/* Copyright (c) 2006-2014, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include "libtorrent/io.hpp" #include "libtorrent/bencode.hpp" #include "libtorrent/hasher.hpp" #include "libtorrent/alert_types.hpp" #include "libtorrent/alert.hpp" #include "libtorrent/socket.hpp" #include "libtorrent/random.hpp" #include "libtorrent/aux_/session_impl.hpp" #include "libtorrent/kademlia/node_id.hpp" #include "libtorrent/kademlia/rpc_manager.hpp" #include "libtorrent/kademlia/routing_table.hpp" #include "libtorrent/kademlia/node.hpp" #include "libtorrent/kademlia/dht_observer.hpp" #include "libtorrent/kademlia/refresh.hpp" #include "libtorrent/kademlia/get_peers.hpp" #include "libtorrent/kademlia/get_item.hpp" #ifdef TORRENT_USE_VALGRIND #include #endif namespace libtorrent { namespace dht { void incoming_error(entry& e, char const* msg, int error_code = 203); using detail::write_endpoint; // TODO: 2 make this configurable in dht_settings enum { announce_interval = 30 }; #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_DEFINE_LOG(node) extern int g_failed_announces; extern int g_announces; #endif // remove peers that have timed out void purge_peers(std::set& peers) { for (std::set::iterator i = peers.begin() , end(peers.end()); i != end;) { // the peer has timed out if (i->added + minutes(int(announce_interval * 1.5f)) < time_now()) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "peer timed out at: " << i->addr; #endif peers.erase(i++); } else ++i; } } void nop() {} node_impl::node_impl(alert_dispatcher* alert_disp , udp_socket_interface* sock , dht_settings const& settings, node_id nid, address const& external_address , dht_observer* observer) : m_settings(settings) , m_id(nid == (node_id::min)() || !verify_id(nid, external_address) ? generate_id(external_address) : nid) , m_table(m_id, 8, settings) , m_rpc(m_id, m_table, sock) , m_observer(observer) , m_last_tracker_tick(time_now()) , m_post_alert(alert_disp) , m_sock(sock) { m_secret[0] = random(); m_secret[1] = std::rand(); } bool node_impl::verify_token(std::string const& token, char const* info_hash , udp::endpoint const& addr) { if (token.length() != 4) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "token of incorrect length: " << token.length(); #endif return false; } hasher h1; error_code ec; std::string address = addr.address().to_string(ec); if (ec) return false; h1.update(&address[0], address.length()); h1.update((char*)&m_secret[0], sizeof(m_secret[0])); h1.update((char*)info_hash, sha1_hash::size); sha1_hash h = h1.final(); if (std::equal(token.begin(), token.end(), (char*)&h[0])) return true; hasher h2; h2.update(&address[0], address.length()); h2.update((char*)&m_secret[1], sizeof(m_secret[1])); h2.update((char*)info_hash, sha1_hash::size); h = h2.final(); if (std::equal(token.begin(), token.end(), (char*)&h[0])) return true; return false; } std::string node_impl::generate_token(udp::endpoint const& addr, char const* info_hash) { std::string token; token.resize(4); hasher h; error_code ec; std::string address = addr.address().to_string(ec); TORRENT_ASSERT(!ec); h.update(&address[0], address.length()); h.update((char*)&m_secret[0], sizeof(m_secret[0])); h.update(info_hash, sha1_hash::size); sha1_hash hash = h.final(); std::copy(hash.begin(), hash.begin() + 4, (char*)&token[0]); TORRENT_ASSERT(std::equal(token.begin(), token.end(), (char*)&hash[0])); return token; } void node_impl::refresh(node_id const& id , find_data::nodes_callback const& f) { boost::intrusive_ptr r(new dht::refresh(*this, id, f)); r->start(); } void node_impl::bootstrap(std::vector const& nodes , find_data::nodes_callback const& f) { boost::intrusive_ptr r(new dht::bootstrap(*this, m_id, f)); #ifdef