/* Copyright (c) 2007-2014, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Disk queue elevator patch by Morten Husveit */ #include "libtorrent/storage.hpp" #include "libtorrent/disk_io_thread.hpp" #include "libtorrent/disk_buffer_holder.hpp" #include "libtorrent/alloca.hpp" #include "libtorrent/invariant_check.hpp" #include "libtorrent/error_code.hpp" #include "libtorrent/error.hpp" #include "libtorrent/file_pool.hpp" #include #include #include "libtorrent/time.hpp" #if TORRENT_USE_MLOCK && !defined TORRENT_WINDOWS #include #endif #ifdef TORRENT_BSD #include #endif #if TORRENT_USE_RLIMIT #include #endif #ifdef TORRENT_LINUX #include #endif namespace libtorrent { bool should_cancel_on_abort(disk_io_job const& j); bool is_read_operation(disk_io_job const& j); bool operation_has_buffer(disk_io_job const& j); // ------- disk_io_thread ------ disk_io_thread::disk_io_thread(io_service& ios , boost::function const& queue_callback , file_pool& fp , int block_size) : disk_buffer_pool(block_size) , m_abort(false) , m_waiting_to_shutdown(false) , m_queue_buffer_size(0) , m_last_file_check(time_now_hires()) , m_last_stats_flip(time_now()) , m_physical_ram(0) , m_exceeded_write_queue(false) , m_ios(ios) , m_queue_callback(queue_callback) , m_work(io_service::work(m_ios)) , m_file_pool(fp) #if TORRENT_USE_ASSERTS , m_magic(0x1337) #endif , m_disk_io_thread(boost::bind(&disk_io_thread::thread_fun, this)) { // don't do anything in here. Essentially all members // of this object are owned by the newly created thread. // initialize stuff in thread_fun(). } disk_io_thread::~disk_io_thread() { TORRENT_ASSERT(m_magic == 0x1337); #if TORRENT_USE_ASSERTS m_magic = 0xdead; #endif TORRENT_ASSERT(m_abort == true); } void disk_io_thread::abort() { TORRENT_ASSERT(m_magic == 0x1337); mutex::scoped_lock l(m_queue_mutex); disk_io_job j; m_waiting_to_shutdown = true; j.action = disk_io_job::abort_thread; j.start_time = time_now_hires(); TORRENT_ASSERT(l.locked()); m_jobs.insert(m_jobs.begin(), j); m_signal.signal(l); } void disk_io_thread::join() { TORRENT_ASSERT(m_magic == 0x1337); m_disk_io_thread.join(); mutex::scoped_lock l(m_queue_mutex); TORRENT_ASSERT(m_abort == true); m_jobs.clear(); } bool disk_io_thread::can_write() const { TORRENT_ASSERT(m_magic == 0x1337); mutex::scoped_lock l(m_queue_mutex); return !m_exceeded_write_queue; } void disk_io_thread::flip_stats(ptime now) { TORRENT_ASSERT(m_magic == 0x1337); // calling mean() will actually reset the accumulators m_cache_stats.average_queue_time = m_queue_time.mean(); m_cache_stats.average_read_time = m_read_time.mean(); m_cache_stats.average_write_time = m_write_time.mean(); m_cache_stats.average_hash_time = m_hash_time.mean(); m_cache_stats.average_job_time = m_job_time.mean(); m_cache_stats.average_sort_time = m_sort_time.mean(); m_last_stats_flip = now; } void disk_io_thread::get_cache_info(sha1_hash const& ih, std::vector& ret) const { TORRENT_ASSERT(m_magic == 0x1337); mutex::scoped_lock l(m_piece_mutex); ret.clear(); ret.reserve(m_pieces.size()); for (cache_t::const_iterator i = m_pieces.begin() , end(m_pieces.end()); i != end; ++i) { torrent_info const& ti = *i->storage->info(); if (ti.info_hash() != ih) continue; cached_piece_info info; info.next_to_hash = i->next_block_to_hash; info.piece = i->piece; info.last_use = i->expire; info.kind = cached_piece_info::write_cache; int blocks_in_piece = (ti.piece_size(i->piece) + (m_block_size) - 1) / m_block_size; info.blocks.resize(blocks_in_piece); for (int b = 0; b < blocks_in_piece; ++b) if (i->blocks[b].buf) info.blocks[b] = true; ret.push_back(info); } for (cache_t::const_iterator i = m_read_pieces.begin() , end(m_read_pieces.end()); i != end; ++i) { torrent_info const& ti = *i->storage->info(); if (ti.info_hash() != ih) continue; cached_piece_info info; info.next_to_hash = i->next_block_to_hash; info.piece = i->piece; info.last_use = i->expire; info.kind = cached_piece_info::read_cache; int blocks_in_piece = (ti.piece_size(i->piece) + (m_block_size) - 1) / m_block_size; info.blocks.resize(blocks_in_piece); for (int b = 0; b < blocks_in_piece; ++b) if (i->blocks[b].buf) info.blocks[b] = true; ret.push_back(info); } } cache_status disk_io_thread::status() const { mutex::scoped_lock l(m_piece_mutex); m_cache_stats.total_used_buffers = in_use(); m_cache_stats.queued_bytes = m_queue_buffer_size; cache_status ret = m_cache_stats; ret.job_queue_length = m_jobs.size() + m_sorted_read_jobs.size(); ret.read_queue_size = m_sorted_read_jobs.size(); return ret; } // aborts read operations void disk_io_thread::stop(boost::intrusive_ptr s) { mutex::scoped_lock l(m_queue_mutex); // read jobs are aborted, write and move jobs are syncronized for (std::deque::iterator i = m_jobs.begin(); i != m_jobs.end();) { if (i->storage != s) { ++i; continue; } if (should_cancel_on_abort(*i)) { if (i->action == disk_io_job::write) { TORRENT_ASSERT(m_queue_buffer_size >= i->buffer_size); m_queue_buffer_size -= i->buffer_size; } post_callback(*i, -3); i = m_jobs.erase(i); continue; } ++i; } disk_io_job j; j.action = disk_io_job::abort_torrent; j.storage = s; add_job(j, l); } struct update_last_use { update_last_use(int exp): expire(exp) {} void operator()(disk_io_thread::cached_piece_entry& p) { TORRENT_ASSERT(p.storage); p.expire = time_now() + seconds(expire); } int expire; }; disk_io_thread::cache_piece_index_t::iterator disk_io_thread::find_cached_piece( disk_io_thread::cache_t& cache , disk_io_job const& j, mutex::scoped_lock& l) { cache_piece_index_t& idx = cache.get<0>(); cache_piece_index_t::iterator i = idx.find(std::pair(j.storage.get(), j.piece)); TORRENT_ASSERT(i == idx.end() || (i->storage == j.storage && i->piece == j.piece)); return i; } void disk_io_thread::flush_expired_pieces() { ptime now = time_now(); mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; // flush write cache cache_lru_index_t& widx = m_pieces.get<1>(); cache_lru_index_t::iterator i = widx.begin(); time_duration cut_off = seconds(m_settings.cache_expiry); while (i != widx.end() && now - i->expire > cut_off) { TORRENT_ASSERT(i->storage); flush_range(const_cast(*i), 0, INT_MAX, l); TORRENT_ASSERT(i->num_blocks == 0); // we want to keep the piece in here to have an accurate // number for next_block_to_hash, if we're in avoid_readback mode bool erase = m_settings.disk_cache_algorithm != session_settings::avoid_readback; if (!erase) { // however, if we've already hashed the whole piece, in-order // there's no need to keep it around int piece_size = i->storage->info()->piece_size(i->piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; erase = i->next_block_to_hash == blocks_in_piece; } if (erase) widx.erase(i++); else ++i; } if (m_settings.explicit_read_cache) return; // flush read cache std::vector bufs; cache_lru_index_t& ridx = m_read_pieces.get<1>(); i = ridx.begin(); while (i != ridx.end() && now - i->expire > cut_off) { drain_piece_bufs(const_cast(*i), bufs, l); ridx.erase(i++); } if (!bufs.empty()) free_multiple_buffers(&bufs[0], bufs.size()); } int disk_io_thread::drain_piece_bufs(cached_piece_entry& p, std::vector& buf , mutex::scoped_lock& l) { int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int ret = 0; for (int i = 0; i < blocks_in_piece; ++i) { if (p.blocks[i].buf == 0) continue; buf.push_back(p.blocks[i].buf); ++ret; p.blocks[i].buf = 0; --p.num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; } return ret; } // returns the number of blocks that were freed int disk_io_thread::free_piece(cached_piece_entry& p, mutex::scoped_lock& l) { int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int ret = 0; // build a vector of all the buffers we need to free // and free them all in one go std::vector buffers; for (int i = 0; i < blocks_in_piece; ++i) { if (p.blocks[i].buf == 0) continue; buffers.push_back(p.blocks[i].buf); ++ret; p.blocks[i].buf = 0; --p.num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; } if (!buffers.empty()) free_multiple_buffers(&buffers[0], buffers.size()); return