocks in the given // range on the given piece. int disk_io_thread::flush_range(cached_piece_entry* pe, int start, int end , jobqueue_t& completed_jobs, std::unique_lock& l) { TORRENT_ASSERT(l.owns_lock()); INVARIANT_CHECK; DLOG("flush_range: piece=%d [%d, %d)\n" , int(pe->piece), start, end); TORRENT_PIECE_ASSERT(start >= 0, pe); TORRENT_PIECE_ASSERT(start < end, pe); file::iovec_t* iov = TORRENT_ALLOCA(file::iovec_t, pe->blocks_in_piece); int* flushing = TORRENT_ALLOCA(int, pe->blocks_in_piece); int iov_len = build_iovec(pe, start, end, iov, flushing, 0); if (iov_len == 0) return 0; TORRENT_PIECE_ASSERT(pe->cache_state <= cached_piece_entry::read_lru1 || pe->cache_state == cached_piece_entry::read_lru2, pe); #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(piece_log_t::flush_range, -1)); #endif ++pe->piece_refcount; l.unlock(); storage_error error; flush_iovec(pe, iov, flushing, iov_len, error); l.lock(); TORRENT_PIECE_ASSERT(pe->piece_refcount > 0, pe); --pe->piece_refcount; iovec_flushed(pe, flushing, iov_len, 0, error, completed_jobs); // if the cache is under high pressure, we need to evict // the blocks we just flushed to make room for more write pieces int evict = m_disk_cache.num_to_evict(0); if (evict > 0) m_disk_cache.try_evict_blocks(evict); m_disk_cache.maybe_free_piece(pe); return iov_len; } void disk_io_thread::fail_jobs(storage_error const& e, jobqueue_t& jobs_) { jobqueue_t jobs; fail_jobs_impl(e, jobs_, jobs); if (jobs.size()) add_completed_jobs(jobs); } void disk_io_thread::fail_jobs_impl(storage_error const& e, jobqueue_t& src, jobqueue_t& dst) { while (src.size()) { disk_io_job* j = src.pop_front(); TORRENT_ASSERT((j->flags & disk_io_job::in_progress) || !j->storage); j->ret = -1; j->error = e; dst.push_back(j); } } void disk_io_thread::flush_piece(cached_piece_entry* pe, int flags , jobqueue_t& completed_jobs, std::unique_lock& l) { TORRENT_ASSERT(l.owns_lock()); if (flags & flush_delete_cache) { // delete dirty blocks and post handlers with // operation_aborted error code fail_jobs_impl(storage_error(boost::asio::error::operation_aborted) , pe->jobs, completed_jobs); fail_jobs_impl(storage_error(boost::asio::error::operation_aborted) , pe->read_jobs, completed_jobs); m_disk_cache.abort_dirty(pe); } else if ((flags & flush_write_cache) && pe->num_dirty > 0) { // issue write commands flush_range(pe, 0, INT_MAX, completed_jobs, l); // if we're also flushing the read cache, this piece // should be removed as soon as all write jobs finishes // otherwise it will turn into a read piece } // mark_for_deletion may erase the piece from the cache, that's // why we don't have the 'i' iterator referencing it at this point if (flags & (flush_read_cache | flush_delete_cache)) { fail_jobs_impl(storage_error(boost::asio::error::operation_aborted), pe->jobs, completed_jobs); m_disk_cache.mark_for_deletion(pe); } } void disk_io_thread::flush_cache(piece_manager* storage, std::uint32_t flags , jobqueue_t& completed_jobs, std::unique_lock& l) { if (storage) { auto const& pieces = storage->cached_pieces(); std::vector piece_index; piece_index.reserve(pieces.size()); for (auto const& p : pieces) { if (p->get_storage() != storage) continue; piece_index.push_back(p->piece); } for (std::vector::iterator i = piece_index.begin() , end(piece_index.end()); i != end; ++i) { cached_piece_entry* pe = m_disk_cache.find_piece(storage, *i); if (pe == nullptr) continue; TORRENT_PIECE_ASSERT(pe->storage.get() == storage, pe); flush_piece(pe, flags, completed_jobs, l); } #if TORRENT_USE_ASSERTS TORRENT_ASSERT(l.owns_lock()); // if the user asked to delete the cache for this storage // we really should not have any pieces left. This is only called // from disk_io_thread::do_delete, which is a fence job and should // have any other jobs active, i.e. there should not be any references // keeping pieces or blocks alive if ((flags & flush_delete_cache) && (flags & flush_expect_clear)) { auto const& storage_pieces = storage->cached_pieces(); for (auto p : storage_pieces) { cached_piece_entry* pe = m_disk_cache.find_piece(storage, p->piece); TORRENT_PIECE_ASSERT(pe->num_dirty == 0, pe); } } #endif } else { std::pair range = m_disk_cache.all_pieces(); while (range.first != range.second) { // TODO: it would be nice to optimize this by having the cache // pieces also ordered by if ((flags & (flush_read_cache | flush_delete_cache)) == 0) { // if we're not flushing the read cache, and not deleting the // cache, skip pieces with no dirty blocks, i.e. read cache // pieces while (range.first->num_dirty == 0) { ++range.first; if (range.first == range.second) return; } } cached_piece_entry* pe = const_cast(&*range.first); flush_piece(pe, flags, completed_jobs, l); range = m_disk_cache.all_pieces(); } } } // this is called if we're exceeding (or about to exceed) the cache // size limit. This means we should not restrict ourselves to contiguous // blocks of write cache line size, but try to flush all old blocks // this is why we pass in 1 as cont_block to the flushing functions void disk_io_thread::try_flush_write_blocks(int num, jobqueue_t& completed_jobs , std::unique_lock& l) { DLOG("try_flush_write_blocks: %d\n", num); list_iterator range = m_disk_cache.write_lru_pieces(); std::vector > pieces; pieces.reserve(m_disk_cache.num_write_lru_pieces()); for (list_iterator p = range; p.get() && num > 0; p.next()) { cached_piece_entry* e = p.get(); if (e->num_dirty == 0) continue; pieces.push_back(std::make_pair(e->storage.get(), int(e->piece))); } for (std::vector >::iterator i = pieces.begin() , end(pieces.end()); i != end; ++i) { // TODO: instead of doing a lookup each time through the loop, save // cached_piece_entry pointers with piece_refcount incremented to pin them cached_piece_entry* pe = m_disk_cache.find_piece(i->first, i->second); if (pe == nullptr) continue; // another thread may flush this piece while we're looping and // evict it into a read piece and then also evict it to ghost if (pe->cache_state != cached_piece_entry::write_lru) continue; #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(piece_log_t::try_flush_write_blocks, -1)); #endif ++pe->piece_refcount; kick_hasher(pe, l); num -= try_flush_hashed(pe, 1, completed_jobs, l); --pe->piece_refcount; m_disk_cache.maybe_free_piece(pe); } // when the write cache is under high pressure, it is likely // counter productive to actually do this, since a piece may // not have had its flush_hashed job run on it // so only do it if no other thread is currently flushing if (num == 0 || m_stats_counters[counters::num_writing_threads] > 0) return; // if we still need to flush blocks, start over and flush // everything in LRU order (degrade to lru cache eviction) for (std::vector >::iterator i = pieces.begin() , end(pieces.end()); i != end; ++i) { cached_piece_entry* pe = m_disk_cache.find_piece(i->first, i->second); if (pe == nullptr) continue; if (pe->num_dirty == 0) continue; // another thread may flush this piece while we're looping and // evict it into a read piece and then also evict it to ghost if (pe->cache_state != cached_piece_entry::write_lru) continue; // don't flush blocks that are being hashed by another thread if (pe->num_dirty == 0 || pe->hashing) continue; #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(piece_log_t::try_flush_write_blocks2, -1)); #endif ++pe->piece_refcount; num -= flush_range(pe, 0, INT_MAX, completed_jobs, l); --pe->piece_refcount; m_disk_cache.maybe_free_piece(pe); } } void disk_io_thread::flush_expired_write_blocks(jobqueue_t& completed_jobs , std::unique_lock& l) { DLOG("flush_expired_write_blocks\n"); time_point now = aux::time_now(); time_duration expiration_limit = seconds(m_settings.get_int(settings_pack::cache_expiry)); #if TORRENT_USE_ASSERTS time_point timeout = min_time(); #endif cached_piece_entry** to_flush = TORRENT_ALLOCA(cached_piece_entry*, 200); int num_flush = 0; for (list_iterator p = m_disk_cache.write_lru_pieces(); p.get(); p.next()) { cached_piece_entry* e = p.get(); #if TORRENT_USE_ASSERTS TORRENT_PIECE_ASSERT(e->expire >= timeout, e); timeout = e->expire; #endif // since we're iterating in order of last use, if this piece // shouldn't be evicted, none of the following ones will either if (now - e->expire < expiration_limit) break; if (e->num_dirty == 0) continue; TORRENT_PIECE_ASSERT(e->cache_state <= cached_piece_entry::read_lru1 || e->cache_state == cached_piece_entry::read_lru2, e); #if TORRENT_USE_ASSERTS e->piece_log.push_back(piece_log_t(piece_log_t::flush_expired, -1)); #endif ++e->piece_refcount; // We can rely on the piece entry not being removed by // incrementing the piece_refcount to_flush[num_flush++] = e; if (num_flush == 200) break; } for (int i = 0; i < num_flush; ++i) { flush_range(to_flush[i], 0, INT_MAX, completed_jobs, l); TORRENT_ASSERT(to_flush[i]->piece_refcount > 0); --to_flush[i]->piece_refcount; m_disk_cache.maybe_free_piece(to_flush[i]); } } namespace { typedef int (disk_io_thread::*disk_io_fun_t)(disk_io_job* j, jobqueue_t& completed_jobs); // this is a jump-table for disk I/O jobs const disk_io_fun_t job_functions[] = { &disk_io_thread::do_read, &disk_io_thread::do_write, &disk_io_thread::do_hash, &disk_io_thread::do_move_storage, &disk_io_thread::do_release_files, &disk_io_thread::do_delete_files, &disk_io_thread::do_check_fastresume, &disk_io_thread::do_rename_file, &disk_io_thread::do_stop_torrent, #ifndef TORRENT_NO_DEPRECATE &disk_io_thread::do_cache_piece, &disk_io_thread::do_finalize_file, #endif &disk_io_thread::do_flush_piece, &disk_io_thread::do_flush_hashed, &disk_io_thread::do_flush_storage, &disk_io_thread::do_trim_cache, &disk_io_thread::do_file_priority, &disk_io_thread::do_load_torrent, &disk_io_thread::do_clear_piece, &disk_io_thread::do_tick, }; } // anonymous namespace // evict and/or flush blocks if we're exceeding the cache size // or used to exceed it and haven't dropped below the low watermark yet // the low watermark is dynamic, based on the number of peers waiting // on buffers to free up. The more waiters, the lower the low watermark // is. Because of this, the target for flushing jobs may have