TORRENT_DHT_VERBOSE_LOGGING int count = 0; #endif for (std::vector::const_iterator i = nodes.begin() , end(nodes.end()); i != end; ++i) { #ifdef TORRENT_DHT_VERBOSE_LOGGING ++count; #endif r->add_entry(node_id(0), *i, observer::flag_initial); } #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "bootstrapping with " << count << " nodes"; #endif r->start(); } int node_impl::bucket_size(int bucket) { return m_table.bucket_size(bucket); } void node_impl::new_write_key() { m_secret[1] = m_secret[0]; m_secret[0] = random(); } void node_impl::unreachable(udp::endpoint const& ep) { m_rpc.unreachable(ep); } void node_impl::incoming(msg const& m) { // is this a reply? lazy_entry const* y_ent = m.message.dict_find_string("y"); if (!y_ent || y_ent->string_length() == 0) { // don't respond to this obviously broken messages. We don't // want to open up a magnification opportunity // entry e; // incoming_error(e, "missing 'y' entry"); // m_sock->send_packet(e, m.addr, 0); return; } char y = *(y_ent->string_ptr()); lazy_entry const* ext_ip = m.message.dict_find_string("ip"); // backwards compatibility if (ext_ip == NULL) { lazy_entry const* r = m.message.dict_find_dict("r"); if (r) ext_ip = r->dict_find_string("ip"); } #if TORRENT_USE_IPV6 if (ext_ip && ext_ip->string_length() >= 16) { // this node claims we use the wrong node-ID! address_v6::bytes_type b; memcpy(&b[0], ext_ip->string_ptr(), 16); if (m_observer) m_observer->set_external_address(address_v6(b) , m.addr.address()); } else #endif if (ext_ip && ext_ip->string_length() >= 4) { address_v4::bytes_type b; memcpy(&b[0], ext_ip->string_ptr(), 4); if (m_observer) m_observer->set_external_address(address_v4(b) , m.addr.address()); } switch (y) { case 'r': { node_id id; if (m_rpc.incoming(m, &id, m_settings)) refresh(id, boost::bind(&nop)); break; } case 'q': { TORRENT_ASSERT(m.message.dict_find_string_value("y") == "q"); entry e; incoming_request(m, e); m_sock->send_packet(e, m.addr, 0); break; } case 'e': { #ifdef TORRENT_DHT_VERBOSE_LOGGING lazy_entry const* err = m.message.dict_find_list("e"); if (err && err->list_size() >= 2) { TORRENT_LOG(node) << "INCOMING ERROR: " << err->list_string_value_at(1); } #endif node_id id; m_rpc.incoming(m, &id, m_settings); break; } } } namespace { void announce_fun(std::vector > const& v , node_impl& node, int listen_port, sha1_hash const& ih, int flags) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "sending announce_peer [ ih: " << ih << " p: " << listen_port << " nodes: " << v.size() << " ]" ; #endif // create a dummy traversal_algorithm boost::intrusive_ptr algo( new traversal_algorithm(node, (node_id::min)())); // store on the first k nodes for (std::vector >::const_iterator i = v.begin() , end(v.end()); i != end; ++i) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << " announce-distance: " << (160 - distance_exp(ih, i->first.id)); #endif void* ptr = node.m_rpc.allocate_observer(); if (ptr == 0) return; observer_ptr o(new (ptr) announce_observer(algo, i->first.ep(), i->first.id)); #if defined TORRENT_DEBUG || TORRENT_RELEASE_ASSERTS o->m_in_constructor = false; #endif entry e; e["y"] = "q"; e["q"] = "announce_peer"; entry& a = e["a"]; a["info_hash"] = ih.to_string(); a["port"] = listen_port; a["token"] = i->second; a["seed"] = (flags & node_impl::flag_seed) ? 