ret; } // returns the number of blocks that were freed int disk_io_thread::clear_oldest_read_piece( int num_blocks, ignore_t ignore, mutex::scoped_lock& l) { INVARIANT_CHECK; cache_lru_index_t& idx = m_read_pieces.get<1>(); if (idx.empty()) return 0; cache_lru_index_t::iterator i = idx.begin(); if (i->piece == ignore.piece && i->storage == ignore.storage) { ++i; if (i == idx.end()) return 0; } // don't replace an entry that hasn't expired yet if (time_now() < i->expire) return 0; int blocks = 0; // build a vector of all the buffers we need to free // and free them all in one go std::vector buffers; if (num_blocks >= i->num_blocks) { blocks = drain_piece_bufs(const_cast(*i), buffers, l); } else { // delete blocks from the start and from the end // until num_blocks have been freed int end = (i->storage->info()->piece_size(i->piece) + m_block_size - 1) / m_block_size - 1; int start = 0; while (num_blocks) { // if we have a volatile read cache, only clear // from the end, since we're already clearing // from the start as blocks are read if (!m_settings.volatile_read_cache) { while (i->blocks[start].buf == 0 && start <= end) ++start; if (start > end) break; buffers.push_back(i->blocks[start].buf); i->blocks[start].buf = 0; ++blocks; --const_cast(*i).num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; --num_blocks; if (!num_blocks) break; } while (i->blocks[end].buf == 0 && start <= end) --end; if (start > end) break; buffers.push_back(i->blocks[end].buf); i->blocks[end].buf = 0; ++blocks; --const_cast(*i).num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; --num_blocks; } } if (i->num_blocks == 0) idx.erase(i); if (!buffers.empty()) free_multiple_buffers(&buffers[0], buffers.size()); return blocks; } int contiguous_blocks(disk_io_thread::cached_piece_entry const& b) { int ret = 0; int current = 0; int blocks_in_piece = (b.storage->info()->piece_size(b.piece) + 16 * 1024 - 1) / (16 * 1024); for (int i = 0; i < blocks_in_piece; ++i) { if (b.blocks[i].buf) ++current; else { if (current > ret) ret = current; current = 0; } } if (current > ret) ret = current; return ret; } int disk_io_thread::flush_contiguous_blocks(cached_piece_entry& p , mutex::scoped_lock& l, int lower_limit, bool avoid_readback) { // first find the largest range of contiguous blocks int len = 0; int current = 0; int pos = 0; int start = 0; int blocks_in_piece = (p.storage->info()->piece_size(p.piece) + m_block_size - 1) / m_block_size; if (avoid_readback) { start = p.next_block_to_hash; for (int i = p.next_block_to_hash; i < blocks_in_piece; ++i) { if (p.blocks[i].buf) ++current; else break; } } else { for (int i = 0; i < blocks_in_piece; ++i) { if (p.blocks[i].buf) ++current; else { if (current > len) { len = current; pos = start; } current = 0; start = i + 1; } } } if (current > len) { len = current; pos = start; } if (len < lower_limit || len <= 0) return 0; len = flush_range(p, pos, pos + len, l); return len; } bool cmp_contiguous(disk_io_thread::cached_piece_entry const& lhs , disk_io_thread::cached_piece_entry const& rhs) { return lhs.num_contiguous_blocks < rhs.num_contiguous_blocks; } // flushes 'blocks' blocks from the cache int disk_io_thread::flush_cache_blocks(mutex::scoped_lock& l , int blocks, ignore_t ignore, int options) { // first look if there are any read cache entries that can // be cleared int ret = 0; int tmp = 0; do { tmp = clear_oldest_read_piece(blocks, ignore, l); blocks -= tmp; ret += tmp; } while (tmp > 0 && blocks > 0); if (blocks == 0) return ret; if (options & dont_flush_write_blocks) return ret; // if we don't have any blocks in the cache, no need to go look for any if (m_cache_stats.cache_size == 0) return ret; if (m_settings.disk_cache_algorithm == session_settings::lru) { cache_lru_index_t& idx = m_pieces.get<1>(); while (blocks > 0) { cache_lru_index_t::iterator i = idx.begin(); if (i == idx.end()) return ret; tmp = flush_range(const_cast(*i), 0, INT_MAX, l); idx.erase(i); blocks -= tmp; ret += tmp; } } else if (m_settings.disk_cache_algorithm == session_settings::largest_contiguous) { cache_lru_index_t& idx = m_pieces.get<1>(); while (blocks > 0) { cache_lru_index_t::iterator i = std::max_element(idx.begin(), idx.end(), &cmp_contiguous); if (i == idx.end()) return ret; tmp = flush_contiguous_blocks(const_cast(*i), l); if (i->num_blocks == 0) idx.erase(i); blocks -= tmp; ret += tmp; } } else if (m_settings.disk_cache_algorithm == session_settings::avoid_readback) { cache_lru_index_t& idx = m_pieces.get<1>(); for (cache_lru_index_t::iterator i = idx.begin(); i != idx.end();) { cached_piece_entry& p = const_cast(*i); cache_lru_index_t::iterator piece = i; ++i; if (!piece->blocks[p.next_block_to_hash].buf) continue; int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int start = p.next_block_to_hash; int end = start + 1; while (end < blocks_in_piece && p.blocks[end].buf) ++end; tmp = flush_range(p, start, end, l); p.num_contiguous_blocks = contiguous_blocks(p); if (p.num_blocks == 0 && p.next_block_to_hash == blocks_in_piece) idx.erase(piece); blocks -= tmp; ret += tmp; if (blocks <= 0) break; } // if we still need to flush blocks, flush the largest contiguous blocks // regardless of if we'll have to read them back later while (blocks > 0) { cache_lru_index_t::iterator i = std::max_element(idx.begin(), idx.end(), &cmp_contiguous); if (i == idx.end() || i->num_blocks == 0) return ret; tmp = flush_contiguous_blocks(const_cast(*i), l); // at this point, we will for sure need a read-back for // this piece anyway. We might as well save some time looping // over the disk cache by deleting the entry if (i->num_blocks == 0) idx.erase(i); blocks -= tmp; ret += tmp; } } return ret; } int disk_io_thread::flush_range(cached_piece_entry& p , int start, int end, mutex::scoped_lock& l) { INVARIANT_CHECK; TORRENT_ASSERT(start < end); int piece_size = p.storage->info()->piece_size(p.piece); #ifdef TORRENT_DISK_STATS m_log << log_time() << " flushing " << piece_size << std::endl; #endif TORRENT_ASSERT(piece_size > 0); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int buffer_size = 0; int offset = 0; boost::scoped_array buf; file::iovec_t* iov = 0; int iov_counter = 0; if (m_settings.coalesce_writes) buf.reset(new (std::nothrow) char[piece_size]); else iov = TORRENT_ALLOCA(file::iovec_t, blocks_in_piece); end = (std::min)(end, blocks_in_piece); int num_write_calls = 0; ptime write_start = time_now_hires(); for (int i = start; i <= end; ++i) { if (i == end || p.blocks[i].buf == 0) { if (buffer_size == 0) continue; TORRENT_ASSERT(buffer_size <= i * m_block_size); l.unlock(); if (iov) { int ret = p.storage->write_impl(iov, p.piece, (std::min)( i * m_block_size, piece_size) - buffer_size, iov_counter); iov_counter = 0; if (ret > 0) ++num_write_calls; } else { TORRENT_ASSERT(buf); file::iovec_t b = { buf.get(), size_t(buffer_size) }; int ret = p.storage->write_impl(&b, p.piece, (std::min)( i * m_block_size, piece_size) - buffer_size, 1); if (ret > 0) ++num_write_calls; } l.lock(); ++m_cache_stats.writes; // std::cerr << " flushing p: " << p.piece << " bytes: " << buffer_size << std::endl; buffer_size = 0; offset = 0; continue; } int block_size = (std::min)(piece_size - i * m_block_size, m_block_size); TORRENT_ASSERT(offset + block_size <= piece_size); TORRENT_ASSERT(offset + block_size > 0); if (iov) { TORRENT_ASSERT(!buf); iov[iov_counter].iov_base = p.blocks[i].buf; iov[iov_counter].iov_len = block_size; ++iov_counter; } else { TORRENT_ASSERT(buf); TORRENT_ASSERT(iov == 0); std::memcpy(buf.get() + offset, p.blocks[i].buf, block_size); offset += m_block_size; } buffer_size += block_size; TORRENT_ASSERT(p.num_blocks > 0); --p.num_blocks; ++m_cache_stats.blocks_written; --m_cache_stats.cache_size; if (i == p.next_block_to_hash) ++p.next_block_to_hash; } ptime done = time_now_hires(); int ret = 0; disk_io_job j; j.storage = p.storage; j.action = disk_io_job::write; j.buffer = 0; j.piece = p.piece; test_error(j); std::vector buffers; for (int i = start; i < end; ++i) { if (p.blocks[i].buf == 0) continue; j.buffer_size = (std::min)(piece_size - i * m_block_size, m_block_size); int result = j.error ? -1 : j.buffer_size; j.offset = i * m_block_size; j.callback = p.blocks[i].callback; buffers.push_back(p.blocks[i].buf); post_callback(j, result); p.blocks[i].callback.clear(); p.blocks[i].buf = 0; ++ret; } if (!buffers.empty()) free_multiple_buffers(&buffers[0], buffers.size()); if (num_write_calls > 0) { m_write_time.add_sample(total_microseconds(done - write_start) / num_write_calls); m_cache_stats.cumulative_write_time += total_milliseconds(done - write_start); } if (ret > 0) p.num_contiguous_blocks = contiguous_blocks(p); TORRENT_ASSERT(buffer_size == 0); // std::cerr << " flushing p: " << p.piece << " cached_blocks: " << m_cache_stats.cache_size << std::endl; #ifdef TORRENT_DEBUG for (int i = start; i < end; ++i) TORRENT_ASSERT(p.blocks[i].buf == 0); #endif return ret; } // returns -1 on failure int disk_io_thread::cache_block(disk_io_job& j , boost::function& handler , int cache_expire , mutex::scoped_lock& l) { INVARIANT_CHECK; TORRENT_ASSERT(find_cached_piece(m_pieces, j, l) == m_pieces.end()); TORRENT_ASSERT((j.offset & (m_block_size-1)) == 0); TORRENT_ASSERT(j.cache_min_time >= 0); cached_piece_entry p; int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; // there's no point in caching the piece if // there's only one block in it if (blocks_in_piece <= 1) return -1; #ifdef TORRENT_DISK_STATS rename_buffer(j.buffer, "write cache"); #endif p.piece = j.piece; p.storage = j.storage; p.expire = time_now() + seconds(j.cache_min_time); p.num_blocks = 1; p.num_contiguous_blocks = 1; p.next_block_to_hash = 0; p.blocks.reset(new (std::nothrow) cached_block_entry[blocks_in_piece]); if (!p.blocks) return -1; int block = j.offset / m_block_size; // std::cerr << " adding cache entry for p: " << j.piece << " block: " << block << " cached_blocks: " << m_cache_stats.cache_size << std::endl; p.blocks[block].buf = j.buffer; p.blocks[block].callback.swap(handler); ++m_cache_stats.cache_size; cache_lru_index_t& idx = m_pieces.get<1>(); TORRENT_ASSERT(p.storage); idx.insert(p); return 0; } // fills a piece with data from disk, returns the total number of bytes // read or -1 if there was an error int disk_io_thread::read_into_piece(cached_piece_entry& p, int start_block , int options, int num_blocks, mutex::scoped_lock& l) { TORRENT_ASSERT(num_blocks > 0); int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int end_block = start_block; int num_read = 0; int iov_counter = 0; file::iovec_t* iov = TORRENT_ALLOCA(file::iovec_t, (std::min)(blocks_in_piece - start_block, num_blocks)); int piece_offset = start_block * m_block_size; int ret = 0; boost::scoped_array buf; for (int i = start_block; i < blocks_in_piece && ((options & ignore_cache_size) || in_use() < m_settings.cache_size); ++i) { int block_size = (std::min)(piece_size - piece_offset, m_block_size); TORRENT_ASSERT(piece_offset <= piece_size); // this is a block that is already allocated // free it and allocate a new one if (p.blocks[i].buf) { free_buffer(p.blocks[i].buf); --p.num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; } p.blocks[i].buf = allocate_buffer("read cache"); // the allocation failed, break if (p.blocks[i].buf == 0) { free_piece(p, l); return -1; } ++p.num_blocks; ++m_cache_stats.cache_size; ++m_cache_stats.read_cache_size; ++end_block; ++num_read; iov[iov_counter].iov_base = p.blocks[i].buf; iov[iov_counter].iov_len = block_size; ++iov_counter; piece_offset += m_block_size; if (num_read >= num_blocks) break; } if (end_block == start_block) { // something failed. Free all buffers // we just allocated free_piece(p, l); return -2; } TORRENT_ASSERT(iov_counter <= (std::min)(blocks_in_piece - start_block, num_blocks)); // the buffer_size is the size of the buffer we need to read // all these blocks. const int buffer_size = (std::min)((end_block - start_block) * m_block_size , piece_size - start_block * m_block_size); TORRENT_ASSERT(buffer_size > 0); TORRENT_ASSERT(buffer_size <= piece_size); TORRENT_ASSERT(buffer_size + start_block * m_block_size <= piece_size); if (m_settings.coalesce_reads) buf.reset(new (std::nothrow) char[buffer_size]); if (buf) { l.unlock(); file::iovec_t b = { buf.get(), size_t(buffer_size) }; ret = p.storage->read_impl(&b, p.piece, start_block * m_block_size, 1); l.lock(); ++m_cache_stats.reads; if (p.storage->error()) { free_piece(p, l); return -1; } if (ret != buffer_size) { // this means the file wasn't big enough for this read char msg[70]; snprintf(msg, sizeof(msg), "reading p: %d b: %d s: %d (read: %d)", p.piece, start_block, buffer_size, ret); p.storage->get_storage_impl()->set_error(msg, errors::file_too_short); free_piece(p, l); return -1; } int offset = 0; for (int i = 0; i < iov_counter; ++i) { TORRENT_ASSERT(iov[i].iov_base); TORRENT_ASSERT(iov[i].iov_len > 0); TORRENT_ASSERT(int(offset + iov[i].iov_len) <= buffer_size); std::memcpy(iov[i].iov_base, buf.get() + offset, iov[i].iov_len); offset += iov[i].iov_len; } } else { l.unlock(); ret = p.storage->read_impl(iov, p.piece, start_block * m_block_size, iov_counter); l.lock(); ++m_cache_stats.reads; if (p.storage->error()) { free_piece(p, l); return -1; } if (ret != buffer_size) { // this means the file wasn't big enough for this read char msg[70]; snprintf(msg, sizeof(msg), "reading p: %d b: %d s: %d (read: %d)", p.piece, start_block, buffer_size, ret); p.storage->get_storage_impl()->set_error(msg, errors::file_too_short); free_piece(p, l); return -1; } } TORRENT_ASSERT(ret == buffer_size); return ret; } // returns -1 on read error, -2 if there isn't any space in the cache // or the number of bytes read int disk_io_thread::cache_read_block(disk_io_job const& j, mutex::scoped_lock& l) { INVARIANT_CHECK; TORRENT_ASSERT(j.cache_min_time >= 0); // this function will create a new cached_piece_entry // and requires that it doesn't already exist cache_piece_index_t& idx = m_read_pieces.get<0>(); TORRENT_ASSERT(find_cached_piece(m_read_pieces, j, l) == idx.end()); int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int start_block = j.offset / m_block_size; int blocks_to_read = blocks_in_piece - start_block; blocks_to_read = (std::min)(blocks_to_read, (std::max)((m_settings.cache_size + m_cache_stats.read_cache_size - in_use())/2, 3)); blocks_to_read = (std::min)(blocks_to_read, m_settings.read_cache_line_size); if (j.max_cache_line > 0) blocks_to_read = (std::min)(blocks_to_read, j.max_cache_line); if (in_use() + blocks_to_read > m_settings.cache_size) { int clear = in_use() + blocks_to_read - m_settings.cache_size; if (flush_cache_blocks(l, clear, ignore_t(j.piece, j.storage.get()) , dont_flush_write_blocks) < clear) return -2; } cached_piece_entry p; p.piece = j.piece; p.storage = j.storage; p.expire = time_now() + seconds(j.cache_min_time); p.num_blocks = 0; p.num_contiguous_blocks = 0; p.next_block_to_hash = 0; p.blocks.reset(new (std::nothrow) cached_block_entry[blocks_in_piece]); if (!p.blocks) return -1; int ret = read_into_piece(p, start_block, 0, blocks_to_read, l); TORRENT_ASSERT(p.storage); if (ret >= 0) idx.insert(p); return ret; } #if TORRENT_USE_INVARIANT_CHECKS void disk_io_thread::check_invariant() const { int cached_write_blocks = 0; cache_piece_index_t const& idx = m_pieces.get<0>(); for (cache_piece_index_t::const_iterator i = idx.begin() , end(idx.end()); i != end; ++i) { cached_piece_entry const& p = *i; TORRENT_ASSERT(p.blocks); // TORRENT_ASSERT(p.num_contiguous_blocks == contiguous_blocks(p)); TORRENT_ASSERT(p.storage); int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int blocks = 0; for (int k = 0; k < blocks_in_piece; ++k) { if (p.blocks[k].buf) { #if !defined TORRENT_DISABLE_POOL_ALLOCATOR && defined TORRENT_EXPENSIVE_INVARIANT_CHECKS TORRENT_ASSERT(is_disk_buffer(p.blocks[k].buf)); #endif ++blocks; } } // TORRENT_ASSERT(blocks == p.num_blocks); cached_write_blocks += blocks; } int cached_read_blocks = 0; for (cache_t::const_iterator i = m_read_pieces.begin() , end(m_read_pieces.end()); i != end; ++i) { cached_piece_entry const& p = *i; TORRENT_ASSERT(p.blocks); int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int blocks = 0; for (int k = 0; k < blocks_in_piece; ++k) { if (p.blocks[k].buf) { #if !defined TORRENT_DISABLE_POOL_ALLOCATOR && defined TORRENT_EXPENSIVE_INVARIANT_CHECKS TORRENT_ASSERT(is_disk_buffer(p.blocks[k].buf)); #endif ++blocks; } } // TORRENT_ASSERT(blocks == p.num_blocks); cached_read_blocks += blocks; } TORRENT_ASSERT(cached_read_blocks == m_cache_stats.read_cache_size); TORRENT_ASSERT(cached_read_blocks + cached_write_blocks == m_cache_stats.cache_size); #ifdef TORRENT_DISK_STATS int read_allocs = m_categories.find(std::string("read cache"))->second; int write_allocs = m_categories.find(std::string("write cache"))->second; TORRENT_ASSERT(cached_read_blocks == read_allocs); TORRENT_ASSERT(cached_write_blocks == write_allocs); #endif // when writing, there may be a one block difference, right before an old piece // is flushed TORRENT_ASSERT(m_cache_stats.cache_size <= m_settings.cache_size + 1); } #endif // reads the full piece specified by j into the read cache // returns the iterator to it and whether or not it already // was in the cache (hit). int disk_io_thread::cache_piece(disk_io_job const& j, cache_piece_index_t::iterator& p , bool& hit, int options, mutex::scoped_lock& l) { INVARIANT_CHECK; TORRENT_ASSERT(j.cache_min_time >= 0); cache_piece_index_t& idx = m_read_pieces.get<0>(); p = find_cached_piece(m_read_pieces, j, l); hit = true; int ret = 0; int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; if (p != m_read_pieces.end() && p->num_blocks != blocks_in_piece) { INVARIANT_CHECK; // we have the piece in the cache, but not all of the blocks ret = read_into_piece(const_cast(*p), 0 , options, blocks_in_piece, l); hit = false; if (ret < 0) return ret; idx.modify(p, update_last_use(j.cache_min_time)); } else if (p == m_read_pieces.end()) { INVARIANT_CHECK; // if the piece cannot be found in the cache, // read the whole piece starting at the block // we got a request for. cached_piece_entry pe; pe.piece = j.piece; pe.storage = j.storage; pe.expire = time_now() + seconds(j.cache_min_time); pe.num_blocks = 0; pe.num_contiguous_blocks = 0; pe.next_block_to_hash = 0; pe.blocks.reset(new (std::nothrow) cached_block_entry[blocks_in_piece]); if (!pe.blocks) return -1; ret = read_into_piece(pe, 0, options, INT_MAX, l); hit = false; if (ret < 0) return ret; TORRENT_ASSERT(pe.storage); p = idx.insert(pe).first; } else { idx.modify(p, update_last_use(j.cache_min_time)); } TORRENT_ASSERT(!m_read_pieces.empty()); TORRENT_ASSERT(p->piece == j.piece); TORRENT_ASSERT(p->storage == j.storage); return ret; } // cache the entire piece and hash it int disk_io_thread::read_piece_from_cache_and_hash(disk_io_job const& j, sha1_hash& h) { TORRENT_ASSERT(j.buffer); TORRENT_ASSERT(j.cache_min_time >= 0); mutex::scoped_lock l(m_piece_mutex); int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; if (in_use() + blocks_in_piece >= m_settings.cache_size) { flush_cache_blocks(l, in_use() - m_settings.cache_size + blocks_in_piece); } cache_piece_index_t::iterator p; bool hit; int ret = cache_piece(j, p, hit, ignore_cache_size, l); if (ret < 0) return ret; if (!m_settings.disable_hash_checks) { hasher ctx; for (int i = 0; i < blocks_in_piece; ++i) { TORRENT_ASSERT(p->blocks[i].buf); ctx.update((char const*)p->blocks[i].buf, (std::min)(piece_size, m_block_size)); piece_size -= m_block_size; } h = ctx.final(); } ret = copy_from_piece(const_cast(*p), hit, j, l); TORRENT_ASSERT(ret > 0); if (ret < 0) return ret; cache_piece_index_t& idx = m_read_pieces.get<0>(); if (p->num_blocks == 0) idx.erase(p); else idx.modify(p, update_last_use(j.cache_min_time)); // if read cache is disabled or we exceeded the // limit, remove this piece from the cache // also, if the piece wasn't in the cache when // the function was called, and we're using an // explicit read cache, remove it again if (in_use() >= m_settings.cache_size || !m_settings.use_read_cache || (m_settings.explicit_read_cache && !hit)) { TORRENT_ASSERT(!m_read_pieces.empty()); TORRENT_ASSERT(p->piece == j.piece); TORRENT_ASSERT(p->storage == j.storage); if (p != m_read_pieces.end()) { free_piece(const_cast(*p), l); m_read_pieces.erase(p); } } ret = j.buffer_size; ++m_cache_stats.blocks_read; if (hit) ++m_cache_stats.blocks_read_hit; return ret; } // this doesn't modify the read cache, it only // checks to see if the given read request can // be fully satisfied from the given cached piece // this is similar to copy_from_piece() but it // doesn't do anything but determining if it's a // cache hit or not bool disk_io_thread::is_cache_hit(cached_piece_entry& p , disk_io_job const& j, mutex::scoped_lock& l) { int block = j.offset / m_block_size; int block_offset = j.offset & (m_block_size-1); int size = j.buffer_size; int min_blocks_to_read = block_offset > 0 && (size > m_block_size - block_offset) ? 2 : 1; TORRENT_ASSERT(size <= m_block_size); int start_block = block; // if we have to read more than one block, and // the first block is there, make sure we test // for the second block if (p.blocks[start_block].buf != 0 && min_blocks_to_read > 1) ++start_block; #ifdef TORRENT_DEBUG int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; TORRENT_ASSERT(start_block < blocks_in_piece); #endif return p.blocks[start_block].buf != 0; } int disk_io_thread::copy_from_piece(cached_piece_entry& p, bool& hit , disk_io_job const& j, mutex::scoped_lock& l) { TORRENT_ASSERT(j.buffer); // copy from the cache and update the last use timestamp int block = j.offset / m_block_size; int block_offset = j.offset & (m_block_size-1); int buffer_offset = 0; int size = j.buffer_size; int min_blocks_to_read = block_offset > 0 && (size > m_block_size - block_offset) ? 2 : 1; TORRENT_ASSERT(size <= m_block_size); int start_block = block; if (p.blocks[start_block].buf != 0 && min_blocks_to_read > 1) ++start_block; int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; TORRENT_ASSERT(start_block < blocks_in_piece); // if block_offset > 0, we need to read two blocks, and then // copy parts of both, because it's not aligned to the block // boundaries if (p.blocks[start_block].buf == 0) { // if we use an explicit read cache, pretend there's no // space to force hitting disk without caching anything if (m_settings.explicit_read_cache) return -2; int end_block = start_block; while (end_block < blocks_in_piece && p.blocks[end_block].buf == 0) ++end_block; int blocks_to_read = end_block - block; blocks_to_read = (std::min)(blocks_to_read, (std::max)((m_settings.cache_size + m_cache_stats.read_cache_size - in_use())/2, 3)); blocks_to_read = (std::min)(blocks_to_read, m_settings.read_cache_line_size); blocks_to_read = (std::max)(blocks_to_read, min_blocks_to_read); if (j.max_cache_line > 0) blocks_to_read = (std::min)(blocks_to_read, j.max_cache_line); // if we don't have enough space for the new piece, try flushing something else if (in_use() + blocks_to_read > m_settings.cache_size) { int clear = in_use() + blocks_to_read - m_settings.cache_size; if (flush_cache_blocks(l, clear, ignore_t(p.piece, p.storage.get()) , dont_flush_write_blocks) < clear) return -2; } int ret = read_into_piece(p, block, 0, blocks_to_read, l); hit = false; if (ret < 0) return ret; if (ret < size + block_offset) return -2; TORRENT_ASSERT(p.blocks[block].buf); } // build a vector of all the buffers we need to free // and free them all in one go std::vector buffers; while (size > 0) { TORRENT_ASSERT(p.blocks[block].buf); int to_copy = (std::min)(m_block_size - block_offset, size); std::memcpy(j.buffer + buffer_offset , p.blocks[block].buf + block_offset , to_copy); size -= to_copy; block_offset = 0; buffer_offset += to_copy; if (m_settings.volatile_read_cache) { // if volatile read