dropped // below the number of blocks we flushed by the time we're done flushing // that's why we need to call this fairly often. Both before and after // a disk job is executed void disk_io_thread::check_cache_level(std::unique_lock& l, jobqueue_t& completed_jobs) { // when the read cache is disabled, always try to evict all read cache // blocks if (!m_settings.get_bool(settings_pack::use_read_cache)) { int const evict = m_disk_cache.read_cache_size(); m_disk_cache.try_evict_blocks(evict); } int evict = m_disk_cache.num_to_evict(0); if (evict > 0) { evict = m_disk_cache.try_evict_blocks(evict); // don't evict write jobs if at least one other thread // is flushing right now. Doing so could result in // unnecessary flushing of the wrong pieces if (evict > 0 && m_stats_counters[counters::num_writing_threads] == 0) { try_flush_write_blocks(evict, completed_jobs, l); } } } void disk_io_thread::perform_job(disk_io_job* j, jobqueue_t& completed_jobs) { INVARIANT_CHECK; TORRENT_ASSERT(j->next == 0); TORRENT_ASSERT((j->flags & disk_io_job::in_progress) || !j->storage); #if DEBUG_DISK_THREAD { std::unique_lock l(m_cache_mutex); DLOG("perform_job job: %s ( %s%s) piece: %d offset: %d outstanding: %d\n" , job_action_name[j->action] , (j->flags & disk_io_job::fence) ? "fence ": "" , (j->flags & disk_io_job::force_copy) ? "force_copy ": "" , j->piece, j->d.io.offset , j->storage ? j->storage->num_outstanding_jobs() : -1); } #endif boost::shared_ptr storage = j->storage; // TODO: instead of doing this. pass in the settings to each storage_interface // call. Each disk thread could hold its most recent understanding of the settings // in a shared_ptr, and update it every time it wakes up from a job. That way // each access to the settings won't require a std::mutex to be held. if (storage && storage->get_storage_impl()->m_settings == 0) storage->get_storage_impl()->m_settings = &m_settings; TORRENT_ASSERT(j->action < sizeof(job_functions)/sizeof(job_functions[0])); time_point start_time = clock_type::now(); m_stats_counters.inc_stats_counter(counters::num_running_disk_jobs, 1); // call disk function int ret = (this->*(job_functions[j->action]))(j, completed_jobs); // note that -2 erros are OK TORRENT_ASSERT(ret != -1 || (j->error.ec && j->error.operation != 0)); m_stats_counters.inc_stats_counter(counters::num_running_disk_jobs, -1); std::unique_lock l(m_cache_mutex); if (m_cache_check_state == cache_check_idle) { m_cache_check_state = cache_check_active; while (m_cache_check_state != cache_check_idle) { check_cache_level(l, completed_jobs); TORRENT_ASSERT(l.owns_lock()); --m_cache_check_state; } } else { m_cache_check_state = cache_check_reinvoke; } l.unlock(); if (ret == retry_job) { job_queue& q = queue_for_job(j); std::unique_lock l2(m_job_mutex); // to avoid busy looping here, give up // our quanta in case there aren't any other // jobs to run in between // TODO: a potentially more efficient solution would be to have a special // queue for retry jobs, that's only ever run when a job completes, in // any thread. It would only work if counters::num_running_disk_jobs > 0 TORRENT_ASSERT((j->flags & disk_io_job::in_progress) || !j->storage); bool const need_sleep = q.m_queued_jobs.empty(); q.m_queued_jobs.push_back(j); l2.unlock(); if (need_sleep) std::this_thread::yield(); return; } if (ret == defer_handler) return; j->ret = ret; time_point now = clock_type::now(); m_job_time.add_sample(total_microseconds(now - start_time)); completed_jobs.push_back(j); } int disk_io_thread::do_uncached_read(disk_io_job* j) { j->buffer.disk_block = m_disk_cache.allocate_buffer("send buffer"); if (j->buffer.disk_block == 0) { j->error.ec = error::no_memory; j->error.operation = storage_error::alloc_cache_piece; return -1; } time_point start_time = clock_type::now(); int const file_flags = file_flags_for_job(j , m_settings.get_bool(settings_pack::coalesce_reads)); file::iovec_t b = { j->buffer.disk_block, size_t(j->d.io.buffer_size) }; int ret = j->storage->get_storage_impl()->readv(&b, 1 , j->piece, j->d.io.offset, file_flags, j->error); TORRENT_ASSERT(ret >= 0 || j->error.ec); if (!j->error.ec) { std::uint32_t read_time = total_microseconds(clock_type::now() - start_time); m_read_time.add_sample(read_time); m_stats_counters.inc_stats_counter(counters::num_read_back); m_stats_counters.inc_stats_counter(counters::num_blocks_read); m_stats_counters.inc_stats_counter(counters::num_read_ops); m_stats_counters.inc_stats_counter(counters::disk_read_time, read_time); m_stats_counters.inc_stats_counter(counters::disk_job_time, read_time); } return ret; } int disk_io_thread::do_read(disk_io_job* j, jobqueue_t& completed_jobs) { int block_size = m_disk_cache.block_size(); int piece_size = j->storage->files()->piece_size(j->piece); int blocks_in_piece = (piece_size + block_size - 1) / block_size; int iov_len = m_disk_cache.pad_job(j, blocks_in_piece , m_settings.get_int(settings_pack::read_cache_line_size)); file::iovec_t* iov = TORRENT_ALLOCA(file::iovec_t, iov_len); std::unique_lock l(m_cache_mutex); int evict = m_disk_cache.num_to_evict(iov_len); if (evict > 0) m_disk_cache.try_evict_blocks(evict); cached_piece_entry* pe = m_disk_cache.find_piece(j); if (pe == nullptr) { l.unlock(); return do_uncached_read(j); } TORRENT_PIECE_ASSERT(pe->outstanding_read == 1, pe); l.unlock(); // then we'll actually allocate the buffers int ret = m_disk_cache.allocate_iovec(iov, iov_len); if (ret < 0) { ret = do_uncached_read(j); std::unique_lock l2(m_cache_mutex); pe = m_disk_cache.find_piece(j); if (pe) maybe_issue_queued_read_jobs(pe, completed_jobs); return ret; } // this is the offset that's aligned to block boundaries std::int64_t adjusted_offset = j->d.io.offset & ~(block_size-1); // if this is the last piece, adjust the size of the // last buffer to match up iov[iov_len-1].iov_len = (std::min)(int(piece_size - adjusted_offset) - (iov_len-1) * block_size, block_size); TORRENT_ASSERT(iov[iov_len-1].iov_len > 0); // at this point, all the buffers are allocated and iov is initizalied // and the blocks have their refcounters incremented, so no other thread // can remove them. We can now release the cache std::mutex and dive into the // disk operations. int const file_flags = file_flags_for_job(j , m_settings.get_bool(settings_pack::coalesce_reads)); time_point start_time = clock_type::now(); ret = j->storage->get_storage_impl()->readv(iov, iov_len , j->piece, adjusted_offset, file_flags, j->error); if (!j->error.ec) { std::uint32_t const read_time = total_microseconds(clock_type::now() - start_time); m_read_time.add_sample(read_time / iov_len); m_stats_counters.inc_stats_counter(counters::num_blocks_read, iov_len); m_stats_counters.inc_stats_counter(counters::num_read_ops); m_stats_counters.inc_stats_counter(counters::disk_read_time, read_time); m_stats_counters.inc_stats_counter(counters::disk_job_time, read_time); } l.lock(); if (ret < 0) { // read failed. free buffers and return error m_disk_cache.free_iovec(iov, iov_len); pe = m_disk_cache.find_piece(j); if (pe == nullptr) { // the piece is supposed to be allocated when the // disk job is allocated TORRENT_ASSERT_FAIL(); return ret; } TORRENT_PIECE_ASSERT(pe->outstanding_read == 1, pe); if (pe->read_jobs.size() > 0) fail_jobs_impl(j->error, pe->read_jobs, completed_jobs); TORRENT_PIECE_ASSERT(pe->read_jobs.size() == 0, pe); pe->outstanding_read = 0; #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(piece_log_t::clear_outstanding_jobs)); #endif m_disk_cache.maybe_free_piece(pe); return ret; } int block = j->d.io.offset / block_size; #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(j->action, block)); #endif // as soon we insert the blocks they may be evicted // (if using purgeable memory). In order to prevent that // until we can read from them, increment the refcounts m_disk_cache.insert_blocks(pe, block, iov, iov_len, j, block_cache::blocks_inc_refcount); TORRENT_ASSERT(pe->blocks[block].buf); int tmp = m_disk_cache.try_read(j, true); // This should always succeed because we just checked to see there is a // buffer for this block TORRENT_ASSERT(tmp >= 0); TORRENT_UNUSED(tmp); maybe_issue_queued_read_jobs(pe, completed_jobs); for (int i = 0; i < iov_len; ++i, ++block) m_disk_cache.dec_block_refcount(pe, block, block_cache::ref_reading); return j->d.io.buffer_size; } void disk_io_thread::maybe_issue_queued_read_jobs(cached_piece_entry* pe , jobqueue_t& completed_jobs) { TORRENT_PIECE_ASSERT(pe->outstanding_read == 1, pe); // if we're shutting down, just cancel the jobs if (m_abort) { fail_jobs_impl(storage_error(boost::asio::error::operation_aborted) , pe->read_jobs, completed_jobs); TORRENT_PIECE_ASSERT(pe->read_jobs.size() == 0, pe); pe->outstanding_read = 0; #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(piece_log_t::clear_outstanding_jobs)); #endif m_disk_cache.maybe_free_piece(pe); return; } // while we were reading, there may have been a few jobs // that got queued up also wanting to read from this piece. // Any job that is a cache hit now, complete it immediately. // Then, issue the first non-cache-hit job. Once it complete // it will keep working off this list jobqueue_t stalled_jobs; pe->read_jobs.swap(stalled_jobs); // the next job to issue (i.e. this is a cache-miss) disk_io_job* next_job = nullptr; while (stalled_jobs.size() > 0) { disk_io_job* j = stalled_jobs.pop_front(); TORRENT_ASSERT(j->flags & disk_io_job::in_progress); int ret = m_disk_cache.try_read(j); if (ret >= 0) { // cache-hit m_stats_counters.inc_stats_counter(counters::num_blocks_cache_hits); DLOG("do_read: cache hit\n"); j->flags |= disk_io_job::cache_hit; j->ret = ret; completed_jobs.push_back(j); } else if (ret == -2) { // error j->ret = disk_io_job::operation_failed; completed_jobs.push_back(j); } else { // cache-miss, issue the first one // put back the rest if (next_job == nullptr) { next_job = j; } else { TORRENT_PIECE_ASSERT(j->piece == pe->piece, pe); pe->read_jobs.push_back(j); } } } if (next_job) { add_job(next_job, false); } else { TORRENT_PIECE_ASSERT(pe->read_jobs.size() == 0, pe); pe->outstanding_read = 