1 : 0; if (flags & node_impl::flag_implied_port) a["implied_port"] = 1; node.m_rpc.invoke(e, i->first.ep(), o); } } } void node_impl::add_router_node(udp::endpoint router) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "adding router node: " << router; #endif m_table.add_router_node(router); } void node_impl::add_node(udp::endpoint node) { // ping the node, and if we get a reply, it // will be added to the routing table void* ptr = m_rpc.allocate_observer(); if (ptr == 0) return; // create a dummy traversal_algorithm // this is unfortunately necessary for the observer // to free itself from the pool when it's being released boost::intrusive_ptr algo( new traversal_algorithm(*this, (node_id::min)())); observer_ptr o(new (ptr) null_observer(algo, node, node_id(0))); #if defined TORRENT_DEBUG || TORRENT_RELEASE_ASSERTS o->m_in_constructor = false; #endif entry e; e["y"] = "q"; e["q"] = "ping"; m_rpc.invoke(e, node, o); } void node_impl::announce(sha1_hash const& info_hash, int listen_port, int flags , boost::function const&)> f) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "announcing [ ih: " << info_hash << " p: " << listen_port << " ]" ; #endif // search for nodes with ids close to id or with peers // for info-hash id. then send announce_peer to them. boost::intrusive_ptr ta; if (m_settings.privacy_lookups) { ta.reset(new obfuscated_get_peers(*this, info_hash, f , boost::bind(&announce_fun, _1, boost::ref(*this) , listen_port, info_hash, flags), flags & node_impl::flag_seed)); } else { ta.reset(new get_peers(*this, info_hash, f , boost::bind(&announce_fun, _1, boost::ref(*this) , listen_port, info_hash, flags), flags & node_impl::flag_seed)); } ta->start(); } void node_impl::get_item(sha1_hash const& target , boost::function f) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "starting get for [ hash: " << target << " ]" ; #endif boost::intrusive_ptr ta; ta.reset(new dht::get_item(*this, target, f)); ta->start(); } void node_impl::get_item(char const* pk, std::string const& salt , boost::function f) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "starting get for [ key: " << to_hex(std::string(pk, 32)) << " ]" ; #endif boost::intrusive_ptr ta; ta.reset(new dht::get_item(*this, pk, salt, f)); ta->start(); } void node_impl::tick() { node_id target; if (m_table.need_refresh(target)) refresh(target, boost::bind(&nop)); } time_duration node_impl::connection_timeout() { time_duration d = m_rpc.tick(); ptime now(time_now()); if (now - m_last_tracker_tick < minutes(2)) return d; m_last_tracker_tick = now; for (dht_immutable_table_t::iterator i = m_immutable_table.begin(); i != m_immutable_table.end();) { if (i->second.last_seen + minutes(60) > now) { ++i; continue; } free(i->second.value); m_immutable_table.erase(i++); } // look through all peers and see if any have timed out for (table_t::iterator i = m_map.begin(), end(m_map.end()); i != end;) { torrent_entry& t = i->second; node_id const& key = i->first; ++i; purge_peers(t.peers); // if there are no more peers, remove the entry altogether if (t.peers.empty()) { table_t::iterator i = m_map.find(key); if (i != m_map.end()) m_map.erase(i); } } return d; } void node_impl::status(session_status& s) { mutex_t::scoped_lock l(m_mutex); m_table.status(s); s.dht_torrents = int(m_map.size()); s.active_requests.clear(); s.dht_total_allocations = m_rpc.num_allocated_observers(); for (std::set::iterator i = m_running_requests.begin() , end(m_running_requests.end()); i != end; ++i) { s.active_requests.push_back(dht_lookup()); dht_lookup& l = s.active_requests.back(); (*i)->status(l); } } void node_impl::lookup_peers(sha1_hash const& info_hash, int prefix, entry& reply , bool noseed, bool scrape) const { if (m_post_alert) { alert* a = new dht_get_peers_alert(info_hash); if (!m_post_alert->post_alert(a)) delete a; } table_t::const_iterator i = m_map.lower_bound(info_hash); if (i == m_map.end()) return; if (i->first != info_hash && prefix == 20) return; if (prefix != 20) { sha1_hash mask = sha1_hash::max(); mask <<= (20 - prefix) * 8; if ((i->first & mask) != (info_hash & mask)) return; } torrent_entry const& v = i->second; if (!v.name.empty()) reply["n"] = v.name; if (scrape) { bloom_filter<256> downloaders; bloom_filter<256> seeds; for (std::set::const_iterator i = v.peers.begin() , end(v.peers.end()); i != end; ++i) { sha1_hash iphash; hash_address(i->addr.address(), iphash); if (i->seed) seeds.set(iphash); else downloaders.set(iphash); } reply["BFpe"] = downloaders.to_string(); reply["BFse"] = seeds.to_string(); } else { int num = (std::min)((int)v.peers.size(), m_settings.max_peers_reply); std::set::const_iterator iter = v.peers.begin(); entry::list_type& pe = reply["values"].list(); std::string endpoint; for (int t = 0, m = 0; m < num && iter != v.peers.end(); ++iter, ++t) { if ((random() / float(UINT_MAX + 1.f)) * (num - t) >= num - m) continue; if (noseed && iter->seed) continue; endpoint.resize(18); std::string::iterator out = endpoint.begin(); write_endpoint(iter->addr, out); endpoint.resize(out - endpoint.begin()); pe.push_back(entry(endpoint)); ++m; } } return; } namespace detail { void TORRENT_EXTRA_EXPORT write_nodes_entry(entry& r, nodes_t const& nodes) { bool ipv6_nodes = false; entry& n = r["nodes"]; std::back_insert_iterator out(n.string()); for (nodes_t::const_iterator i = nodes.begin() , end(nodes.end()); i != end; ++i) { if (!i->addr().is_v4()) { ipv6_nodes = true; continue; } std::copy(i->id.begin(), i->id.end(), out); write_endpoint(udp::endpoint(i->addr(), i->port()), out); } if (ipv6_nodes) { entry& p = r["nodes2"]; std::string endpoint; for (nodes_t::const_iterator i = nodes.begin() , end(nodes.end()); i != end; ++i) { if (!i->addr().is_v6()) continue; endpoint.resize(18 + 20); std::string::iterator out = endpoint.begin(); std::copy(i->id.begin(), i->id.end(), out); out += 20; write_endpoint(udp::endpoint(i->addr(), i->port()), out); endpoint.resize(out - endpoint.begin()); p.list().push_back(entry(endpoint)); } } } } using detail::write_nodes_entry; // verifies that a message has all the required // entries and returns them in ret bool verify_message(lazy_entry const* msg, key_desc_t const desc[], lazy_entry const* ret[] , int size , char* error, int error_size) { // clear the return buffer memset(ret, 0, sizeof(ret[0]) * size); // when parsing child nodes, this is the stack // of lazy_entry pointers to return to lazy_entry const* stack[5]; int stack_ptr = -1; if (msg->type() != lazy_entry::dict_t) { snprintf(error, error_size, "not a dictionary"); return false; } ++stack_ptr; stack[stack_ptr] = msg; for (int i = 0; i < size; ++i) { key_desc_t const& k = desc[i]; // fprintf(stderr, "looking for %s in %s\n", k.name, print_entry(*msg).c_str()); ret[i] = msg->dict_find(k.name); // none_t means any type if (ret[i] && ret[i]->type() != k.type && k.type != lazy_entry::none_t) ret[i] = 0; if (ret[i] == 0 && (k.flags & key_desc_t::optional) == 0) { // the key was not found, and it's not an optional key snprintf(error, error_size, "missing '%s' key", k.name); return false; } if (k.size > 0 && ret[i] && k.type == lazy_entry::string_t) { bool invalid = false; if (k.flags & key_desc_t::size_divisible) invalid = (ret[i]->string_length() % k.size) != 0; else invalid = ret[i]->string_length() != k.size; if (invalid) { // the string was not of the required size ret[i] = 0; if ((k.flags & key_desc_t::optional) == 0) { snprintf(error, error_size, "invalid value for '%s'", k.name); return false; } } } if (k.flags & key_desc_t::parse_children) { TORRENT_ASSERT(k.type == lazy_entry::dict_t); if (ret[i]) { ++stack_ptr; TORRENT_ASSERT(stack_ptr < int(sizeof(stack)/sizeof(stack[0]))); msg = ret[i]; stack[stack_ptr] = msg; } else { // skip all children while (i < size && (desc[i].flags & key_desc_t::last_child) == 