cache is set, the assumption is // that no other peer is likely to request the same // piece. Therefore, for each request out of the cache // we clear the block that was requested and any blocks // the peer skipped for (int i = block; i >= 0 && p.blocks[i].buf; --i) { buffers.push_back(p.blocks[i].buf); p.blocks[i].buf = 0; --p.num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; } } ++block; } if (!buffers.empty()) free_multiple_buffers(&buffers[0], buffers.size()); return j.buffer_size; } int disk_io_thread::try_read_from_cache(disk_io_job const& j, bool& hit, int flags) { TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(j.buffer); TORRENT_ASSERT(j.cache_min_time >= 0); mutex::scoped_lock l(m_piece_mutex); if (!m_settings.use_read_cache) { hit = false; return -2; } cache_piece_index_t& idx = m_read_pieces.get<0>(); cache_piece_index_t::iterator p = find_cached_piece(m_read_pieces, j, l); hit = true; int ret = 0; // if the piece cannot be found in the cache, // read the whole piece starting at the block // we got a request for. if (p == idx.end()) { if (flags & cache_only) return -2; // if we use an explicit read cache and we // couldn't find the block in the cache, // pretend that there's not enough space // to cache it, to force the read operation // go go straight to disk if (m_settings.explicit_read_cache) return -2; ret = cache_read_block(j, l); hit = false; if (ret < 0) return ret; p = find_cached_piece(m_read_pieces, j, l); TORRENT_ASSERT(!m_read_pieces.empty()); TORRENT_ASSERT(p->piece == j.piece); TORRENT_ASSERT(p->storage == j.storage); } TORRENT_ASSERT(p != idx.end()); ret = copy_from_piece(const_cast(*p), hit, j, l); if (ret < 0) return ret; if (p->num_blocks == 0) idx.erase(p); else idx.modify(p, update_last_use(j.cache_min_time)); ret = j.buffer_size; ++m_cache_stats.blocks_read; if (hit) ++m_cache_stats.blocks_read_hit; return ret; } size_type disk_io_thread::queue_buffer_size() const { TORRENT_ASSERT(m_magic == 0x1337); mutex::scoped_lock l(m_queue_mutex); return m_queue_buffer_size; } typedef std::list > job_queue_t; void completion_queue_handler(job_queue_t* completed_jobs) { boost::shared_ptr holder(completed_jobs); for (job_queue_t::iterator i = completed_jobs->begin() , end(completed_jobs->end()); i != end; ++i) { TORRENT_TRY { i->first.callback(i->second, i->first); } TORRENT_CATCH(std::exception& e) {} } } int disk_io_thread::add_job(disk_io_job const& j , mutex::scoped_lock& l , boost::function const& f) { TORRENT_ASSERT(m_magic == 0x1337); const_cast(j).start_time = time_now_hires(); if (j.action == disk_io_job::write) { m_queue_buffer_size += j.buffer_size; if (m_queue_buffer_size >= m_settings.max_queued_disk_bytes && m_settings.max_queued_disk_bytes > 0) m_exceeded_write_queue = true; } /* else if (j.action == disk_io_job::read) { // if this is a cache hit, return it right away! // this is OK because the cache is actually protected by // the m_piece_mutex bool hit = false; if (j.buffer == 0) { // this is OK because the disk_buffer pool has its // own mutex to protect the pool allocator const_cast(j).buffer = allocate_buffer("send buffer"); } int ret = try_read_from_cache(j, hit, cache_only); if (hit && ret >= 0) { TORRENT_ASSERT(f); const_cast(j).callback.swap( const_cast&>(f)); job_queue_t* q = new job_queue_t; q->push_back(std::make_pair(j, ret)); m_ios.post(boost::bind(completion_queue_handler, q)); return m_queue_buffer_size; } free_buffer(j.buffer); const_cast(j).buffer = 0; } */ TORRENT_ASSERT(l.locked()); m_jobs.push_back(j); m_jobs.back().callback.swap(const_cast&>(f)); m_signal.signal(l); return m_queue_buffer_size; } int disk_io_thread::add_job(disk_io_job const& j , boost::function const& f) { TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(!m_abort); TORRENT_ASSERT(j.storage || j.action == disk_io_job::abort_thread || j.action == disk_io_job::update_settings); TORRENT_ASSERT(j.buffer_size <= m_block_size); mutex::scoped_lock l(m_queue_mutex); TORRENT_ASSERT(m_magic == 0x1337); return add_job(j, l, f); } bool disk_io_thread::test_error(disk_io_job& j) { TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(j.storage); error_code const& ec = j.storage->error(); if (ec) { j.buffer = 0; j.str.clear(); j.error = ec; j.error_file = j.storage->error_file(); j.storage->clear_error(); return true; } return false; } void disk_io_thread::post_callback(disk_io_job const& j, int ret) { if (!j.callback) return; m_queued_completions.push_back(std::make_pair(j, ret)); } enum action_flags_t { read_operation = 1 , buffer_operation = 2 , cancel_on_abort = 4 }; static const boost::uint8_t action_flags[] = { read_operation + buffer_operation + cancel_on_abort // read , buffer_operation // write , 0 // hash , 0 // move_storage , 0 // release_files , 0 // delete_files , 0 // check_fastresume , cancel_on_abort // check_files , 0 // save_resume_data , 0 // rename_file , 0 // abort_thread , 0 // clear_read_cache , 0 // abort_torrent , cancel_on_abort // update_settings , read_operation + cancel_on_abort // read_and_hash , read_operation + cancel_on_abort // cache_piece , 0 // file_priority #ifndef TORRENT_NO_DEPRECATE , 0 // finalize_file #endif }; bool should_cancel_on_abort(disk_io_job const& j) { TORRENT_ASSERT(j.action >= 0 && j.action < int(sizeof(action_flags))); return action_flags[j.action] & cancel_on_abort; } bool is_read_operation(disk_io_job const& j) { TORRENT_ASSERT(j.action >= 0 && j.action < int(sizeof(action_flags))); return action_flags[j.action] & read_operation; } bool operation_has_buffer(disk_io_job const& j) { TORRENT_ASSERT(j.action >= 0 && j.action < int(sizeof(action_flags))); return action_flags[j.action] & buffer_operation; } void disk_io_thread::thread_fun() { #ifdef TORRENT_DISK_STATS m_log.open("disk_io_thread.log", std::ios::trunc); #endif // figure out how much physical RAM there is in // this machine. This is used for automatically // sizing the disk cache size when it's set to // automatic. #ifdef TORRENT_BSD #ifdef HW_MEMSIZE int mib[2] = { CTL_HW, HW_MEMSIZE }; #else // not entirely sure this sysctl supports 64 // bit return values, but it's probably better // than not building int mib[2] = { CTL_HW, HW_PHYSMEM }; #endif size_t len = sizeof(m_physical_ram); if (sysctl(mib, 2, &m_physical_ram, &len, NULL, 0) != 0) m_physical_ram = 0; #elif defined TORRENT_WINDOWS MEMORYSTATUSEX ms; ms.dwLength = sizeof(MEMORYSTATUSEX); if (GlobalMemoryStatusEx(&ms)) m_physical_ram = ms.ullTotalPhys; else m_physical_ram = 0; #elif defined TORRENT_LINUX m_physical_ram = sysconf(_SC_PHYS_PAGES); m_physical_ram *= sysconf(_SC_PAGESIZE); #elif defined TORRENT_AMIGA m_physical_ram = AvailMem(MEMF_PUBLIC); #endif #if TORRENT_USE_RLIMIT if (m_physical_ram > 0) { struct rlimit r; if (getrlimit(RLIMIT_AS, &r) == 0 && r.rlim_cur != RLIM_INFINITY) { if (m_physical_ram > r.rlim_cur) m_physical_ram = r.rlim_cur; } } #endif // 1 = forward in list, -1 = backwards in list int elevator_direction = 1; read_jobs_t::iterator elevator_job_pos = m_sorted_read_jobs.begin(); size_type last_elevator_pos = 0; bool need_update_elevator_pos = false; int immediate_jobs_in_row = 0; for (;;) { #ifdef TORRENT_DISK_STATS m_log << log_time() << " idle" << std::endl; #endif TORRENT_ASSERT(m_magic == 0x1337); mutex::scoped_lock jl(m_queue_mutex); if (m_queued_completions.size() >= 30 || (m_jobs.empty() && !m_queued_completions.empty())) { job_queue_t* q = new job_queue_t; q->swap(m_queued_completions); m_ios.post(boost::bind(completion_queue_handler, q)); } ptime job_start; while (m_jobs.empty() && m_sorted_read_jobs.empty() && !m_abort) { // if there hasn't been an event in one second // see if we should flush the cache // if (!m_signal.timed_wait(jl, boost::posix_time::seconds(1))) // flush_expired_pieces(); m_signal.wait(jl); m_signal.clear(jl); job_start = time_now(); if (job_start >= m_last_stats_flip + seconds(1)) flip_stats(job_start); } if (m_abort && m_jobs.empty()) { jl.unlock(); mutex::scoped_lock