/* Copyright (c) 2007, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TORRENT_DISK_IO_THREAD #define TORRENT_DISK_IO_THREAD #if defined TORRENT_DISK_STATS || defined TORRENT_STATS #include #endif #include "libtorrent/storage.hpp" #include "libtorrent/allocator.hpp" #include "libtorrent/io_service.hpp" #include "libtorrent/sliding_average.hpp" #include #include #include #include #include #include "libtorrent/config.hpp" #ifndef TORRENT_DISABLE_POOL_ALLOCATOR #include #endif #include "libtorrent/session_settings.hpp" #include "libtorrent/thread.hpp" #include #include #include #include namespace libtorrent { using boost::multi_index::multi_index_container; using boost::multi_index::ordered_non_unique; using boost::multi_index::ordered_unique; using boost::multi_index::indexed_by; using boost::multi_index::member; using boost::multi_index::const_mem_fun; struct cached_piece_info { int piece; std::vector blocks; ptime last_use; enum kind_t { read_cache = 0, write_cache = 1 }; kind_t kind; }; struct disk_io_job { disk_io_job() : action(read) , buffer(0) , buffer_size(0) , piece(0) , offset(0) , max_cache_line(0) , cache_min_time(0) {} enum action_t { read , write , hash , move_storage , release_files , delete_files , check_fastresume , check_files , save_resume_data , rename_file , abort_thread , clear_read_cache , abort_torrent , update_settings , read_and_hash , cache_piece , finalize_file }; action_t action; char* buffer; int buffer_size; boost::intrusive_ptr storage; // arguments used for read and write int piece, offset; // used for move_storage and rename_file. On errors, this is set // to the error message std::string str; // on error, this is set to the path of the // file the disk operation failed on std::string error_file; // if this is > 0, it specifies the max number of blocks to read // ahead in the read cache for this access. This is only valid // for 'read' actions int max_cache_line; // if this is > 0, it may increase the minimum time the cache // line caused by this operation stays in the cache int cache_min_time; boost::shared_ptr resume_data; // the error code from the file operation error_code error; // this is called when operation completes boost::function callback; // the time when this job was issued. This is used to // keep track of disk I/O congestion ptime start_time; }; // returns true if the fundamental operation // of the given disk job is a read operation bool is_read_operation(disk_io_job const& j); // this is true if the buffer field in the disk_io_job // points to a disk buffer bool operation_has_buffer(disk_io_job const& j); struct cache_status { cache_status() : blocks_written(0) , writes(0) , blocks_read(0) , blocks_read_hit(0) , reads(0) , cache_size(0) , read_cache_size(0) , total_used_buffers(0) , average_queue_time(0) , average_read_time(0) , job_queue_length(0) {} // the number of 16kB blocks written size_type blocks_written; // the number of write operations used size_type writes; // (blocks_written - writes) / blocks_written represents the // "cache hit" ratio in the write cache // the number of blocks read // the number of blocks passed back to the bittorrent engine size_type blocks_read; // the number of blocks that was just copied from the read cache size_type blocks_read_hit; // the number of read operations used size_type reads; mutable size_type queued_bytes; // the number of blocks in the cache (both read and write) int cache_size; // the number of blocks in the cache used for read cache int read_cache_size; // the total number of blocks that are currently in use // this includes send and receive buffers mutable int total_used_buffers; // times in microseconds int average_queue_time; int average_read_time; int job_queue_length; }; struct TORRENT_EXPORT disk_buffer_pool : boost::noncopyable { disk_buffer_pool(int block_size); #ifdef TORRENT_DEBUG ~disk_buffer_pool(); #endif #if defined TORRENT_DEBUG || defined TORRENT_DISK_STATS bool is_disk_buffer(char* buffer , mutex::scoped_lock& l) const; bool is_disk_buffer(char* buffer) const; #endif char* allocate_buffer(char const* category); void free_buffer(char* buf); void free_multiple_buffers(char** bufvec, int numbufs); char* allocate_buffers(int blocks, char const* category); void free_buffers(char* buf, int blocks); int block_size() const { return m_block_size; } #ifdef TORRENT_STATS int disk_allocations() const { return m_allocations; } #endif #ifdef TORRENT_DISK_STATS std::ofstream m_disk_access_log; #endif void release_memory(); int in_use() const { return m_in_use; } protected: void free_buffer_impl(char* buf, mutex::scoped_lock& l); // number of bytes per block. The BitTorrent // protocol defines the block size to 16 KiB. const int m_block_size; // number of disk buffers currently allocated int m_in_use; session_settings m_settings; private: mutable mutex m_pool_mutex; #ifndef TORRENT_DISABLE_POOL_ALLOCATOR // memory pool for read and write operations // and disk cache boost::pool m_pool; #endif #if defined TORRENT_DISK_STATS || defined TORRENT_STATS int m_allocations; #endif #ifdef TORRENT_DISK_STATS public: void rename_buffer(char* buf, char const* category); protected: std::map m_categories; std::map m_buf_to_category; std::ofstream m_log; private: #endif #ifdef TORRENT_DEBUG int m_magic; #endif }; // this is a singleton consisting of the thread and a queue // of disk io jobs struct