0) ++i; // if this assert is hit, desc is incorrect TORRENT_ASSERT(i < size); } } else if (k.flags & key_desc_t::last_child) { TORRENT_ASSERT(stack_ptr > 0); // this can happen if the specification passed // in is unbalanced. i.e. contain more last_child // nodes than parse_children if (stack_ptr == 0) return false; --stack_ptr; msg = stack[stack_ptr]; } } return true; } void incoming_error(entry& e, char const* msg, int error_code) { e["y"] = "e"; entry::list_type& l = e["e"].list(); l.push_back(entry(error_code)); l.push_back(entry(msg)); } // return true of the first argument is a better canidate for removal, i.e. // less important to keep struct immutable_item_comparator { immutable_item_comparator(node_id const& our_id) : m_our_id(our_id) {} bool operator() (std::pair const& lhs , std::pair const& rhs) const { int l_distance = distance_exp(lhs.first, m_our_id); int r_distance = distance_exp(rhs.first, m_our_id); // this is a score taking the popularity (number of announcers) and the // fit, in terms of distance from ideal storing node, into account. // each additional 5 announcers is worth one extra bit in the distance. // that is, an item with 10 announcers is allowed to be twice as far // from another item with 5 announcers, from our node ID. Twice as far // because it gets one more bit. return lhs.second.num_announcers / 5 - l_distance < rhs.second.num_announcers / 5 - r_distance; } node_id const& m_our_id; }; // build response void node_impl::incoming_request(msg const& m, entry& e) { e = entry(entry::dictionary_t); e["y"] = "r"; e["t"] = m.message.dict_find_string_value("t"); key_desc_t top_desc[] = { {"q", lazy_entry::string_t, 0, 0}, {"a", lazy_entry::dict_t, 0, key_desc_t::parse_children}, {"id", lazy_entry::string_t, 20, key_desc_t::last_child}, }; lazy_entry const* top_level[3]; char error_string[200]; if (!verify_message(&m.message, top_desc, top_level, 3, error_string, sizeof(error_string))) { incoming_error(e, error_string); return; } e["ip"] = endpoint_to_bytes(m.addr); char const* query = top_level[0]->string_cstr(); lazy_entry const* arg_ent = top_level[1]; node_id id(top_level[2]->string_ptr()); // if this nodes ID doesn't match its IP, tell it what // its IP is with an error // don't enforce this yet if (m_settings.enforce_node_id && !verify_id(id, m.addr.address())) { incoming_error(e, "invalid node ID"); return; } m_table.heard_about(id, m.addr); entry& reply = e["r"]; m_rpc.add_our_id(reply); // mirror back the other node's external port reply["p"] = m.addr.port(); if (strcmp(query, "ping") == 0) { // we already have 't' and 'id' in the response // no more left to add } else if (strcmp(query, "get_peers") == 0) { key_desc_t msg_desc[] = { {"info_hash", lazy_entry::string_t, 20, 0}, {"ifhpfxl", lazy_entry::int_t, 0, key_desc_t::optional}, {"noseed", lazy_entry::int_t, 0, key_desc_t::optional}, {"scrape", lazy_entry::int_t, 0, key_desc_t::optional}, }; lazy_entry const* msg_keys[4]; if (!verify_message(arg_ent, msg_desc, msg_keys, 4, error_string, sizeof(error_string))) { incoming_error(e, error_string); return; } reply["token"] = generate_token(m.addr, msg_keys[0]->string_ptr()); sha1_hash info_hash(msg_keys[0]->string_ptr()); nodes_t n; // always return nodes as well as peers m_table.find_node(info_hash, n, 0); write_nodes_entry(reply, n); int prefix = msg_keys[1] ? int(msg_keys[1]->int_value()) : 20; if (prefix > 20) prefix = 20; else if (prefix < 4) prefix = 4; bool noseed = false; bool scrape = false; if (msg_keys[2] && msg_keys[2]->int_value() != 0) noseed = true; if (msg_keys[3] && msg_keys[3]->int_value() != 0) scrape = true; lookup_peers(info_hash, prefix, reply, noseed, scrape); #ifdef