l(m_piece_mutex); // flush all disk caches cache_piece_index_t& widx = m_pieces.get<0>(); for (cache_piece_index_t::iterator i = widx.begin() , end(widx.end()); i != end; ++i) flush_range(const_cast(*i), 0, INT_MAX, l); #ifdef TORRENT_DISABLE_POOL_ALLOCATOR // since we're aborting the thread, we don't actually // need to free all the blocks individually. We can just // clear the piece list and the memory will be freed when we // destruct the m_pool. If we're not using a pool, we actually // have to free everything individually though cache_piece_index_t& idx = m_read_pieces.get<0>(); for (cache_piece_index_t::iterator i = idx.begin() , end(idx.end()); i != end; ++i) free_piece(const_cast(*i), l); #endif m_pieces.clear(); m_read_pieces.clear(); // release the io_service to allow the run() call to return // we do this once we stop posting new callbacks to it. m_work.reset(); TORRENT_ASSERT(m_magic == 0x1337); return; } disk_io_job j; ptime now = time_now_hires(); ptime operation_start = now; // make sure we don't starve out the read queue by just issuing // write jobs constantly, mix in a read job every now and then // with a configurable ratio // this rate must increase to every other jobs if the queued // up read jobs increases too far. int read_job_every = m_settings.read_job_every; int unchoke_limit = m_settings.unchoke_slots_limit; if (unchoke_limit < 0) unchoke_limit = 100; if (m_sorted_read_jobs.size() > unchoke_limit * 2) { int range = unchoke_limit; int exceed = m_sorted_read_jobs.size() - range * 2; read_job_every = (exceed * 1 + (range - exceed) * read_job_every) / 2; if (read_job_every < 1) read_job_every = 1; } bool pick_read_job = m_jobs.empty() || (immediate_jobs_in_row >= read_job_every && !m_sorted_read_jobs.empty()); if (!pick_read_job) { // we have a job in the job queue. If it's // a read operation and we are allowed to // reorder jobs, sort it into the read job // list and continue, otherwise just pop it // and use it later j = m_jobs.front(); m_jobs.pop_front(); if (j.action == disk_io_job::write) { TORRENT_ASSERT(m_queue_buffer_size >= j.buffer_size); m_queue_buffer_size -= j.buffer_size; if (m_exceeded_write_queue) { int low_watermark = m_settings.max_queued_disk_bytes_low_watermark == 0 || m_settings.max_queued_disk_bytes_low_watermark >= m_settings.max_queued_disk_bytes ? size_type(m_settings.max_queued_disk_bytes) * 7 / 8 : m_settings.max_queued_disk_bytes_low_watermark; if (m_queue_buffer_size < low_watermark || m_settings.max_queued_disk_bytes == 0) { m_exceeded_write_queue = false; // we just dropped below the high watermark of number of bytes // queued for writing to the disk. Notify the session so that it // can trigger all the connections waiting for this event if (m_queue_callback) m_ios.post(m_queue_callback); } } } jl.unlock(); bool defer = false; if (is_read_operation(j)) { defer = true; // at this point the operation we're looking // at is a read operation. If this read operation // can be fully satisfied by the read cache, handle // it immediately if (m_settings.use_read_cache) { #ifdef TORRENT_DISK_STATS m_log << log_time() << " check_cache_hit" << std::endl; #endif // unfortunately we need to lock the cache // if the cache querying function would be // made asyncronous, this would not be // necessary anymore mutex::scoped_lock l(m_piece_mutex); cache_piece_index_t::iterator p = find_cached_piece(m_read_pieces, j, l); cache_piece_index_t& idx = m_read_pieces.get<0>(); // if it's a cache hit, process the job immediately if (p != idx.end() && is_cache_hit(const_cast(*p), j, l)) defer = false; } } if (m_settings.use_disk_read_ahead && defer) { j.storage->hint_read_impl(j.piece, j.offset, j.buffer_size); } TORRENT_ASSERT(j.offset >= 0); if (m_settings.allow_reordered_disk_operations && defer) { #ifdef TORRENT_DISK_STATS m_log << log_time() << " sorting_job" << std::endl; #endif ptime sort_start = time_now_hires(); size_type phys_off = j.storage->physical_offset(j.piece, j.offset); need_update_elevator_pos = need_update_elevator_pos || m_sorted_read_jobs.empty(); m_sorted_read_jobs.insert(std::pair(phys_off, j)); ptime now = time_now_hires(); m_sort_time.add_sample(total_microseconds(now - sort_start)); m_job_time.add_sample(total_microseconds(now - operation_start)); m_cache_stats.cumulative_sort_time += total_milliseconds(now - sort_start); m_cache_stats.cumulative_job_time += total_milliseconds(now - operation_start); continue; } ++immediate_jobs_in_row; } else { // the job queue is empty, pick the next read job // from the sorted job list. So we don't need the // job queue lock anymore jl.unlock(); immediate_jobs_in_row = 0; TORRENT_ASSERT(!m_sorted_read_jobs.empty()); // if m_sorted_read_jobs used to be empty, // we need to update the elevator position if (need_update_elevator_pos) { elevator_job_pos = m_sorted_read_jobs.lower_bound(last_elevator_pos); need_update_elevator_pos = false; } // if we've reached the end, change the elevator direction if (elevator_job_pos == m_sorted_read_jobs.end()) { elevator_direction = -1; --elevator_job_pos; } TORRENT_ASSERT(!m_sorted_read_jobs.empty()); TORRENT_ASSERT(elevator_job_pos != m_sorted_read_jobs.end()); j = elevator_job_pos->second; read_jobs_t::iterator to_erase = elevator_job_pos; // if we've reached the begining of the sorted list, // change the elvator direction if (elevator_job_pos == m_sorted_read_jobs.begin()) elevator_direction = 1; // move the elevator before erasing the job we're processing // to keep the iterator valid if (elevator_direction > 0) ++elevator_job_pos; else --elevator_job_pos; TORRENT_ASSERT(to_erase != elevator_job_pos); last_elevator_pos = to_erase->first; m_sorted_read_jobs.erase(to_erase); } m_queue_time.add_sample(total_microseconds(now - j.start_time)); // if there's a buffer in this job, it will be freed // when this holder is destructed, unless it has been // released. disk_buffer_holder holder(*this , operation_has_buffer(j) ? j.buffer : 0); flush_expired_pieces(); int ret = 0; TORRENT_ASSERT(j.storage || j.action == disk_io_job::abort_thread || j.action == disk_io_job::update_settings); #ifdef TORRENT_DISK_STATS ptime start = time_now(); #endif if (j.cache_min_time < 0) j.cache_min_time = j.cache_min_time == 0 ? m_settings.default_cache_min_age : (std::max)(m_settings.default_cache_min_age, j.cache_min_time); TORRENT_TRY { if (j.storage && j.storage->get_storage_impl()->m_settings == 0) j.storage->get_storage_impl()->m_settings = &m_settings; switch (j.action) { case disk_io_job::update_settings: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " update_settings " << std::endl; #endif TORRENT_ASSERT(j.buffer); session_settings const* s = ((session_settings*)j.buffer); TORRENT_ASSERT(s->cache_size >= -1); TORRENT_ASSERT(s->cache_expiry > 0); #if defined TORRENT_WINDOWS if (m_settings.low_prio_disk != s->low_prio_disk) { m_file_pool.set_low_prio_io(s->low_prio_disk); // we need to close all files, since the prio // only takes affect when files are opened m_file_pool.release(0); } #endif m_settings = *s; delete s; m_file_pool.resize(m_settings.file_pool_size); #if defined __APPLE__ && defined __MACH__ && MAC_OS_X_VERSION_MIN_REQUIRED >= 1050 setiopolicy_np(IOPOL_TYPE_DISK, IOPOL_SCOPE_THREAD , m_settings.low_prio_disk ? IOPOL_THROTTLE : IOPOL_DEFAULT); #elif defined IOPRIO_WHO_PROCESS syscall(ioprio_set, IOPRIO_WHO_PROCESS, getpid(), IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE , m_settings.get_bool(settings_pack::low_prio_disk) ? 