0; #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(piece_log_t::clear_outstanding_jobs)); #endif m_disk_cache.maybe_free_piece(pe); } } int disk_io_thread::do_uncached_write(disk_io_job* j) { time_point start_time = clock_type::now(); file::iovec_t const b = { j->buffer.disk_block, size_t(j->d.io.buffer_size) }; int const file_flags = file_flags_for_job(j , m_settings.get_bool(settings_pack::coalesce_writes)); m_stats_counters.inc_stats_counter(counters::num_writing_threads, 1); // the actual write operation int ret = j->storage->get_storage_impl()->writev(&b, 1 , j->piece, j->d.io.offset, file_flags, j->error); m_stats_counters.inc_stats_counter(counters::num_writing_threads, -1); if (!j->error.ec) { std::uint32_t write_time = total_microseconds(clock_type::now() - start_time); m_write_time.add_sample(write_time); m_stats_counters.inc_stats_counter(counters::num_blocks_written); m_stats_counters.inc_stats_counter(counters::num_write_ops); m_stats_counters.inc_stats_counter(counters::disk_write_time, write_time); m_stats_counters.inc_stats_counter(counters::disk_job_time, write_time); } m_disk_cache.free_buffer(j->buffer.disk_block); j->buffer.disk_block = nullptr; return ret; } int disk_io_thread::do_write(disk_io_job* j, jobqueue_t& completed_jobs) { INVARIANT_CHECK; TORRENT_ASSERT(j->d.io.buffer_size <= m_disk_cache.block_size()); std::unique_lock l(m_cache_mutex); cached_piece_entry* pe = m_disk_cache.find_piece(j); if (pe && pe->hashing_done) { #if TORRENT_USE_ASSERTS print_piece_log(pe->piece_log); #endif TORRENT_ASSERT(pe->blocks[j->d.io.offset / 16 / 1024].buf != j->buffer.disk_block); TORRENT_ASSERT(pe->blocks[j->d.io.offset / 16 / 1024].buf != nullptr); j->error.ec = error::operation_aborted; j->error.operation = storage_error::write; return -1; } pe = m_disk_cache.add_dirty_block(j); if (pe) { #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(j->action, j->d.io.offset / 0x4000)); #endif if (!pe->hashing_done && pe->hash == 0 && !m_settings.get_bool(settings_pack::disable_hash_checks)) { pe->hash = new partial_hash; m_disk_cache.update_cache_state(pe); } TORRENT_PIECE_ASSERT(pe->cache_state <= cached_piece_entry::read_lru1 || pe->cache_state == cached_piece_entry::read_lru2, pe); ++pe->piece_refcount; // see if we can progress the hash cursor with this new block kick_hasher(pe, l); TORRENT_PIECE_ASSERT(pe->cache_state <= cached_piece_entry::read_lru1 || pe->cache_state == cached_piece_entry::read_lru2, pe); // flushes the piece to disk in case // it satisfies the condition for a write // piece to be flushed try_flush_hashed(pe, m_settings.get_int( settings_pack::write_cache_line_size), completed_jobs, l); --pe->piece_refcount; m_disk_cache.maybe_free_piece(pe); return defer_handler; } // ok, we should just perform this job right now. return do_uncached_write(j); } void disk_io_thread::async_read(piece_manager* storage, peer_request const& r , boost::function handler, void* requester , int flags) { INVARIANT_CHECK; #ifndef TORRENT_DISABLE_INVARIANT_CHECKS // the caller must increment the torrent refcount before // issuing an async disk request storage->assert_torrent_refcount(); #endif TORRENT_ASSERT(r.length <= m_disk_cache.block_size()); TORRENT_ASSERT(r.length <= 16 * 1024); DLOG("do_read piece: %d block: %d\n", r.piece, r.start / m_disk_cache.block_size()); disk_io_job* j = allocate_job(disk_io_job::read); j->storage = storage->shared_from_this(); j->piece = r.piece; j->d.io.offset = r.start; j->d.io.buffer_size = r.length; j->buffer.disk_block = 0; j->flags = flags; j->requester = requester; j->callback = std::move(handler); std::unique_lock l(m_cache_mutex); int ret = prep_read_job_impl(j); l.unlock(); switch (ret) { case 0: if (j->callback) j->callback(j); free_job(j); break; case 1: add_job(j); break; } } // this function checks to see if a read job is a cache hit, // and if it doesn't have a picece allocated, it allocates // one and it sets outstanding_read flag and possibly queues // up the job in the piece read job list // the cache std::mutex must be held when calling this // // returns 0 if the job succeeded immediately // 1 if it needs to be added to the job queue // 2 if it was deferred and will be performed later (no need to // add it to the queue) int disk_io_thread::prep_read_job_impl(disk_io_job* j, bool check_fence) { TORRENT_ASSERT(j->action == disk_io_job::read); int ret = m_disk_cache.try_read(j); if (ret >= 0) { m_stats_counters.inc_stats_counter(counters::num_blocks_cache_hits); DLOG("do_read: cache hit\n"); j->flags |= disk_io_job::cache_hit; j->ret = ret; return 0; } else if (ret == -2) { j->error.ec = error::no_memory; j->error.operation = storage_error::alloc_cache_piece; j->ret = disk_io_job::operation_failed; return 0; } if (check_fence && j->storage->is_blocked(j)) { // this means the job was queued up inside storage m_stats_counters.inc_stats_counter(counters::blocked_disk_jobs); DLOG("blocked job: %s (torrent: %d total: %d)\n" , job_action_name[j->action], j->storage ? j->storage->num_blocked() : 0 , int(m_stats_counters[counters::blocked_disk_jobs])); return 2; } if (!m_settings.get_bool(settings_pack::use_read_cache) || m_settings.get_int(settings_pack::cache_size) == 0) { // if the read cache is disabled then we can skip going through the cache // but only if there is no existing piece entry. Otherwise there may be a // partial hit on one-or-more dirty buffers so we must use the cache // to avoid reading bogus data from storage if (m_disk_cache.find_piece(j) == nullptr) return 1; } cached_piece_entry* pe = m_disk_cache.allocate_piece(j, cached_piece_entry::read_lru1); if (pe == nullptr) { j->ret = -1; j->error.ec = error::no_memory; j->error.operation = storage_error::read; return 0; } if (pe->outstanding_read) { TORRENT_PIECE_ASSERT(j->piece == pe->piece, pe); pe->read_jobs.push_back(j); return 2; } #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(piece_log_t::set_outstanding_jobs)); #endif pe->outstanding_read = 1; return 1; } void disk_io_thread::async_write(piece_manager* storage, peer_request const& r , disk_buffer_holder buffer , boost::function handler , int flags) { INVARIANT_CHECK; #ifndef TORRENT_DISABLE_INVARIANT_CHECKS // the caller must increment the torrent refcount before // issuing an async disk request storage->assert_torrent_refcount(); #endif TORRENT_ASSERT(r.length <= m_disk_cache.block_size()); TORRENT_ASSERT(r.length <= 16 * 1024); disk_io_job* j = allocate_job(disk_io_job::write); j->storage = storage->shared_from_this(); j->piece = r.piece; j->d.io.offset = r.start; j->d.io.buffer_size = r.length; j->buffer.disk_block = buffer.get(); j->callback = std::move(handler); j->flags = flags; #if TORRENT_USE_ASSERTS std::unique_lock l3_(m_cache_mutex); cached_piece_entry* pe = m_disk_cache.find_piece(j); if (pe) { // we should never add a new dirty block to a piece // whose hash we have calculated. The piece needs // to be cleared first, (async_clear_piece). TORRENT_ASSERT(pe->hashing_done == 0); TORRENT_ASSERT(pe->blocks[r.start / 0x4000].refcount == 0 || pe->blocks[r.start / 0x4000].buf == nullptr); } l3_.unlock(); #endif #if TORRENT_USE_ASSERTS && defined TORRENT_EXPENSIVE_INVARIANT_CHECKS std::unique_lock l2_(m_cache_mutex); std::pair range = m_disk_cache.all_pieces(); for (block_cache::iterator i = range.first; i != range.second; ++i) { cached_piece_entry const& p = *i; int bs = m_disk_cache.block_size(); int piece_size = p.storage->files()->piece_size(p.piece); int blocks_in_piece = (piece_size + bs - 1) / bs; for (int k = 0; k < blocks_in_piece; ++k) TORRENT_PIECE_ASSERT(p.blocks[k].buf != j->buffer.disk_block, &p); } l2_.unlock(); #endif #if !defined TORRENT_DISABLE_POOL_ALLOCATOR && TORRENT_USE_ASSERTS std::unique_lock l_(m_cache_mutex); TORRENT_ASSERT(m_disk_cache.is_disk_buffer(j->buffer.disk_block)); l_.unlock(); #endif TORRENT_ASSERT((r.start % m_disk_cache.block_size()) == 0); if (storage->is_blocked(j)) { // this means the job was queued up inside storage m_stats_counters.inc_stats_counter(counters::blocked_disk_jobs); DLOG("blocked job: %s (torrent: %d total: %d)\n" , job_action_name[j->action], j->storage ? j->storage->num_blocked() : 0 , int(m_stats_counters[counters::blocked_disk_jobs])); // make the holder give up ownership of the buffer // since the job was successfully queued up buffer.release(); return; } std::unique_lock l(m_cache_mutex); // if we succeed in adding the block to the cache, the job will // be added along with it. we may not free j if so cached_piece_entry* dpe = m_disk_cache.add_dirty_block(j); // if the buffer was successfully added to the cache // our holder should no longer own it if (dpe) { buffer.release(); if (dpe->outstanding_flush == 0) { dpe->outstanding_flush = 1; l.unlock(); // the block and write job were successfully inserted // into the cache. Now, see if we should trigger a flush j = allocate_job(disk_io_job::flush_hashed); j->storage = storage->shared_from_this(); j->piece = r.piece; j->flags = flags; add_job(j); } // if we added the block (regardless of whether we also // issued a flush job or not), we're done. return; } l.unlock(); add_job(j); buffer.release(); } void disk_io_thread::async_hash(piece_manager* storage, int piece, int flags , boost::function handler, void* requester) { #ifndef TORRENT_DISABLE_INVARIANT_CHECKS // the caller must increment the torrent refcount before // issuing an async disk request storage->assert_torrent_refcount(); #endif disk_io_job* j = allocate_job(disk_io_job::hash); j->storage = storage->shared_from_this(); j->piece = piece; j->callback = std::move(handler); j->flags = flags; j->requester = requester; int piece_size = storage->files()->piece_size(piece); // first check to see if the hashing is already done std::unique_lock l(m_cache_mutex); cached_piece_entry* pe = m_disk_cache.find_piece(j); if (pe && !pe->hashing && pe->hash && pe->hash->offset == piece_size) { sha1_hash result = pe->hash->h.final(); memcpy(j->d.piece_hash, &result[0], 20); delete pe->hash; pe->hash = nullptr; if (pe->cache_state != cached_piece_entry::volatile_read_lru) pe->hashing_done = 1; #if TORRENT_USE_ASSERTS ++pe->hash_passes; #endif l.unlock(); if (j->callback) j->callback(j); free_job(j); return; } l.unlock(); add_job(j); } void disk_io_thread::async_move_storage(piece_manager* storage, std::string const& p, int flags , boost::function handler) { #ifndef TORRENT_DISABLE_INVARIANT_CHECKS // the caller must increment the torrent refcount before // issuing an async disk request storage->assert_torrent_refcount(); #endif disk_io_job* j = allocate_job(disk_io_job::move_storage); j->storage = storage->shared_from_this(); j->buffer.string = allocate_string_copy(p.c_str()); j->callback = std::move(handler); j->flags = flags; add_fence_job(storage, j); } void disk_io_thread::async_release_files(piece_manager* storage , boost::function handler) { disk_io_job* j = allocate_job(disk_io_job::release_files); j->storage = storage->shared_from_this(); j->callback = std::move(handler); add_fence_job(storage, j); } void disk_io_thread::async_delete_files(piece_manager* storage , int const options , boost::function handler) { #ifndef TORRENT_DISABLE_INVARIANT_CHECKS // the caller must increment the torrent refcount before // issuing an async disk request storage->assert_torrent_refcount(); #endif // remove cache blocks belonging to this torrent jobqueue_t completed_jobs; // remove outstanding jobs belonging to this torrent std::unique_lock l2(m_job_mutex); // TODO: maybe the tailqueue_iterator should contain a pointer-pointer // instead and have an unlink function disk_io_job* qj = m_generic_io_jobs.m_queued_jobs.get_all(); jobqueue_t to_abort; while (qj) { disk_io_job* next = qj->next; #if TORRENT_USE_ASSERTS qj->next = nullptr; #endif if (qj->storage.get() == storage) to_abort.push_back(qj); else m_generic_io_jobs.m_queued_jobs.push_back(qj); qj = next; } l2.unlock(); std::unique_lock l(m_cache_mutex); flush_cache(storage, flush_delete_cache, completed_jobs, l); l.unlock(); disk_io_job* j = allocate_job(disk_io_job::delete_files); j->storage = storage->shared_from_this(); j->callback = std::move(handler); j->buffer.delete_options = options; add_fence_job(storage, j); fail_jobs_impl(storage_error(boost::asio::error::operation_aborted) , to_abort, completed_jobs); if (completed_jobs.size()) add_completed_jobs(completed_jobs); } void disk_io_thread::async_check_files(piece_manager* storage , add_torrent_params const* resume_data , std::vector& links , boost::function handler) { #ifndef TORRENT_DISABLE_INVARIANT_CHECKS // the caller must increment the torrent refcount before // issuing an async disk request storage->assert_torrent_refcount(); #endif std::vector* links_vector = new std::vector(); links_vector->swap(links); disk_io_job* j = allocate_job(disk_io_job::check_fastresume); j->storage = storage->shared_from_this(); j->buffer.check_resume_data = resume_data; j->d.links = links_vector; j->callback = std::move(handler); add_fence_job(storage, j); } void disk_io_thread::async_rename_file(piece_manager* storage, int index, std::string const& name , boost::function handler) { #ifndef TORRENT_DISABLE_INVARIANT_CHECKS // the caller must increment the torrent refcount before // issuing an async disk request storage->assert_torrent_refcount(); #endif disk_io_job* j = allocate_job(disk_io_job::rename_file); j->storage = storage->shared_from_this(); j->piece = index; j->buffer.string = allocate_string_copy(name.c_str()); j->callback = std::move(handler); add_fence_job(storage, j); } void disk_io_thread::async_stop_torrent(piece_manager* storage , boost::function handler) { // remove outstanding hash jobs belonging to this torrent std::unique_lock l2(m_job_mutex); disk_io_job* qj = m_hash_io_jobs.m_queued_jobs.get_all(); jobqueue_t to_abort; while (qj) { disk_io_job* next = qj->next; #if TORRENT_USE_ASSERTS qj->next = nullptr; #endif if (qj->storage.get() == storage) to_abort.push_back(qj); else m_hash_io_jobs.m_queued_jobs.push_back(qj); qj = next; } l2.unlock(); disk_io_job* j = allocate_job(disk_io_job::stop_torrent); j->storage = storage->shared_from_this(); j->callback = std::move(handler); add_fence_job(storage, j); jobqueue_t completed_jobs; fail_jobs_impl(storage_error(boost::asio::error::operation_aborted) , to_abort, completed_jobs); if (completed_jobs.size()) add_completed_jobs(completed_jobs); } #ifndef TORRENT_NO_DEPRECATE void disk_io_thread::async_cache_piece(piece_manager* storage, int piece , boost::function handler) { #ifndef TORRENT_DISABLE_INVARIANT_CHECKS // the caller must increment the torrent refcount before // issuing an async disk request storage->assert_torrent_refcount(); #endif disk_io_job* j = allocate_job(disk_io_job::cache_piece); j->storage = storage->shared_from_this(); j->piece = piece; j->callback = std::move(handler); add_job(j); } void disk_io_thread::async_finalize_file(piece_manager* storage, int file , boost::function handler) { #ifndef TORRENT_DISABLE_INVARIANT_CHECKS // the caller must increment the torrent refcount before // issuing an async disk request storage->assert_torrent_refcount(); #endif disk_io_job* j = allocate_job(disk_io_job::finalize_file); j->storage = storage->shared_from_this(); j->piece = file; j->callback = std::move(handler); add_job(j); } #endif // TORRENT_NO_DEPRECATE void disk_io_thread::async_flush_piece(piece_manager* storage, int piece , boost::function handler) { #ifndef TORRENT_DISABLE_INVARIANT_CHECKS // the caller must increment the torrent refcount before // issuing an async disk request storage->assert_torrent_refcount(); #endif disk_io_job* j = allocate_job(disk_io_job::flush_piece); j->storage = storage->shared_from_this(); j->piece = piece; j->callback = std::move(handler); if (m_abort) { j->error.ec = boost::asio::error::operation_aborted; if (j->callback) j->callback(j); free_job(j); return; } add_job(j); } void disk_io_thread::async_set_file_priority(piece_manager* storage , std::vector const& prios , boost::function handler) { #ifndef TORRENT_DISABLE_INVARIANT_CHECKS // the caller must increment the torrent refcount before // issuing an async disk request storage->assert_torrent_refcount(); #endif std::vector* p = new std::vector(prios); disk_io_job* j = allocate_job(disk_io_job::file_priority); j->storage = storage->shared_from_this(); j->buffer.priorities = p; j->callback = std::move(handler); add_fence_job(storage, j); } void disk_io_thread::async_load_torrent(add_torrent_params* params , boost::function handler) { disk_io_job* j = allocate_job(disk_io_job::load_torrent); j->requester = reinterpret_cast(params); j->callback = std::move(handler); add_job(j); } void disk_io_thread::async_tick_torrent(piece_manager* storage , boost::function handler) { disk_io_job* j = allocate_job(disk_io_job::tick_storage); j->storage = storage->shared_from_this(); j->callback = std::move(handler); add_job(j); } void disk_io_thread::clear_read_cache(piece_manager* storage) { std::unique_lock l(m_cache_mutex); jobqueue_t jobs; auto const& cache = storage->cached_pieces(); // note that i is incremented in the body! for (auto i = cache.begin(), end(cache.end()); i != end; ) { jobqueue_t temp; if (m_disk_cache.evict_piece(*(i++), temp)) jobs.append(temp); } fail_jobs(storage_error(boost::asio::error::operation_aborted), jobs); } void disk_io_thread::async_clear_piece(piece_manager* storage, int index , boost::function handler) { #ifndef TORRENT_DISABLE_INVARIANT_CHECKS // the caller must increment the torrent refcount before // issuing an async disk request storage->assert_torrent_refcount(); #endif disk_io_job* j = allocate_job(disk_io_job::clear_piece); j->storage = storage->shared_from_this(); j->piece = index; j->callback = std::move(handler); // regular jobs are not guaranteed to be executed in-order // since clear piece must guarantee that all write jobs that // have been issued finish before the clear piece job completes // TODO: this is potentially very expensive. One way to solve // it would be to have a fence for just this one piece. add_fence_job(storage, j); } void disk_io_thread::clear_piece(piece_manager* storage, int index) { std::unique_lock l(m_cache_mutex); cached_piece_entry* pe = m_disk_cache.find_piece(storage, index); if (pe == 0) return; TORRENT_PIECE_ASSERT(pe->hashing == false, pe); pe->hashing_done = 0; delete pe->hash; pe->hash = nullptr; // evict_piece returns true if the piece was in fact // evicted. A piece may fail to be evicted if there // are still outstanding operations on it, which should // never be the case when this function is used // in fact, no jobs should really be hung on this piece // at this point jobqueue_t jobs; bool ok = m_disk_cache.evict_piece(pe, jobs); TORRENT_PIECE_ASSERT(ok, pe); TORRENT_UNUSED(ok); fail_jobs(storage_error(boost::asio::error::operation_aborted), jobs); } void disk_io_thread::kick_hasher(cached_piece_entry* pe, std::unique_lock& l) { if (!pe->hash) return; if (pe->hashing) return; int piece_size = pe->storage.get()->files()->piece_size(pe->piece); partial_hash* ph = pe->hash; // are we already done? if (ph->offset >= piece_size) return; int block_size = m_disk_cache.block_size(); int cursor = ph->offset / block_size; int end = cursor; TORRENT_PIECE_ASSERT(ph->offset % block_size == 0, pe); for (int i = cursor; i < pe->blocks_in_piece; ++i) { cached_block_entry& bl = pe->blocks[i]; if (bl.buf == 0) break; // if we fail to lock the block, it' no longer in the cache if (m_disk_cache.inc_block_refcount(pe, i, block_cache::ref_hashing) == false) break; ++end; } // no blocks to hash? if (end == cursor) return; pe->hashing = 1; DLOG("kick_hasher: %d - %d (piece: %d offset: %d)\n" , cursor, end, int(pe->piece), ph->offset); l.unlock(); time_point start_time = clock_type::now(); for (int i = cursor; i < end; ++i) { cached_block_entry& bl = pe->blocks[i]; int size = (std::min)(block_size, piece_size - ph->offset); ph->h.update(bl.buf, size); ph->offset += size; } std::uint64_t hash_time = total_microseconds(clock_type::now() - start_time); l.lock(); TORRENT_PIECE_ASSERT(pe->hashing, pe); TORRENT_PIECE_ASSERT(pe->hash, pe); m_hash_time.add_sample(hash_time / (end - cursor)); m_stats_counters.inc_stats_counter(counters::num_blocks_hashed, end - cursor); m_stats_counters.inc_stats_counter(counters::disk_hash_time, hash_time); m_stats_counters.inc_stats_counter(counters::disk_job_time, hash_time); pe->hashing = 0; // decrement the block refcounters for (int i = cursor; i < end; ++i) m_disk_cache.dec_block_refcount(pe, i, block_cache::ref_hashing); // did we complete the hash? if (pe->hash->offset != piece_size) return; // if there are any hash-jobs hanging off of this piece // we should post them now disk_io_job* j = pe->jobs.get_all(); jobqueue_t hash_jobs; while (j) { TORRENT_PIECE_ASSERT((j->flags & disk_io_job::in_progress) || !j->storage, pe); disk_io_job* next = j->next; j->next = nullptr; TORRENT_PIECE_ASSERT(j->piece == pe->piece, pe); if (j->action == disk_io_job::hash) hash_jobs.push_back(j); else pe->jobs.push_back(j); j = next; } if (hash_jobs.size()) { sha1_hash result = pe->hash->h.final(); for (tailqueue_iterator i = hash_jobs.iterate(); i.get(); i.next()) { disk_io_job* hj = const_cast(i.get()); memcpy(hj->d.piece_hash, result.data(), 20); hj->ret = 0; } delete pe->hash; pe->hash = nullptr; if (pe->cache_state != cached_piece_entry::volatile_read_lru) pe->hashing_done = 1; #if TORRENT_USE_ASSERTS ++pe->hash_passes; #endif add_completed_jobs(hash_jobs); } } int disk_io_thread::do_uncached_hash(disk_io_job* j) { // we're not using a cache. This is the simple path // just read straight from the file TORRENT_ASSERT(m_magic == 0x1337); int const piece_size = j->storage->files()->piece_size(j->piece); int const block_size = m_disk_cache.block_size(); int const blocks_in_piece = (piece_size + block_size - 1) / block_size; int const file_flags = file_flags_for_job(j , m_settings.get_bool(settings_pack::coalesce_reads)); file::iovec_t iov; iov.iov_base = m_disk_cache.allocate_buffer("hashing"); hasher h; int ret = 0; int offset = 0; for (int i = 0; i < blocks_in_piece; ++i) { DLOG("do_hash: (uncached) reading (piece: %d block: %d)\n" , int(j->piece), i); time_point start_time = clock_type::now(); iov.iov_len = (std::min)(block_size, piece_size - offset); ret = j->storage->get_storage_impl()->readv(&iov, 1, j->piece , offset, file_flags, j->error); if (ret < 0) break; if (!j->error.ec) { std::uint32_t const read_time = total_microseconds(clock_type::now() - start_time); m_read_time.add_sample(read_time); m_stats_counters.inc_stats_counter(counters::num_blocks_read); m_stats_counters.inc_stats_counter(counters::num_read_ops); m_stats_counters.inc_stats_counter(counters::disk_read_time, read_time); m_stats_counters.inc_stats_counter(counters::disk_job_time, read_time); } offset += block_size; h.update(static_cast(iov.iov_base), int(iov.iov_len)); } m_disk_cache.free_buffer(static_cast(iov.iov_base)); sha1_hash piece_hash = h.final(); memcpy(j->d.piece_hash, &piece_hash[0], 20); return ret >= 0 ? 0 : -1; } int disk_io_thread::do_hash(disk_io_job* j, jobqueue_t& /* completed_jobs */ ) { INVARIANT_CHECK; int const piece_size = j->storage->files()->piece_size(j->piece); int const file_flags = file_flags_for_job(j , m_settings.get_bool(settings_pack::coalesce_reads)); std::unique_lock l(m_cache_mutex); cached_piece_entry* pe = m_disk_cache.find_piece(j); if (pe) { TORRENT_ASSERT(pe->in_use); #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(j->action)); #endif m_disk_cache.cache_hit(pe, j->requester, (j->flags & disk_io_job::volatile_read) != 0); TORRENT_PIECE_ASSERT(pe->cache_state <= cached_piece_entry::read_lru1 || pe->cache_state == cached_piece_entry::read_lru2, pe); ++pe->piece_refcount; kick_hasher(pe, l); --pe->piece_refcount; TORRENT_PIECE_ASSERT(pe->cache_state <= cached_piece_entry::read_lru1 || pe->cache_state == cached_piece_entry::read_lru2, pe); // are we already done hashing? if (pe->hash && !pe->hashing && pe->hash->offset == piece_size) { DLOG("do_hash: (%d) (already done)\n", int(pe->piece)); sha1_hash piece_hash = pe->hash->h.final(); memcpy(j->d.piece_hash, &piece_hash[0], 20); delete pe->hash; pe->hash = nullptr; if (pe->cache_state != cached_piece_entry::volatile_read_lru) pe->hashing_done = 1; #if TORRENT_USE_ASSERTS ++pe->hash_passes; #endif m_disk_cache.update_cache_state(pe); m_disk_cache.maybe_free_piece(pe); return 0; } } else if (m_settings.get_bool(settings_pack::use_read_cache) == false) { return do_uncached_hash(j); } if (pe == nullptr) { int cache_state = (j->flags & disk_io_job::volatile_read) ? cached_piece_entry::volatile_read_lru : cached_piece_entry::read_lru1; pe = m_disk_cache.allocate_piece(j, cache_state); } if (pe == nullptr) { j->error.ec = error::no_memory; j->error.operation = storage_error::alloc_cache_piece; return -1; } if (pe->hashing) { TORRENT_PIECE_ASSERT(pe->hash, pe); // another thread is hashing this piece right now // try again in a little bit DLOG("do_hash: retry\n"); // TODO: we should probably just hang the job on the piece and make sure the hasher gets kicked return retry_job; } pe->hashing = 1; TORRENT_PIECE_ASSERT(pe->cache_state <= cached_piece_entry::read_lru1 || pe->cache_state == cached_piece_entry::read_lru2, pe); ++pe->piece_refcount; if (pe->hash == nullptr) { pe->hashing_done = 0; pe->hash = new partial_hash; } partial_hash* ph = pe->hash; int block_size = m_disk_cache.block_size(); int blocks_in_piece = (piece_size + block_size - 1) / block_size; // keep track of which blocks we have locked by incrementing // their refcounts. This is used to decrement only these blocks // later. int* locked_blocks = TORRENT_ALLOCA(int, blocks_in_piece); memset(locked_blocks, 0, blocks_in_piece * sizeof(int)); int num_locked_blocks = 0; // increment the refcounts of all // blocks up front, and then hash them without holding the lock TORRENT_PIECE_ASSERT(ph->offset % block_size == 0, pe); for (int i = ph->offset / block_size; i < blocks_in_piece; ++i) { // is the block not in the cache? if (pe->blocks[i].buf == nullptr) continue; // if we fail to lock the block, it' no longer in the cache if (m_disk_cache.inc_block_refcount(pe, i, block_cache::ref_hashing) == false) continue; locked_blocks[num_locked_blocks++] = i; } // to keep the cache footprint low, try to evict a volatile piece m_disk_cache.try_evict_one_volatile(); l.unlock(); int ret = 0; int next_locked_block = 0; for (int i = ph->offset / block_size; i < blocks_in_piece; ++i) { file::iovec_t iov; iov.iov_len = (std::min)(block_size, piece_size - ph->offset); if (next_locked_block < num_locked_blocks && locked_blocks[next_locked_block] == i) { ++next_locked_block; TORRENT_PIECE_ASSERT(pe->blocks[i].buf, pe); TORRENT_PIECE_ASSERT(ph->offset == i * block_size, pe); ph->offset += int(iov.iov_len); ph->h.update(pe->blocks[i].buf, int(iov.iov_len)); } else { iov.iov_base = m_disk_cache.allocate_buffer("hashing"); if (iov.iov_base == nullptr) { l.lock(); // TODO: introduce a holder class that automatically increments // and decrements the piece_refcount // decrement the refcounts of the blocks we just hashed for (int k = 0; k < num_locked_blocks; ++k) m_disk_cache.dec_block_refcount(pe, locked_blocks[k], block_cache::ref_hashing); --pe->piece_refcount; pe->hashing = false; delete pe->hash; pe->hash = nullptr; m_disk_cache.maybe_free_piece(pe); j->error.ec = errors::no_memory; j->error.operation = storage_error::alloc_cache_piece; return -1; } DLOG("do_hash: reading (piece: %d block: %d)\n", int(pe->piece), i); time_point start_time = clock_type::now(); TORRENT_PIECE_ASSERT(ph->offset == i * block_size, pe); ret = j->storage->get_storage_impl()->readv(&iov, 1, j->piece , ph->offset, file_flags, j->error); if (ret < 0) { TORRENT_ASSERT(j->error.ec && j->error.operation != 0); m_disk_cache.free_buffer(static_cast(iov.iov_base)); break; } // treat a short read as an error. The hash will be invalid, the // block cannot be cached and the main thread should skip the rest // of this file if (ret != iov.iov_len) { ret = -1; j->error.ec.assign(boost::asio::error::eof , boost::asio::error::get_misc_category()); j->error.operation = storage_error::read; m_disk_cache.free_buffer(static_cast(iov.iov_base)); break; } if (!j->error.ec) { std::uint32_t read_time = total_microseconds(clock_type::now() - start_time); m_read_time.add_sample(read_time); m_stats_counters.inc_stats_counter(counters::num_read_back); m_stats_counters.inc_stats_counter(counters::num_blocks_read); m_stats_counters.inc_stats_counter(counters::num_read_ops); m_stats_counters.inc_stats_counter(counters::disk_read_time, read_time); m_stats_counters.inc_stats_counter(counters::disk_job_time, read_time); } TORRENT_PIECE_ASSERT(ph->offset == i * block_size, pe); ph->offset += int(iov.iov_len); ph->h.update(static_cast(iov.iov_base), int(iov.iov_len)); l.lock(); m_disk_cache.insert_blocks(pe, i, &iov, 1, j); l.unlock(); } } l.lock(); // decrement the refcounts of the blocks we just hashed for (int i = 0; i < num_locked_blocks; ++i) m_disk_cache.dec_block_refcount(pe, locked_blocks[i], block_cache::ref_hashing); --pe->piece_refcount; pe->hashing = 0; if (ret >= 0) { sha1_hash piece_hash = ph->h.final(); memcpy(j->d.piece_hash, &piece_hash[0], 20); delete pe->hash; pe->hash = nullptr; if (pe->cache_state != cached_piece_entry::volatile_read_lru) pe->hashing_done = 1; #if TORRENT_USE_ASSERTS ++pe->hash_passes; #endif m_disk_cache.update_cache_state(pe); } m_disk_cache.maybe_free_piece(pe); TORRENT_ASSERT(ret >= 0 || (j->error.ec && j->error.operation != 0)); return ret < 0 ? ret : 0; } int disk_io_thread::do_move_storage(disk_io_job* j, jobqueue_t& /* completed_jobs */ ) { // if this assert fails, something's wrong with the fence logic TORRENT_ASSERT(j->storage->num_outstanding_jobs() == 1); // if files have to be closed, that's the storage's responsibility return j->storage->get_storage_impl()->move_storage(j->buffer.string , j->flags, j->error); } int disk_io_thread::do_release_files(disk_io_job* j, jobqueue_t& completed_jobs) { INVARIANT_CHECK; // if this assert fails, something's wrong with the fence logic TORRENT_ASSERT(j->storage->num_outstanding_jobs() == 1); std::unique_lock l(m_cache_mutex); flush_cache(j->storage.get(), flush_write_cache, completed_jobs, l); l.unlock(); j->storage->get_storage_impl()->release_files(j->error); return