TORRENT_EXPORT disk_io_thread : disk_buffer_pool { disk_io_thread(io_service& ios , boost::function const& queue_callback , file_pool& fp , int block_size = 16 * 1024); ~disk_io_thread(); void abort(); void join(); // aborts read operations void stop(boost::intrusive_ptr s); void add_job(disk_io_job const& j , boost::function const& f = boost::function()); // keep track of the number of bytes in the job queue // at any given time. i.e. the sum of all buffer_size. // this is used to slow down the download global download // speed when the queue buffer size is too big. size_type queue_buffer_size() const; void get_cache_info(sha1_hash const& ih , std::vector& ret) const; cache_status status() const; void thread_fun(); #ifdef TORRENT_DEBUG void check_invariant() const; #endif struct cached_block_entry { cached_block_entry(): buf(0) {} // the buffer pointer (this is a disk_pool buffer) // or 0 char* buf; // callback for when this block is flushed to disk boost::function callback; }; struct cached_piece_entry { int piece; // storage this piece belongs to boost::intrusive_ptr storage; // the last time a block was writting to this piece // plus the minimum amount of time the block is guaranteed // to stay in the cache ptime expire; // the number of blocks in the cache for this piece int num_blocks; // the pointers to the block data boost::shared_array blocks; std::pair storage_piece_pair() const { return std::pair(storage.get(), piece); } }; typedef multi_index_container< cached_piece_entry, indexed_by< ordered_unique , &cached_piece_entry::storage_piece_pair> > , ordered_non_unique > > > cache_t; typedef cache_t::nth_index<0>::type cache_piece_index_t; typedef cache_t::nth_index<1>::type cache_lru_index_t; private: void add_job(disk_io_job const& j , mutex::scoped_lock& l , boost::function const& f = boost::function()); bool test_error(disk_io_job& j); void post_callback(boost::function const& handler , disk_io_job const& j, int ret); // cache operations cache_piece_index_t::iterator find_cached_piece( cache_t& cache, disk_io_job const& j , mutex::scoped_lock& l); bool is_cache_hit(cached_piece_entry& p , disk_io_job const& j, mutex::scoped_lock& l); int copy_from_piece(cached_piece_entry& p, bool& hit , disk_io_job const& j, mutex::scoped_lock& l); // write cache operations enum options_t { dont_flush_write_blocks = 1, ignore_cache_size = 2 }; int flush_cache_blocks(mutex::scoped_lock& l , int blocks, int ignore = -1, int options = 0); void flush_expired_pieces(); int flush_contiguous_blocks(cached_piece_entry& p , mutex::scoped_lock& l, int lower_limit = 0); int flush_range(cached_piece_entry& p, int start, int end, mutex::scoped_lock& l); int cache_block(disk_io_job& j , boost::function& handler , int cache_expire , mutex::scoped_lock& l); // read cache operations int clear_oldest_read_piece(int num_blocks, int ignore , mutex::scoped_lock& l); int read_into_piece(cached_piece_entry& p, int start_block , int options, int num_blocks, mutex::scoped_lock& l); int cache_read_block(disk_io_job const& j, mutex::scoped_lock& l); int free_piece(cached_piece_entry& p, mutex::scoped_lock& l); int drain_piece_bufs(cached_piece_entry& p, std::vector& buf , mutex::scoped_lock& l); int try_read_from_cache(disk_io_job const& j, bool& hit); int read_piece_from_cache_and_hash(disk_io_job const& j, sha1_hash& h); int cache_piece(disk_io_job const& j, cache_piece_index_t::iterator& p , bool& hit, int options, mutex::scoped_lock& l); // this mutex only protects m_jobs, m_queue_buffer_size, // m_exceeded_write_queue and m_abort mutable mutex m_queue_mutex; event m_signal; bool m_abort; bool m_waiting_to_shutdown; std::list m_jobs; size_type m_queue_buffer_size; ptime m_last_file_check; // this protects the piece cache and related members mutable mutex m_piece_mutex; // write cache cache_t m_pieces; // read cache cache_t m_read_pieces; // total number of blocks in use by both the read // and the write cache. This is not supposed to // exceed m_cache_size cache_status m_cache_stats; // keeps average queue time for disk jobs (in microseconds) sliding_average<512> m_queue_time; // average read time for cache misses (in microseconds) sliding_average<512> m_read_time; typedef std::multimap read_jobs_t; read_jobs_t m_sorted_read_jobs; #ifdef TORRENT_DISK_STATS std::ofstream m_log; #endif // the amount of physical ram in the machine boost::uint64_t m_physical_ram; // if we exceeded the max queue disk write size // this is set to true. It remains true until the // queue is smaller than the low watermark bool m_exceeded_write_queue; io_service& m_ios; boost::function m_queue_callback; // this keeps the io_service::run() call blocked from // returning. When shutting down, it's possible that // the event queue is drained before the disk_io_thread // has posted its last callback. When this happens, the // io_service will have a pending callback from the // disk_io_thread, but the event loop is not running. // this means that the event is destructed after the // disk_io_thread. If the event refers to a disk buffer // it will try to free it, but the buffer pool won't // exist anymore, and crash. This prevents that. boost::optional m_work; // reference to the file_pool which is a member of // the session_impl object file_pool& m_file_pool; // thread for performing blocking disk io operations thread m_disk_io_thread; }; } #endif