7: 0)); #endif if (m_settings.cache_size == -1) { // the cache size is set to automatic. Make it // depend on the amount of physical RAM // if we don't know how much RAM we have, just set the // cache size to 16 MiB (1024 blocks) if (m_physical_ram == 0) m_settings.cache_size = 1024; else m_settings.cache_size = m_physical_ram / 8 / m_block_size; } break; } case disk_io_job::abort_torrent: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " abort_torrent " << std::endl; #endif mutex::scoped_lock jl(m_queue_mutex); for (std::deque::iterator i = m_jobs.begin(); i != m_jobs.end();) { if (i->storage != j.storage) { ++i; continue; } if (should_cancel_on_abort(*i)) { if (i->action == disk_io_job::write) { TORRENT_ASSERT(m_queue_buffer_size >= i->buffer_size); m_queue_buffer_size -= i->buffer_size; } post_callback(*i, -3); i = m_jobs.erase(i); continue; } ++i; } // now clear all the read jobs for (read_jobs_t::iterator i = m_sorted_read_jobs.begin(); i != m_sorted_read_jobs.end();) { if (i->second.storage != j.storage) { ++i; continue; } post_callback(i->second, -3); if (elevator_job_pos == i) ++elevator_job_pos; m_sorted_read_jobs.erase(i++); } jl.unlock(); mutex::scoped_lock l(m_piece_mutex); // build a vector of all the buffers we need to free // and free them all in one go std::vector buffers; for (cache_t::iterator i = m_read_pieces.begin(); i != m_read_pieces.end();) { if (i->storage == j.storage) { drain_piece_bufs(const_cast(*i), buffers, l); i = m_read_pieces.erase(i); } else { ++i; } } l.unlock(); if (!buffers.empty()) free_multiple_buffers(&buffers[0], buffers.size()); release_memory(); break; } case disk_io_job::abort_thread: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " abort_thread " << std::endl; #endif // clear all read jobs mutex::scoped_lock jl(m_queue_mutex); for (std::deque::iterator i = m_jobs.begin(); i != m_jobs.end();) { if (should_cancel_on_abort(*i)) { if (i->action == disk_io_job::write) { TORRENT_ASSERT(m_queue_buffer_size >= i->buffer_size); m_queue_buffer_size -= i->buffer_size; } post_callback(*i, -3); i = m_jobs.erase(i); continue; } ++i; } jl.unlock(); for (read_jobs_t::iterator i = m_sorted_read_jobs.begin(); i != m_sorted_read_jobs.end();) { if (i->second.storage != j.storage) { ++i; continue; } post_callback(i->second, -3); if (elevator_job_pos == i) ++elevator_job_pos; m_sorted_read_jobs.erase(i++); } m_abort = true; break; } case disk_io_job::read_and_hash: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " read_and_hash " << j.buffer_size << std::endl; #endif INVARIANT_CHECK; TORRENT_ASSERT(j.buffer == 0); j.buffer = allocate_buffer("send buffer"); TORRENT_ASSERT(j.buffer_size <= m_block_size); if (j.buffer == 0) { ret = -1; #if BOOST_VERSION == 103500 j.error = error_code(boost::system::posix_error::not_enough_memory , get_posix_category()); #elif BOOST_VERSION > 103500 j.error = error_code(boost::system::errc::not_enough_memory , get_posix_category()); #else j.error = error::no_memory; #endif j.str.clear(); break; } disk_buffer_holder read_holder(*this, j.buffer); // read the entire piece and verify the piece hash // since we need to check the hash, this function // will ignore the cache size limit (at least for // reading and hashing, not for keeping it around) sha1_hash h; ret = read_piece_from_cache_and_hash(j, h); // -2 means there's no space in the read cache // or that the read cache is disabled if (ret == -1) { test_error(j); break; } if (!m_settings.disable_hash_checks) ret = (j.storage->info()->hash_for_piece(j.piece) == h)?ret:-3; if (ret == -3) { j.storage->mark_failed(j.piece); j.error = errors::failed_hash_check; j.str.clear(); j.buffer = 0; break; } TORRENT_ASSERT(j.buffer == read_holder.get()); read_holder.release(); #if TORRENT_DISK_STATS rename_buffer(j.buffer, "released send buffer"); #endif break; } #ifndef TORRENT_NO_DEPRECATE case disk_io_job::finalize_file: break; #endif case disk_io_job::read: { if (test_error(j)) { ret = -1; break; } #ifdef TORRENT_DISK_STATS m_log << log_time(); #endif INVARIANT_CHECK; if (j.buffer == 0) j.buffer = allocate_buffer("send buffer"); TORRENT_ASSERT(j.buffer_size <= m_block_size); if (j.buffer == 0) { #ifdef TORRENT_DISK_STATS m_log << " read 0" << std::endl; #endif ret = -1; #if BOOST_VERSION == 103500 j.error = error_code(boost::system::posix_error::not_enough_memory , get_posix_category()); #elif BOOST_VERSION > 103500 j.error = error_code(boost::system::errc::not_enough_memory , get_posix_category()); #else j.error = error::no_memory; #endif j.str.clear(); break; } disk_buffer_holder read_holder(*this, j.buffer); bool hit; ret = try_read_from_cache(j, hit); #ifdef TORRENT_DISK_STATS m_log << (hit?" read-cache-hit ":" read ") << j.buffer_size << std::endl; #endif // -2 means there's no space in the read cache // or that the read cache is disabled if (ret == -1) { j.buffer = 0; test_error(j); break; } else if (ret == -2) { file::iovec_t b = { j.buffer, size_t(j.buffer_size) }; ret = j.storage->read_impl(&b, j.piece, j.offset, 1); if (ret < 0) { test_error(j); break; } if (ret != j.buffer_size) { char msg[70]; snprintf(msg, sizeof(msg), "reading p: %d o: %d s: %d (read: %d)", j.piece, j.offset, j.buffer_size, ret); // this means the file wasn't big enough for this read j.buffer = 0; j.error = errors::file_too_short; j.error_file = msg; j.str.clear(); ret = -1; break; } ++m_cache_stats.blocks_read; hit = false; } if (!hit) { ptime now = time_now_hires(); m_read_time.add_sample(total_microseconds(now - operation_start)); m_cache_stats.cumulative_read_time += total_milliseconds(now - operation_start); } TORRENT_ASSERT(j.buffer == read_holder.get()); read_holder.release(); #if TORRENT_DISK_STATS rename_buffer(j.buffer, "released send buffer"); #endif break; } case disk_io_job::write: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " write " << j.buffer_size << std::endl; #endif mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; TORRENT_ASSERT(!j.storage->error()); TORRENT_ASSERT(j.cache_min_time >= 0); if (in_use() >= m_settings.cache_size) { flush_cache_blocks(l, in_use() - m_settings.cache_size + 1); if (test_error(j)) break; } TORRENT_ASSERT(!j.storage->error()); cache_piece_index_t& idx = m_pieces.get<0>(); cache_piece_index_t::iterator p = find_cached_piece(m_pieces, j, l); int block = j.offset / m_block_size; TORRENT_ASSERT(j.buffer); TORRENT_ASSERT(j.buffer_size <= m_block_size); int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; if (p != idx.end()) { bool recalc_contiguous = false; TORRENT_ASSERT(p->blocks[block].buf == 0); if (p->blocks[block].buf) { free_buffer(p->blocks[block].buf); --m_cache_stats.cache_size; --const_cast(*p).num_blocks; } else if ((block > 0 && p->blocks[block-1].buf) || (block < blocks_in_piece-1 && p->blocks[block+1].buf) || p->num_blocks == 0) { // update the contiguous blocks counter for this piece. Only if it has // an adjacent block. If it doesn't, we already know it couldn't have // increased the largest contiguous block span in this piece recalc_contiguous = true; } p->blocks[block].buf = j.buffer; p->blocks[block].callback.swap(j.callback); #ifdef TORRENT_DISK_STATS rename_buffer(j.buffer, "write cache"); #endif ++m_cache_stats.cache_size; ++const_cast(*p).num_blocks; if (recalc_contiguous) { const_cast(*p).num_contiguous_blocks = contiguous_blocks(*p); } idx.modify(p, update_last_use(j.cache_min_time)); // we might just have created a contiguous range // that meets the requirement to be flushed. try it // if we're in avoid_readback mode, don't do this. Only flush // pieces when we need more space in the cache (which will avoid // flushing blocks out-of-order) or when we issue a hash job, // wich indicates the piece is completely downloaded flush_contiguous_blocks(const_cast(*p) , l, m_settings.write_cache_line_size , m_settings.disk_cache_algorithm == session_settings::avoid_readback); if (p->num_blocks == 0 && p->next_block_to_hash == 0) idx.erase(p); test_error(j); TORRENT_ASSERT(!j.storage->error()); } else { TORRENT_ASSERT(!j.storage->error()); if (cache_block(j, j.callback, j.cache_min_time, l) < 0) { l.unlock(); ptime start = time_now_hires(); file::iovec_t iov = {j.buffer, size_t(j.buffer_size) }; ret = j.storage->write_impl(&iov, j.piece, j.offset, 1); l.lock(); if (ret < 0) { test_error(j); break; } ptime done = time_now_hires(); m_write_time.add_sample(total_microseconds(done - start)); m_cache_stats.cumulative_write_time += total_milliseconds(done - start); // we successfully wrote the block. Ignore previous errors j.storage->clear_error(); break; } TORRENT_ASSERT(!j.storage->error()); } // we've now inserted the buffer // in the cache, we should not // free it at the end holder.release(); if (in_use() > m_settings.cache_size) { flush_cache_blocks(l, in_use() - m_settings.cache_size); test_error(j); } TORRENT_ASSERT(!j.storage->error()); break; } case disk_io_job::cache_piece: { mutex::scoped_lock l(m_piece_mutex); if (test_error(j)) { ret = -1; break; } #ifdef TORRENT_DISK_STATS m_log << log_time() << " cache " << j.piece << std::endl; #endif INVARIANT_CHECK; TORRENT_ASSERT(j.buffer == 0); cache_piece_index_t::iterator p; bool hit; ret = cache_piece(j, p, hit, 0, l); if (ret == -2) ret = -1; if (ret < 0) test_error(j); break; } case disk_io_job::hash: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " hash" << std::endl; #endif TORRENT_ASSERT(!j.storage->error()); mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; cache_piece_index_t& idx = m_pieces.get<0>(); cache_piece_index_t::iterator i = find_cached_piece(m_pieces, j, l); if (i != idx.end()) { TORRENT_ASSERT(i->storage); ret = flush_range(const_cast(*i), 0, INT_MAX, l); idx.erase(i); if (test_error(j)) { ret = -1; j.storage->mark_failed(j.piece); break; } } l.unlock(); if (m_settings.disable_hash_checks) { ret = 0; break; } ptime hash_start = time_now_hires(); int readback = 0; sha1_hash h = j.storage->hash_for_piece_impl(j.piece, &readback); if (test_error(j)) { ret = -1; j.storage->mark_failed(j.piece); break; } m_cache_stats.total_read_back += readback / m_block_size; ret = (j.storage->info()->hash_for_piece(j.piece) == h)?0:-2; if (ret == -2) j.storage->mark_failed(j.piece); ptime done = time_now_hires(); m_hash_time.add_sample(total_microseconds(done - hash_start)); m_cache_stats.cumulative_hash_time += total_milliseconds(done - hash_start); break; } case disk_io_job::move_storage: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " move" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); ret = j.storage->move_storage_impl(j.str, j.piece); if (ret == piece_manager::file_exist) { j.error = error_code(boost::system::errc::file_exists, get_system_category()); j.error_file = -1; j.buffer = NULL; break; } if (ret != piece_manager::no_error && ret != piece_manager::need_full_check) { test_error(j); break; } j.str = j.storage->save_path(); break; } case disk_io_job::release_files: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " release" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; for (cache_t::iterator i = m_pieces.begin(); i != m_pieces.end();) { if (i->storage == j.storage) { flush_range(const_cast(*i), 0, INT_MAX, l); i = m_pieces.erase(i); } else { ++i; } } l.unlock(); release_memory(); ret = j.storage->release_files_impl(); if (ret != 0) test_error(j); break; } case disk_io_job::clear_read_cache: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " clear-cache" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; for (cache_t::iterator i = m_read_pieces.begin(); i != m_read_pieces.end();) { if (i->storage == j.storage) { free_piece(const_cast(*i), l); i = m_read_pieces.erase(i); } else { ++i; } } l.unlock(); release_memory(); ret = 0; break; } case disk_io_job::delete_files: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " delete" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; // delete all write cache entries for this storage cache_piece_index_t& idx = m_pieces.get<0>(); cache_piece_index_t::iterator start = idx.lower_bound(std::pair(j.storage.get(), 0)); cache_piece_index_t::iterator end = idx.upper_bound(std::pair(j.storage.get(), INT_MAX)); // build a vector of all the buffers we need to free // and free them all in one go std::vector buffers; torrent_info const& ti = *j.storage->info(); for (cache_piece_index_t::iterator i = start; i != end; ++i) { int blocks_in_piece = (ti.piece_size(i->piece) + m_block_size - 1) / m_block_size; cached_piece_entry& e = const_cast(*i); for (int j = 0; j < blocks_in_piece; ++j) { if (i->blocks[j].buf == 0) continue; buffers.push_back(i->blocks[j].buf); i->blocks[j].buf = 0; --m_cache_stats.cache_size; TORRENT_ASSERT(e.num_blocks > 0); --e.num_blocks; } TORRENT_ASSERT(i->num_blocks == 0); } idx.erase(start, end); l.unlock(); if (!buffers.empty()) free_multiple_buffers(&buffers[0], buffers.size()); release_memory(); ret = j.storage->delete_files_impl(); if (ret != 0) test_error(j); break; } case disk_io_job::check_fastresume: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " check_fastresume" << std::endl; #endif lazy_entry const* rd = (lazy_entry const*)j.buffer; TORRENT_ASSERT(rd != 0); ret = j.storage->check_fastresume(*rd, j.error); test_error(j); break; } case disk_io_job::check_files: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " check_files" << std::endl; #endif int piece_size = j.storage->info()->piece_length(); for (int processed = 0; processed < 4 * 1024 * 1024; processed += piece_size) { ptime now = time_now_hires(); TORRENT_ASSERT(now >= m_last_file_check); // this happens sometimes on windows for some reason if (now < m_last_file_check) now = m_last_file_check; #if BOOST_VERSION > 103600 if (now - m_last_file_check < milliseconds(m_settings.file_checks_delay_per_block)) { int sleep_time = m_settings.file_checks_delay_per_block * (piece_size / (16 * 1024)) - total_milliseconds(now - m_last_file_check); if (sleep_time < 0) sleep_time = 0; TORRENT_ASSERT(sleep_time < 5 * 1000); sleep(sleep_time); } m_last_file_check = time_now_hires(); #endif ptime hash_start = time_now_hires(); if (m_waiting_to_shutdown) break; ret = j.storage->check_files(j.piece, j.offset, j.error); ptime done = time_now_hires(); m_hash_time.add_sample(total_microseconds(done - hash_start)); m_cache_stats.cumulative_hash_time += total_milliseconds(done - hash_start); TORRENT_TRY { TORRENT_ASSERT(j.callback); if (j.callback && ret == piece_manager::need_full_check) post_callback(j, ret); } TORRENT_CATCH(std::exception&) {} if (ret != piece_manager::need_full_check) break; } if (test_error(j)) { ret = piece_manager::fatal_disk_error; break; } TORRENT_ASSERT(ret != -2 || j.error); // if the check is not done, add it at the end of the job queue if (ret == piece_manager::need_full_check) { // offset needs to be reset to 0 so that the disk // job sorting can be done correctly j.offset = 0; add_job(j, j.callback); continue; } break; } case disk_io_job::save_resume_data: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " save_resume_data" << std::endl; #endif j.resume_data.reset(new entry(entry::dictionary_t)); j.storage->write_resume_data(*j.resume_data); ret = 0; break; } case disk_io_job::rename_file: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " rename_file" << std::endl; #endif ret = j.storage->rename_file_impl(j.piece, j.str); if (ret != 0) { test_error(j); } break; } case disk_io_job::file_priority: { std::vector* p = reinterpret_cast*>(j.buffer); j.storage->set_file_priority_impl(*p); delete p; ret = 0; break; } } } TORRENT_CATCH(std::exception& e) { TORRENT_DECLARE_DUMMY(std::exception, e); ret = -1; TORRENT_TRY { j.str = e.what(); } TORRENT_CATCH(std::exception&) {} } TORRENT_ASSERT(!j.storage || !j.storage->error()); ptime done = time_now_hires(); m_job_time.add_sample(total_microseconds(done - operation_start)); m_cache_stats.cumulative_job_time += total_milliseconds(done - operation_start); // if (!j.callback) std::cerr << "DISK THREAD: no callback specified" << std::endl; // else std::cerr << "DISK THREAD: invoking callback" << std::endl; TORRENT_TRY { TORRENT_ASSERT(ret != -2 || j.error || j.action == disk_io_job::hash); #if TORRENT_DISK_STATS if ((j.action == disk_io_job::read || j.action == disk_io_job::read_and_hash) && j.buffer != 0) rename_buffer(j.buffer, "posted send buffer"); #endif post_callback(j, ret); } TORRENT_CATCH(std::exception&) { TORRENT_ASSERT(false); } } TORRENT_ASSERT(false); } }