j->error ? -1 : 0; } int disk_io_thread::do_delete_files(disk_io_job* j, jobqueue_t& completed_jobs) { TORRENT_ASSERT(j->buffer.delete_options != 0); INVARIANT_CHECK; // if this assert fails, something's wrong with the fence logic TORRENT_ASSERT(j->storage->num_outstanding_jobs() == 1); std::unique_lock l(m_cache_mutex); #if TORRENT_USE_ASSERTS m_disk_cache.mark_deleted(*j->storage->files()); #endif flush_cache(j->storage.get(), flush_delete_cache | flush_expect_clear , completed_jobs, l); l.unlock(); j->storage->get_storage_impl()->delete_files(j->buffer.delete_options, j->error); return j->error ? -1 : 0; } int disk_io_thread::do_check_fastresume(disk_io_job* j, jobqueue_t& /* completed_jobs */ ) { // if this assert fails, something's wrong with the fence logic TORRENT_ASSERT(j->storage->num_outstanding_jobs() == 1); add_torrent_params const* rd = j->buffer.check_resume_data; add_torrent_params tmp; if (rd == nullptr) rd = &tmp; std::unique_ptr > links(j->d.links); return j->storage->check_fastresume(*rd, links.get(), j->error); } int disk_io_thread::do_rename_file(disk_io_job* j, jobqueue_t& /* completed_jobs */ ) { // if this assert fails, something's wrong with the fence logic TORRENT_ASSERT(j->storage->num_outstanding_jobs() == 1); // if files need to be closed, that's the storage's responsibility j->storage->get_storage_impl()->rename_file(j->piece, j->buffer.string , j->error); return j->error ? -1 : 0; } int disk_io_thread::do_stop_torrent(disk_io_job* j, jobqueue_t& completed_jobs) { // if this assert fails, something's wrong with the fence logic TORRENT_ASSERT(j->storage->num_outstanding_jobs() == 1); // issue write commands for all dirty blocks // and clear all read jobs std::unique_lock l(m_cache_mutex); flush_cache(j->storage.get(), flush_read_cache | flush_write_cache , completed_jobs, l); l.unlock(); m_disk_cache.release_memory(); j->storage->get_storage_impl()->release_files(j->error); return j->error ? -1 : 0; } #ifndef TORRENT_NO_DEPRECATE int disk_io_thread::do_cache_piece(disk_io_job* j, jobqueue_t& /* completed_jobs */ ) { INVARIANT_CHECK; TORRENT_ASSERT(j->buffer.disk_block == 0); if (m_settings.get_int(settings_pack::cache_size) == 0 || m_settings.get_bool(settings_pack::use_read_cache) == false) return 0; int const file_flags = file_flags_for_job(j , m_settings.get_bool(settings_pack::coalesce_reads)); std::unique_lock l(m_cache_mutex); cached_piece_entry* pe = m_disk_cache.find_piece(j); if (pe == nullptr) { int cache_state = (j->flags & disk_io_job::volatile_read) ? cached_piece_entry::volatile_read_lru : cached_piece_entry::read_lru1; pe = m_disk_cache.allocate_piece(j, cache_state); } if (pe == nullptr) { j->error.ec = error::no_memory; j->error.operation = storage_error::alloc_cache_piece; return -1; } #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(j->action)); #endif TORRENT_PIECE_ASSERT(pe->cache_state <= cached_piece_entry::read_lru1 || pe->cache_state == cached_piece_entry::read_lru2, pe); ++pe->piece_refcount; int block_size = m_disk_cache.block_size(); int piece_size = j->storage->files()->piece_size(j->piece); int blocks_in_piece = (piece_size + block_size - 1) / block_size; file::iovec_t iov; int ret = 0; int offset = 0; // TODO: it would be nice to not have to lock the std::mutex every // turn through this loop for (int i = 0; i < blocks_in_piece; ++i) { iov.iov_len = (std::min)(block_size, piece_size - offset); // is the block already in the cache? if (pe->blocks[i].buf) continue; l.unlock(); iov.iov_base = m_disk_cache.allocate_buffer("read cache"); if (iov.iov_base == nullptr) { //#error introduce a holder class that automatically increments and decrements the piece_refcount --pe->piece_refcount; m_disk_cache.maybe_free_piece(pe); j->error.ec = errors::no_memory; j->error.operation = storage_error::alloc_cache_piece; return -1; } DLOG("do_cache_piece: reading (piece: %d block: %d)\n" , int(pe->piece), i); time_point start_time = clock_type::now(); ret = j->storage->get_storage_impl()->readv(&iov, 1, j->piece , offset, file_flags, j->error); if (ret < 0) { l.lock(); break; } if (!j->error.ec) { std::uint32_t read_time = total_microseconds(clock_type::now() - start_time); m_read_time.add_sample(read_time); m_stats_counters.inc_stats_counter(counters::num_blocks_read); m_stats_counters.inc_stats_counter(counters::num_read_ops); m_stats_counters.inc_stats_counter(counters::disk_read_time, read_time); m_stats_counters.inc_stats_counter(counters::disk_job_time, read_time); } offset += block_size; l.lock(); m_disk_cache.insert_blocks(pe, i, &iov, 1, j); } --pe->piece_refcount; m_disk_cache.maybe_free_piece(pe); return 0; } int disk_io_thread::do_finalize_file(disk_io_job* j, jobqueue_t& /* completed_jobs */) { j->storage->get_storage_impl()->finalize_file(j->piece, j->error); return j->error ? -1 : 0; } #endif // TORRENT_NO_DEPRECATE namespace { void get_cache_info_impl(cached_piece_info& info, cached_piece_entry const* i , int block_size) { info.piece = i->piece; info.storage = i->storage.get(); info.last_use = i->expire; info.need_readback = i->need_readback; info.next_to_hash = i->hash == 0 ? -1 : (i->hash->offset + block_size - 1) / block_size; info.kind = i->cache_state == cached_piece_entry::write_lru ? cached_piece_info::write_cache : i->cache_state == cached_piece_entry::volatile_read_lru ? cached_piece_info::volatile_read_cache : cached_piece_info::read_cache; int blocks_in_piece = i->blocks_in_piece; info.blocks.resize(blocks_in_piece); for (int b = 0; b < blocks_in_piece; ++b) info.blocks[b] = i->blocks[b].buf != 0; } } // anonymous namespace void disk_io_thread::update_stats_counters(counters& c) const { // These are atomic_counts, so it's safe to access them from // a different thread std::unique_lock jl(m_job_mutex); c.set_value(counters::num_read_jobs, read_jobs_in_use()); c.set_value(counters::num_write_jobs, write_jobs_in_use()); c.set_value(counters::num_jobs, jobs_in_use()); c.set_value(counters::queued_disk_jobs, m_generic_io_jobs.m_queued_jobs.size() + m_hash_io_jobs.m_queued_jobs.size()); jl.unlock(); std::unique_lock l(m_cache_mutex); // gauges c.set_value(counters::disk_blocks_in_use, m_disk_cache.in_use()); m_disk_cache.update_stats_counters(c); } void disk_io_thread::get_cache_info(cache_status* ret, bool no_pieces , piece_manager const* storage) const { std::unique_lock l(m_cache_mutex); #ifndef TORRENT_NO_DEPRECATE ret->total_used_buffers = m_disk_cache.in_use(); ret->blocks_read_hit = m_stats_counters[counters::num_blocks_cache_hits]; ret->blocks_read = m_stats_counters[counters::num_blocks_read]; ret->blocks_written = m_stats_counters[counters::num_blocks_written]; ret->writes = m_stats_counters[counters::num_write_ops]; ret->reads = m_stats_counters[counters::num_read_ops]; int num_read_jobs = (std::max)(std::int64_t(1) , m_stats_counters[counters::num_read_ops]); int num_write_jobs = (std::max)(std::int64_t(1) , m_stats_counters[counters::num_write_ops]); int num_hash_jobs = (std::max)(std::int64_t(1) , m_stats_counters[counters::num_blocks_hashed]); ret->average_read_time = m_stats_counters[counters::disk_read_time] / num_read_jobs; ret->average_write_time = m_stats_counters[counters::disk_write_time] / num_write_jobs; ret->average_hash_time = m_stats_counters[counters::disk_hash_time] / num_hash_jobs; ret->average_job_time = m_stats_counters[counters::disk_job_time] / (num_read_jobs + num_write_jobs + num_hash_jobs); ret->cumulative_job_time = m_stats_counters[counters::disk_job_time]; ret->cumulative_read_time = m_stats_counters[counters::disk_read_time]; ret->cumulative_write_time = m_stats_counters[counters::disk_write_time]; ret->cumulative_hash_time = m_stats_counters[counters::disk_hash_time]; ret->total_read_back = m_stats_counters[counters::num_read_back]; ret->blocked_jobs = m_stats_counters[counters::blocked_disk_jobs]; ret->num_jobs = jobs_in_use(); ret->num_read_jobs = read_jobs_in_use(); ret->read_queue_size = read_jobs_in_use(); ret->num_write_jobs = write_jobs_in_use(); ret->pending_jobs = m_stats_counters[counters::num_running_disk_jobs]; ret->num_writing_threads = m_stats_counters[counters::num_writing_threads]; for (int i = 0; i < disk_io_job::num_job_ids; ++i) ret->num_fence_jobs[i] = m_stats_counters[counters::num_fenced_read + i]; m_disk_cache.get_stats(ret); #endif ret->pieces.clear(); if (no_pieces == false) { int block_size = m_disk_cache.block_size(); if (storage) { ret->pieces.reserve(storage->num_pieces()); for (auto pe : storage->cached_pieces()) { TORRENT_ASSERT(pe->storage.get() == storage); if (pe->cache_state == cached_piece_entry::read_lru2_ghost || pe->cache_state == cached_piece_entry::read_lru1_ghost) continue; ret->pieces.push_back(cached_piece_info()); get_cache_info_impl(ret->pieces.back(), pe, block_size); } } else { ret->pieces.reserve(m_disk_cache.num_pieces()); std::pair range = m_disk_cache.all_pieces(); for (block_cache::iterator i = range.first; i != range.second; ++i) { if (i->cache_state == cached_piece_entry::read_lru2_ghost || i->cache_state == cached_piece_entry::read_lru1_ghost) continue; ret->pieces.push_back(cached_piece_info()); get_cache_info_impl(ret->pieces.back(), &*i, block_size); } } } l.unlock(); #ifndef TORRENT_NO_DEPRECATE std::unique_lock jl(m_job_mutex); ret->queued_jobs = m_generic_io_jobs.m_queued_jobs.size() + m_hash_io_jobs.m_queued_jobs.size(); jl.unlock(); #endif } int disk_io_thread::do_flush_piece(disk_io_job* j, jobqueue_t& completed_jobs) { std::unique_lock l(m_cache_mutex); cached_piece_entry* pe = m_disk_cache.find_piece(j); if (pe == nullptr) return 0; #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(j->action)); #endif try_flush_hashed(pe, m_settings.get_int( settings_pack::write_cache_line_size), completed_jobs, l); return 0; } // this is triggered every time we insert a new dirty block in a piece // by the time this gets executed, the block may already have been flushed // triggered by another mechanism. int disk_io_thread::do_flush_hashed(disk_io_job* j, jobqueue_t& completed_jobs) { std::unique_lock l(m_cache_mutex); cached_piece_entry* pe = m_disk_cache.find_piece(j); if (pe == nullptr) return 0; pe->outstanding_flush = 0; if (pe->num_dirty == 0) return 0; // if multiple threads are flushing this piece, this assert may fire // this happens if the cache is running full and pieces are started to // get flushed // TORRENT_PIECE_ASSERT(pe->outstanding_flush == 1, pe); #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(j->action)); #endif TORRENT_PIECE_ASSERT(pe->cache_state <= cached_piece_entry::read_lru1 || pe->cache_state == cached_piece_entry::read_lru2, pe); ++pe->piece_refcount; if (!pe->hashing_done) { if (pe->hash == 0 && !m_settings.get_bool(settings_pack::disable_hash_checks)) { pe->hash = new partial_hash; m_disk_cache.update_cache_state(pe); } // see if we can progress the hash cursor with this new block kick_hasher(pe, l); TORRENT_PIECE_ASSERT(pe->cache_state <= cached_piece_entry::read_lru1 || pe->cache_state == cached_piece_entry::read_lru2, pe); } // flushes the piece to disk in case // it satisfies the condition for a write // piece to be flushed // #error if hash checks are disabled, always just flush try_flush_hashed(pe, m_settings.get_int( settings_pack::write_cache_line_size), completed_jobs, l); TORRENT_ASSERT(l.owns_lock()); --pe->piece_refcount; m_disk_cache.maybe_free_piece(pe); return 0; } int disk_io_thread::do_flush_storage(disk_io_job* j, jobqueue_t& completed_jobs) { std::unique_lock l(m_cache_mutex); flush_cache(j->storage.get(), flush_write_cache, completed_jobs, l); return 0; } int disk_io_thread::do_trim_cache(disk_io_job*, jobqueue_t& /* completed_jobs */) { //#error implement return 0; } int disk_io_thread::do_file_priority(disk_io_job* j, jobqueue_t& /* completed_jobs */ ) { std::unique_ptr > p(j->buffer.priorities); j->storage->get_storage_impl()->set_file_priority(*p, j->error); return 0; } int disk_io_thread::do_load_torrent(disk_io_job* j, jobqueue_t& /* completed_jobs */ ) { add_torrent_params* params = reinterpret_cast(j->requester); std::string filename = resolve_file_url(params->url); torrent_info* t = new torrent_info(filename, j->error.ec); if (j->error.ec) { j->buffer.torrent_file = nullptr; delete t; } else { // do this to trigger parsing of the info-dict here. It's better // than to have it be done in the network thread. It has enough to // do as it is. std::string cert = t->ssl_cert(); j->buffer.torrent_file = t; } return 0; } // this job won't return until all outstanding jobs on this // piece are completed or cancelled and the buffers for it // have been evicted int disk_io_thread::do_clear_piece(disk_io_job* j, jobqueue_t& completed_jobs) { std::unique_lock l(m_cache_mutex); cached_piece_entry* pe = m_disk_cache.find_piece(j); if (pe == 0) return 0; TORRENT_PIECE_ASSERT(pe->hashing == false, pe); pe->hashing_done = 0; delete pe->hash; pe->hash = nullptr; pe->hashing_done = false; #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(j->action)); #endif // evict_piece returns true if the piece was in fact // evicted. A piece may fail to be evicted if there // are still outstanding operations on it, in which case // try again later jobqueue_t jobs; if (m_disk_cache.evict_piece(pe, jobs)) { fail_jobs_impl(storage_error(boost::asio::error::operation_aborted) , jobs, completed_jobs); return 0; } m_disk_cache.mark_for_deletion(pe); if (pe->num_blocks == 0) return 0; // we should always be able to evict the piece, since // this is a fence job TORRENT_PIECE_ASSERT_FAIL(pe); return retry_job; } int disk_io_thread::do_tick(disk_io_job* j, jobqueue_t& /* completed_jobs */ ) { // true means this storage wants more ticks, false // disables ticking (until it's enabled again) return j->storage->get_storage_impl()->tick(); } void disk_io_thread::add_fence_job(piece_manager* storage, disk_io_job* j , bool user_add) { // if this happens, it means we started to shut down // the disk threads too early. We have to post all jobs // before the disk threads are shut down TORRENT_ASSERT(!m_abort); DLOG("add_fence:job: %s (outstanding: %d)\n" , job_action_name[j->action] , j->storage->num_outstanding_jobs()); m_stats_counters.inc_stats_counter(counters::num_fenced_read + j->action); disk_io_job* fj = allocate_job(disk_io_job::flush_storage); fj->storage = j->storage; int ret = storage->raise_fence(j, fj, m_stats_counters); if (ret == disk_job_fence::fence_post_fence) { std::unique_lock l(m_job_mutex); TORRENT_ASSERT((j->flags & disk_io_job::in_progress) || !j->storage); // prioritize fence jobs since they're blocking other jobs m_generic_io_jobs.m_queued_jobs.push_front(j); l.unlock(); // discard the flush job free_job(fj); if (num_threads() == 0 && user_add) immediate_execute(); return; } // in this case, we can't run the fence job right now, because there // are other jobs outstanding on this storage. We need to trigger a // flush of all those jobs now. Only write jobs linger, those are the // jobs that needs to be kicked TORRENT_ASSERT(j->blocked); if (ret == disk_job_fence::fence_post_flush) { // now, we have to make sure that all outstanding jobs on this // storage actually get flushed, in order for the fence job to // be executed std::unique_lock l(m_job_mutex); TORRENT_ASSERT((fj->flags & disk_io_job::in_progress) || !fj->storage); m_generic_io_jobs.m_queued_jobs.push_front(fj); } else { TORRENT_ASSERT((fj->flags & disk_io_job::in_progress) == 0); TORRENT_ASSERT(fj->blocked); } if (num_threads() == 0 && user_add) immediate_execute(); } void disk_io_thread::add_job(disk_io_job* j, bool user_add) { TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(!j->storage || j->storage->files()->is_valid()); TORRENT_ASSERT(j->next == nullptr); // if this happens, it means we started to shut down // the disk threads too early. We have to post all jobs // before the disk threads are shut down TORRENT_ASSERT(!m_abort || j->action == disk_io_job::flush_piece || j->action == disk_io_job::trim_cache); // this happens for read jobs that get hung on pieces in the // block cache, and then get issued if (j->flags & disk_io_job::in_progress) { std::unique_lock l(m_job_mutex); TORRENT_ASSERT((j->flags & disk_io_job::in_progress) || !j->storage); m_generic_io_jobs.m_queued_jobs.push_back(j); // if we literally have 0 disk threads, we have to execute the jobs // immediately. If add job is called internally by the disk_io_thread, // we need to defer executing it. We only want the top level to loop // over the job queue (as is done below) if (num_threads() == 0 && user_add) { l.unlock(); immediate_execute(); } return; } DLOG("add_job: %s (outstanding: %d)\n" , job_action_name[j->action] , j->storage ? j->storage->num_outstanding_jobs() : 0); // is the fence up for this storage? // jobs that are instantaneous are not affected by the fence, is_blocked() // will take ownership of the job and queue it up, in case the fence is up // if the fence flag is set, this job just raised the fence on the storage // and should be scheduled if (j->storage && j->storage->is_blocked(j)) { m_stats_counters.inc_stats_counter(counters::blocked_disk_jobs); DLOG("blocked job: %s (torrent: %d total: %d)\n" , job_action_name[j->action], j->storage ? j->storage->num_blocked() : 0 , int(m_stats_counters[counters::blocked_disk_jobs])); return; } std::unique_lock l(m_job_mutex); TORRENT_ASSERT((j->flags & disk_io_job::in_progress) || !j->storage); job_queue& q = queue_for_job(j); q.m_queued_jobs.push_back(j); // if we literally have 0 disk threads, we have to execute the jobs // immediately. If add job is called internally by the disk_io_thread, // we need to defer executing it. We only want the top level to loop // over the job queue (as is done below) if (pool_for_job(j).max_threads() == 0 && user_add) { l.unlock(); immediate_execute(); } } void disk_io_thread::immediate_execute() { while (!m_generic_io_jobs.m_queued_jobs.empty()) { disk_io_job* j = m_generic_io_jobs.m_queued_jobs.pop_front(); maybe_flush_write_blocks(); execute_job(j); } } void disk_io_thread::submit_jobs() { std::unique_lock l(m_job_mutex); if (!m_generic_io_jobs.m_queued_jobs.empty()) { m_generic_io_jobs.m_job_cond.notify_all(); m_generic_threads.job_queued(m_generic_io_jobs.m_queued_jobs.size()); } if (!m_hash_io_jobs.m_queued_jobs.empty()) { m_hash_io_jobs.m_job_cond.notify_all(); m_hash_threads.job_queued(m_hash_io_jobs.m_queued_jobs.size()); } } void disk_io_thread::maybe_flush_write_blocks() { time_point now = clock_type::now(); if (now <= m_last_cache_expiry + seconds(5)) return; std::unique_lock l(m_cache_mutex); DLOG("blocked_jobs: %d queued_jobs: %d num_threads %d\n" , int(m_stats_counters[counters::blocked_disk_jobs]) , m_generic_io_jobs.m_queued_jobs.size(), int(num_threads())); m_last_cache_expiry = now; jobqueue_t completed_jobs; flush_expired_write_blocks(completed_jobs, l); l.unlock(); if (completed_jobs.size()) add_completed_jobs(completed_jobs); } void disk_io_thread::execute_job(disk_io_job* j) { jobqueue_t completed_jobs; perform_job(j, completed_jobs); if (completed_jobs.size()) add_completed_jobs(completed_jobs); } bool disk_io_thread::wait_for_job(job_queue& jobq, disk_io_thread_pool& threads , std::unique_lock& l) { TORRENT_ASSERT(l.owns_lock()); // the thread should only go active if it is exiting or there is work to do // if the thread goes active on every wakeup it causes the minimum idle thread // count to be lower than it should be // for performance reasons we also want to avoid going idle and active again // if there is already work to do if (jobq.m_queued_jobs.empty()) { threads.thread_idle(); do { // if the number of wanted threads is decreased, // we may stop this thread // when we're terminating the last thread, make sure // we finish up all queued jobs first if (threads.should_exit() && (jobq.m_queued_jobs.empty() || threads.num_threads() > 1) // try_thread_exit must be the last condition && threads.try_thread_exit(std::this_thread::get_id())) { // time to exit this thread. threads.thread_active(); return true; } jobq.m_job_cond.wait(l); } while (jobq.m_queued_jobs.empty()); threads.thread_active(); } return false; } void disk_io_thread::thread_fun(thread_type_t type , io_service::work w) { std::thread::id thread_id = std::this_thread::get_id(); #if DEBUG_DISK_THREAD std::stringstream thread_id_str; thread_id_str << thread_id; #endif DLOG("started disk thread %s\n", thread_id_str.str().c_str()); std::unique_lock l(m_job_mutex); if (m_abort) return; ++m_num_running_threads; m_stats_counters.inc_stats_counter(counters::num_running_threads, 1); for (;;) { disk_io_job* j = 0; if (type == generic_thread) { bool const should_exit = wait_for_job(m_generic_io_jobs, m_generic_threads, l); if (should_exit) break; j = m_generic_io_jobs.m_queued_jobs.pop_front(); } else if (type == hasher_thread) { bool const should_exit = wait_for_job(m_hash_io_jobs, m_hash_threads, l); if (should_exit) break; j = m_hash_io_jobs.m_queued_jobs.pop_front(); } l.unlock(); TORRENT_ASSERT((j->flags & disk_io_job::in_progress) || !j->storage); if (thread_id == m_generic_threads.first_thread_id() && type == generic_thread) { // there's no need for all threads to be doing this maybe_flush_write_blocks(); } execute_job(j); l.lock(); } // do cleanup in the last running thread // if we're not aborting, that means we just configured the thread pool to // not have any threads (i.e. perform all disk operations in the network // thread). In this case, the cleanup will happen in abort(). m_stats_counters.inc_stats_counter(counters::num_running_threads, -1); if (--m_num_running_threads > 0 || !m_abort) { DLOG("exiting disk thread %s. num_threads: %d aborting: %d\n" , thread_id_str.str().c_str(), int(num_threads()), int(m_abort)); TORRENT_ASSERT(m_magic == 0x1337); return; } // it is important to hold the job mutex while calling try_thread_exit() // and continue to hold it until checking m_abort above so that abort() // doesn't inadvertently trigger the code below when it thinks there are no // more disk I/O threads running l.unlock(); // at this point, there are no queued jobs left. However, main // thread is still running and may still have peer_connections // that haven't fully destructed yet, reclaiming their references // to read blocks in the disk cache. We need to wait until all // references are removed from other threads before we can go // ahead with the cleanup. // This is not supposed to happen because the disk thread is now scheduled // for shut down after all peers have shut down (see // session_impl::abort_stage2()). std::unique_lock l2(m_cache_mutex); TORRENT_ASSERT_VAL(m_disk_cache.pinned_blocks() == 0 , m_disk_cache.pinned_blocks()); while (m_disk_cache.pinned_blocks() > 0) { l2.unlock(); std::this_thread::sleep_for(milliseconds(100)); l2.lock(); } l2.unlock(); DLOG("disk thread %s is the last one alive. cleaning up\n", thread_id_str.str().c_str()); abort_jobs(); TORRENT_ASSERT(m_magic == 0x1337); COMPLETE_ASYNC("disk_io_thread::work"); // w's dtor releases the io_service to allow the run() call to return // we do this once we stop posting new callbacks to it. // after the dtor has been called, the disk_io_thread object may be destructed TORRENT_UNUSED(w); } void disk_io_thread::abort_jobs() { TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(!m_jobs_aborted.exchange(true)); jobqueue_t jobs; m_disk_cache.clear(jobs); fail_jobs(storage_error(boost::asio::error::operation_aborted), jobs); // close all files. This may take a long // time on certain OSes (i.e. Mac OS) // that's why it's important to do this in // the disk thread in parallel with stopping // trackers. m_file_pool.release(); #if TORRENT_USE_ASSERTS // by now, all pieces should have been evicted std::pair pieces = m_disk_cache.all_pieces(); TORRENT_ASSERT(pieces.first == pieces.second); #endif TORRENT_ASSERT(m_magic == 0x1337); } int disk_io_thread::num_threads() const { return m_generic_threads.max_threads() + m_hash_threads.max_threads(); } disk_io_thread::job_queue& disk_io_thread::queue_for_job(disk_io_job* j) { if (m_hash_threads.max_threads() > 0 && j->action == disk_io_job::hash) return m_hash_io_jobs; else return m_generic_io_jobs; } disk_io_thread_pool& disk_io_thread::pool_for_job(disk_io_job* j) { if (m_hash_threads.max_threads() > 0 && j->action == disk_io_job::hash) return m_hash_threads; else return m_generic_threads; } // this is a callback called by the block_cache when // it's exceeding the disk cache size. void disk_io_thread::trigger_cache_trim() { // we just exceeded the cache size limit. Trigger a trim job disk_io_job* j = allocate_job(disk_io_job::trim_cache); add_job(j, false); submit_jobs(); } disk_buffer_holder disk_io_thread::allocate_disk_buffer(bool& exceeded , boost::shared_ptr o , char const* category) { char* ret = m_disk_cache.allocate_buffer(exceeded, o, category); return disk_buffer_holder(*this, ret); } void disk_io_thread::add_completed_job(disk_io_job* j) { jobqueue_t tmp; tmp.push_back(j); add_completed_jobs(tmp); } void disk_io_thread::add_completed_jobs(jobqueue_t& jobs) { jobqueue_t new_completed_jobs; do { // when a job completes, it's possible for it to cause // a fence to be lowered, issuing the jobs queued up // behind the fence. It's also possible for some of these // jobs to be cache-hits, completing immediately. Those // jobs are added to the new_completed_jobs queue and // we need to re-issue those add_completed_jobs_impl(jobs, new_completed_jobs); TORRENT_ASSERT(jobs.size() == 0); jobs.swap(new_completed_jobs); } while (jobs.size() > 0); } void disk_io_thread::add_completed_jobs_impl(jobqueue_t& jobs , jobqueue_t& completed_jobs) { jobqueue_t new_jobs; int ret = 0; for (tailqueue_iterator i = jobs.iterate(); i.get(); i.next()) { disk_io_job* j = i.get(); TORRENT_ASSERT((j->flags & disk_io_job::in_progress) || !j->storage); // DLOG("job_complete %s outstanding: %d\n" // , job_action_name[j->action], j->storage ? j->storage->num_outstanding_jobs() : 0); if (j->storage) { if (j->flags & disk_io_job::fence) { m_stats_counters.inc_stats_counter( counters::num_fenced_read + j->action, -1); } ret += j->storage->job_complete(j, new_jobs); } TORRENT_ASSERT(ret == new_jobs.size()); TORRENT_ASSERT((j->flags & disk_io_job::in_progress) == 0); #if TORRENT_USE_ASSERTS TORRENT_ASSERT(j->job_posted == false); j->job_posted = true; #endif } #if DEBUG_DISK_THREAD if (ret) DLOG("unblocked %d jobs (%d left)\n", ret , int(m_stats_counters[counters::blocked_disk_jobs]) - ret); #endif m_stats_counters.inc_stats_counter(counters::blocked_disk_jobs, -ret); TORRENT_ASSERT(int(m_stats_counters[counters::blocked_disk_jobs]) >= 0); if (new_jobs.size() > 0) { #if TORRENT_USE_ASSERTS for (tailqueue_iterator i = new_jobs.iterate(); i.get(); i.next()) { disk_io_job const* j = static_cast(i.get()); TORRENT_ASSERT((j->flags & disk_io_job::in_progress) || !j->storage); if (j->action == disk_io_job::write) { std::unique_lock l(m_cache_mutex); cached_piece_entry* pe = m_disk_cache.find_piece(j); if (pe) { TORRENT_ASSERT(pe->blocks[j->d.io.offset / 16 / 1024].buf != j->buffer.disk_block); TORRENT_ASSERT(pe->blocks[j->d.io.offset / 16 / 1024].buf == nullptr); TORRENT_ASSERT(!pe->hashing_done); } } } #endif jobqueue_t other_jobs; jobqueue_t flush_jobs; std::unique_lock l_(m_cache_mutex); while (new_jobs.size() > 0) { disk_io_job* j = new_jobs.pop_front(); if (j->action == disk_io_job::read) { int state = prep_read_job_impl(j, false); switch (state) { case 0: completed_jobs.push_back(j); break; case 1: other_jobs.push_back(j); break; } continue; } // write jobs should be put straight into the cache if (j->action != disk_io_job::write) { other_jobs.push_back(j); continue; } cached_piece_entry* pe = m_disk_cache.add_dirty_block(j); if (pe == nullptr) { // this isn't correct, since jobs in the jobs // queue aren't ordered other_jobs.push_back(j); continue; } #if TORRENT_USE_ASSERTS pe->piece_log.push_back(piece_log_t(j->action, j->d.io.offset / 0x4000)); #endif if (!pe->hashing_done && pe->hash == 0 && !m_settings.get_bool(settings_pack::disable_hash_checks)) { pe->hash = new partial_hash; m_disk_cache.update_cache_state(pe); } TORRENT_PIECE_ASSERT(pe->cache_state <= cached_piece_entry::read_lru1 || pe->cache_state == cached_piece_entry::read_lru2, pe); if (pe->outstanding_flush == 0) { pe->outstanding_flush = 1; // the block and write job were successfully inserted // into the cache. Now, see if we should trigger a flush disk_io_job* fj = allocate_job(disk_io_job::flush_hashed); fj->storage = j->storage; fj->piece = j->piece; flush_jobs.push_back(fj); } } l_.unlock(); std::unique_lock l(m_job_mutex); m_generic_io_jobs.m_queued_jobs.append(other_jobs); l.unlock(); while (flush_jobs.size() > 0) { disk_io_job* j = flush_jobs.pop_front(); add_job(j, false); } l.lock(); m_generic_io_jobs.m_job_cond.notify_all(); m_generic_threads.job_queued(m_generic_io_jobs.m_queued_jobs.size()); l.unlock(); } std::unique_lock l(m_completed_jobs_mutex); bool need_post = m_completed_jobs.size() == 0; m_completed_jobs.append(jobs); l.unlock(); if (need_post) { #if DEBUG_DISK_THREAD // we take this lock just to make the logging prettier (non-interleaved) DLOG("posting job handlers (%d)\n", m_completed_jobs.size()); #endif m_ios.post(std::bind(&disk_io_thread::call_job_handlers, this, m_userdata)); } } // This is run in the network thread void disk_io_thread::call_job_handlers(void* userdata) { std::unique_lock l(m_completed_jobs_mutex); #if DEBUG_DISK_THREAD DLOG("call_job_handlers (%d)\n", m_completed_jobs.size()); #endif int num_jobs = m_completed_jobs.size(); disk_io_job* j = m_completed_jobs.get_all(); l.unlock(); uncork_interface* uncork = static_cast(userdata); std::vector to_delete; to_delete.reserve(num_jobs); while (j) { TORRENT_ASSERT(j->job_posted == true); TORRENT_ASSERT(j->callback_called == false); // DLOG(" callback: %s\n", job_action_name[j->action]); disk_io_job* next = j->next; #if TORRENT_USE_ASSERTS j->callback_called = true; #endif if (j->callback) j->callback(j); to_delete.push_back(j); j = next; } if (!to_delete.empty()) free_jobs(&to_delete[0], int(to_delete.size())); // uncork all peers who received a disk event. This is // to coalesce all the socket writes caused by the events. if (uncork) uncork->do_delayed_uncork(); } #if TORRENT_USE_INVARIANT_CHECKS void disk_io_thread::check_invariant() const { } #endif }