TORRENT_DHT_VERBOSE_LOGGING if (reply.find_key("values")) { TORRENT_LOG(node) << " values: " << reply["values"].list().size(); } #endif } else if (strcmp(query, "find_node") == 0) { key_desc_t msg_desc[] = { {"target", lazy_entry::string_t, 20, 0}, }; lazy_entry const* msg_keys[1]; if (!verify_message(arg_ent, msg_desc, msg_keys, 1, error_string, sizeof(error_string))) { incoming_error(e, error_string); return; } sha1_hash target(msg_keys[0]->string_ptr()); // TODO: 1 find_node should write directly to the response entry nodes_t n; m_table.find_node(target, n, 0); write_nodes_entry(reply, n); } else if (strcmp(query, "announce_peer") == 0) { key_desc_t msg_desc[] = { {"info_hash", lazy_entry::string_t, 20, 0}, {"port", lazy_entry::int_t, 0, 0}, {"token", lazy_entry::string_t, 0, 0}, {"n", lazy_entry::string_t, 0, key_desc_t::optional}, {"seed", lazy_entry::int_t, 0, key_desc_t::optional}, {"implied_port", lazy_entry::int_t, 0, key_desc_t::optional}, }; lazy_entry const* msg_keys[6]; if (!verify_message(arg_ent, msg_desc, msg_keys, 6, error_string, sizeof(error_string))) { #ifdef TORRENT_DHT_VERBOSE_LOGGING ++g_failed_announces; #endif incoming_error(e, error_string); return; } int port = int(msg_keys[1]->int_value()); // is the announcer asking to ignore the explicit // listen port and instead use the source port of the packet? if (msg_keys[5] && msg_keys[5]->int_value() != 0) port = m.addr.port(); if (port < 0 || port >= 65536) { #ifdef TORRENT_DHT_VERBOSE_LOGGING ++g_failed_announces; #endif incoming_error(e, "invalid port"); return; } sha1_hash info_hash(msg_keys[0]->string_ptr()); if (m_post_alert) { alert* a = new dht_announce_alert(m.addr.address(), port, info_hash); if (!m_post_alert->post_alert(a)) delete a; } if (!verify_token(msg_keys[2]->string_value(), msg_keys[0]->string_ptr(), m.addr)) { #ifdef TORRENT_DHT_VERBOSE_LOGGING ++g_failed_announces; #endif incoming_error(e, "invalid token"); return; } // the token was correct. That means this // node is not spoofing its address. So, let // the table get a chance to add it. m_table.node_seen(id, m.addr, 0xffff); if (!m_map.empty() && int(m_map.size()) >= m_settings.max_torrents) { // we need to remove some. Remove the ones with the // fewest peers int num_peers = m_map.begin()->second.peers.size(); table_t::iterator candidate = m_map.begin(); for (table_t::iterator i = m_map.begin() , end(m_map.end()); i != end; ++i) { if (int(i->second.peers.size()) > num_peers) continue; if (i->first == info_hash) continue; num_peers = i->second.peers.size(); candidate = i; } m_map.erase(candidate); } torrent_entry& v = m_map[info_hash]; // the peer announces a torrent name, and we don't have a name // for this torrent. Store it. if (msg_keys[3] && v.name.empty()) { std::string name = msg_keys[3]->string_value(); if (name.size() > 50) name.resize(50); v.name = name; } peer_entry peer; peer.addr = tcp::endpoint(m.addr.address(), port); peer.added = time_now(); peer.seed = msg_keys[4] && msg_keys[4]->int_value(); std::set::iterator i = v.peers.find(peer); if (i != v.peers.end()) v.peers.erase(i++); v.peers.insert(i, peer); #ifdef TORRENT_DHT_VERBOSE_LOGGING ++g_announces; #endif } else if (strcmp(query, "put") == 0) { // the first 2 entries are for both mutable and // immutable puts const static key_desc_t msg_desc[] = { {"token", lazy_entry::string_t, 0, 0}, {"v", lazy_entry::none_t, 0, 0}, {"seq", lazy_entry::int_t, 0, key_desc_t::optional}, // public key {"k", lazy_entry::string_t, item_pk_len, key_desc_t::optional}, {"sig", lazy_entry::string_t, item_sig_len, key_desc_t::optional}, {"cas", lazy_entry::string_t, 20, key_desc_t::optional}, {"salt", lazy_entry::string_t, 0, key_desc_t::optional}, }; // attempt to parse the message lazy_entry const* msg_keys[7]; if (!verify_message(arg_ent, msg_desc, msg_keys, 7, error_string, sizeof(error_string))) { incoming_error(e, error_string); return; } // is this a mutable put? bool mutable_put = (msg_keys[2] && msg_keys[3] && msg_keys[4]); // public key (only set if it's a mutable put) char const* pk = NULL; if (msg_keys[3]) pk = msg_keys[3]->string_ptr(); // signature (only set if it's a mutable put) char const* sig = NULL; if (msg_keys[4]) sig = msg_keys[4]->string_ptr(); // pointer and length to the whole entry std::pair buf = msg_keys[1]->data_section(); if (buf.second > 1000 || buf.second <= 0) { incoming_error(e, "message too big", 205); return; } std::pair salt(static_cast(NULL), 0); if (msg_keys[6]) salt = std::pair( msg_keys[6]->string_ptr(), msg_keys[6]->string_length()); if (salt.second > 64) { incoming_error(e, "salt too big", 207); return; } sha1_hash target; if (pk) target = item_target_id(salt, pk); else target = item_target_id(buf); // fprintf(stderr, "%s PUT target: %s salt: %s key: %s\n" // , mutable_put ? "mutable":"immutable" // , to_hex(target.to_string()).c_str() // , salt.second > 0 ? std::string(salt.first, salt.second).c_str() : "" // , pk ? to_hex(std::string(pk, 32)).c_str() : ""); // verify the write-token. tokens are only valid to write to // specific target hashes. it must match the one we got a "get" for if (!verify_token(msg_keys[0]->string_value(), (char const*)&target[0], m.addr)) { incoming_error(e, "invalid token"); return; } dht_immutable_item* f = 0; if (!mutable_put) { dht_immutable_table_t::iterator i = m_immutable_table.find(target); if (i == m_immutable_table.end()) { // make sure we don't add too many items if (int(m_immutable_table.size()) >= m_settings.max_dht_items) { // delete the least important one (i.e. the one // the fewest peers are announcing, and farthest // from our node ID) dht_immutable_table_t::iterator j = std::min_element(m_immutable_table.begin() , m_immutable_table.end() , immutable_item_comparator(m_id)); TORRENT_ASSERT(j != m_immutable_table.end()); free(j->second.value); m_immutable_table.erase(j); } dht_immutable_item to_add; to_add.value = (char*)malloc(buf.second); to_add.size = buf.second; memcpy(to_add.value, buf.first, buf.second); boost::tie(i, boost::tuples::ignore) = m_immutable_table.insert( std::make_pair(target, to_add)); } // fprintf(stderr, "added immutable item (%d)\n", int(m_immutable_table.size())); f = &i->second; } else { // mutable put, we must verify the signature #ifdef TORRENT_USE_VALGRIND VALGRIND_CHECK_MEM_IS_DEFINED(msg_keys[4]->string_ptr(), item_sig_len); VALGRIND_CHECK_MEM_IS_DEFINED(pk, item_pk_len); #endif // msg_keys[4] is the signature, msg_keys[3] is the public key if (!verify_mutable_item(buf, salt , msg_keys[2]->int_value(), pk, sig)) { incoming_error(e, "invalid signature", 206); return; } dht_mutable_table_t::iterator i = m_mutable_table.find(target); if (i == m_mutable_table.end()) { // this is the case where we don't have an item in this slot // make sure we don't add too many items if (int(m_mutable_table.size()) >= m_settings.max_dht_items) { // delete the least important one (i.e. the one // the fewest peers are announcing) dht_mutable_table_t::iterator j = std::min_element(m_mutable_table.begin() , m_mutable_table.end() , boost::bind(&dht_immutable_item::num_announcers , boost::bind(&dht_mutable_table_t::value_type::second, _1))); TORRENT_ASSERT(j != m_mutable_table.end()); free(j->second.value); free(j->second.salt); m_mutable_table.erase(j); } dht_mutable_item to_add; to_add.value = (char*)malloc(buf.second); to_add.size = buf.second; to_add.seq = msg_keys[2]->int_value(); to_add.salt = NULL; to_add.salt_size = 0; if (salt.second > 0) { to_add.salt = (char*)malloc(salt.second); to_add.salt_size = salt.second; memcpy(to_add.salt, salt.first, salt.second); } memcpy(to_add.sig, sig, sizeof(to_add.sig)); TORRENT_ASSERT(sizeof(to_add.sig) == msg_keys[4]->string_length()); memcpy(to_add.value, buf.first, buf.second); memcpy(&to_add.key, pk, sizeof(to_add.key)); boost::tie(i, boost::tuples::ignore) = m_mutable_table.insert( std::make_pair(target, to_add)); // fprintf(stderr, "added mutable item (%d)\n", int(m_mutable_table.size())); } else { // this is the case where we already dht_mutable_item* item = &i->second; // this is the "cas" field in the put message // if it was specified, we MUST make sure the current value // matches the expected value before replacing it if (msg_keys[5]) { sha1_hash h = mutable_item_cas( std::make_pair(item->value, item->size) , std::make_pair(item->salt, item->salt_size) , item->seq); if (h != sha1_hash(msg_keys[5]->string_ptr())) { incoming_error(e, "CAS hash failed", 301); return; } } if (item->seq > boost::uint64_t(msg_keys[2]->int_value())) { incoming_error(e, "old sequence number", 302); return; } if (item->seq < boost::uint64_t(msg_keys[2]->int_value())) { if (item->size != buf.second) { free(item->value); item->value = (char*)malloc(buf.second); item->size = buf.second; } item->seq = msg_keys[2]->int_value(); memcpy(item->sig, msg_keys[4]->string_ptr(), sizeof(item->sig)); TORRENT_ASSERT(sizeof(item->sig) == msg_keys[4]->string_length()); memcpy(item->value, buf.first, buf.second); } } f = &i->second; } m_table.node_seen(id, m.addr, 0xffff); f->last_seen = time_now(); // maybe increase num_announcers if we haven't seen this IP before sha1_hash iphash; hash_address(m.addr.address(), iphash); if (!f->ips.find(iphash)) { f->ips.set(iphash); ++f->num_announcers; } } else if (strcmp(query, "get") == 0) { key_desc_t msg_desc[] = { {"target", lazy_entry::string_t, 20, 0}, }; // k is not used for now // attempt to parse the message lazy_entry const* msg_keys[1]; if (!verify_message(arg_ent, msg_desc, msg_keys, 1, error_string, sizeof(error_string))) { incoming_error(e, error_string); return; } sha1_hash target(msg_keys[0]->string_ptr()); // fprintf(stderr, "%s GET target: %s\n" // , msg_keys[1] ? "mutable":"immutable" // , to_hex(target.to_string()).c_str()); reply["token"] = generate_token(m.addr, msg_keys[0]->string_ptr()); nodes_t n; // always return nodes as well as peers m_table.find_node(target, n, 0); write_nodes_entry(reply, n); dht_immutable_table_t::iterator i = m_immutable_table.find(target); if (i != m_immutable_table.end()) { dht_immutable_item const& f = i->second; reply["v"] = bdecode(f.value, f.value + f.size); } else { dht_mutable_table_t::iterator i = m_mutable_table.find(target); if (i != m_mutable_table.end()) { dht_mutable_item const& f = i->second; reply["v"] = bdecode(f.value, f.value + f.size); reply["seq"] = f.seq; reply["sig"] = std::string(f.sig, f.sig + sizeof(f.sig)); reply["k"] = std::string(f.key.bytes, f.key.bytes + sizeof(f.key.bytes)); } } } else { // if we don't recognize the message but there's a // 'target' or 'info_hash' in the arguments, treat it // as find_node to be future compatible lazy_entry const* target_ent = arg_ent->dict_find_string("target"); if (target_ent == 0 || target_ent->string_length() != 20) { target_ent = arg_ent->dict_find_string("info_hash"); if (target_ent == 0 || target_ent->string_length() != 20) { incoming_error(e, "unknown message"); return; } } sha1_hash target(target_ent->string_ptr()); nodes_t n; // always return nodes as well as peers m_table.find_node(target, n, 0); write_nodes_entry(reply, n); return; } } } } // namespace libtorrent::dht