/* Copyright (c) 2006-2014, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include // std::distance() #include // std::copy, std::remove_copy_if #include #include #include #include #include "libtorrent/kademlia/routing_table.hpp" #include "libtorrent/broadcast_socket.hpp" // for cidr_distance #include "libtorrent/session_status.hpp" #include "libtorrent/kademlia/node_id.hpp" #include "libtorrent/time.hpp" #include "libtorrent/invariant_check.hpp" using boost::uint8_t; #if BOOST_VERSION <= 104700 namespace boost { size_t hash_value(libtorrent::address_v4::bytes_type ip) { return boost::hash_value(*reinterpret_cast(&ip[0])); } } #endif namespace libtorrent { namespace dht { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_DEFINE_LOG(table) #endif template void erase_one(T& container, K const& key) { typename T::iterator i = container.find(key); TORRENT_ASSERT(i != container.end()); container.erase(i); } routing_table::routing_table(node_id const& id, int bucket_size , dht_settings const& settings) : m_settings(settings) , m_id(id) , m_depth(0) , m_last_bootstrap(time_now()) , m_last_refresh(min_time()) , m_last_self_refresh(min_time()) , m_bucket_size(bucket_size) { m_buckets.reserve(30); } int routing_table::bucket_limit(int bucket) const { if (!m_settings.extended_routing_table) return m_bucket_size; const static int size_exceptions[] = {16, 8, 4, 2}; if (bucket < int(sizeof(size_exceptions)/sizeof(size_exceptions[0]))) return m_bucket_size * size_exceptions[bucket]; return m_bucket_size; } void routing_table::status(session_status& s) const { boost::tie(s.dht_nodes, s.dht_node_cache) = size(); s.dht_global_nodes = num_global_nodes(); for (table_t::const_iterator i = m_buckets.begin() , end(m_buckets.end()); i != end; ++i) { dht_routing_bucket b; b.num_nodes = i->live_nodes.size(); b.num_replacements = i->replacements.size(); #ifndef TORRENT_NO_DEPRECATE b.last_active = 0; #endif s.dht_routing_table.push_back(b); } } boost::tuple routing_table::size() const { int nodes = 0; int replacements = 0; for (table_t::const_iterator i = m_buckets.begin() , end(m_buckets.end()); i != end; ++i) { nodes += i->live_nodes.size(); replacements += i->replacements.size(); } return boost::make_tuple(nodes, replacements); } size_type routing_table::num_global_nodes() const { int deepest_bucket = 0; int deepest_size = 0; for (table_t::const_iterator i = m_buckets.begin() , end(m_buckets.end()); i != end; ++i) { deepest_size = i->live_nodes.size(); // + i->replacements.size(); if (deepest_size < m_bucket_size) break; // this bucket is full ++deepest_bucket; } if (deepest_bucket == 0) return 1 + deepest_size; if (deepest_size < m_bucket_size / 2) return (size_type(1) << deepest_bucket) * m_bucket_size; else return (size_type(2) << deepest_bucket) * deepest_size; } int routing_table::depth() const { if (m_depth >= int(m_buckets.size())) m_depth = m_buckets.size() - 1; if (m_depth < 0) return m_depth; // maybe the table is deeper now? while (m_depth < int(m_buckets.size())-1 && int(m_buckets[m_depth+1].live_nodes.size()) >= m_bucket_size / 2) { ++m_depth; } // maybe the table is more shallow now? while (m_depth > 0 && int(m_buckets[m_depth-1].live_nodes.size()) < m_bucket_size / 2) { --m_depth; } return m_depth; } #if (defined TORRENT_DHT_VERBOSE_LOGGING || defined TORRENT_DEBUG) && TORRENT_USE_IOSTREAM void routing_table::print_state(std::ostream& os) const { os << "kademlia routing table state\n" << "bucket_size: " << m_bucket_size << "\n" << "global node count: " << num_global_nodes() << "\n" << "node_id: " << m_id << "\n\n"; os << "number of nodes per bucket:\n"; int idx = 0; for (table_t::const_iterator i = m_buckets.begin(), end(m_buckets.end()); i != end; ++i, ++idx) { os << std::setw(2) << idx << ": "; for (int k = 0; k < int(i->live_nodes.size()); ++k) os << "#"; for (int k = 0; k < int(i->replacements.size()); ++k) os << "-"; os << "\n"; } ptime now = time_now(); os << "\nnodes:"; int bucket_index = 0; for (table_t::const_iterator i = m_buckets.begin(), end(m_buckets.end()); i != end; ++i, ++bucket_index) { os << "\n=== BUCKET == " << bucket_index << " == " << i->live_nodes.size() << "|" << i->replacements.size() << " ===== \n"; int id_shift; // the last bucket is special, since it hasn't been split yet, it // includes that top bit as well if (bucket_index + 1 == m_buckets.size()) id_shift = bucket_index; else id_shift = bucket_index + 1; for (bucket_t::const_iterator j = i->live_nodes.begin() , end(i->live_nodes.end()); j != end; ++j) { int bucket_size_limit = bucket_limit(bucket_index); boost::uint32_t top_mask = bucket_size_limit - 1; int mask_shift = 0; TORRENT_ASSERT_VAL(bucket_size_limit > 0, bucket_size_limit); while ((top_mask & 0x80) == 0) { top_mask <<= 1; ++mask_shift; } top_mask = (0xff << mask_shift) & 0xff; node_id id = j->id; id <<= id_shift; os << " prefx: " << std::setw(2) << std::hex << ((id[0] & top_mask) >> mask_shift) << std::dec << " id: " << j->id; if (j->rtt == 0xffff) os << " rtt: "; else os << " rtt: " << std::setw(4) << j->rtt; os << " fail: " << j->fail_count() << " ping: " << j->pinged() << " dist: " << std::setw(3) << distance_exp(m_id, j->id); if (j->last_queried == min_time()) os << " query: "; else os << " query: " << std::setw(3) << total_seconds(now - j->last_queried); os << " ip: " << j->ep() << "\n"; } } os << "\nnode spread per bucket:\n"; bucket_index = 0; for (table_t::const_iterator i = m_buckets.begin(), end(m_buckets.end()); i != end; ++i, ++bucket_index) { int bucket_size_limit = bucket_limit(bucket_index); // mask out the first 3 bits, or more depending // on the bucket_size_limit // we have all the lower bits set in (bucket_size_limit-1) // but we want the left-most bits to be set. Shift it // until the MSB is set boost::uint32_t top_mask = bucket_size_limit - 1; int mask_shift = 0; TORRENT_ASSERT_VAL(bucket_size_limit > 0, bucket_size_limit); while ((top_mask & 0x80) == 0) { top_mask <<= 1; ++mask_shift; } top_mask = (0xff << mask_shift) & 0xff; bucket_size_limit = (top_mask >> mask_shift) + 1; TORRENT_ASSERT_VAL(bucket_size_limit <= 256, bucket_size_limit); bool sub_buckets[256]; memset(sub_buckets, 0, sizeof(sub_buckets)); int id_shift; // the last bucket is special, since it hasn't been split yet, it // includes that top bit as well if (bucket_index + 1 == m_buckets.size()) id_shift = bucket_index; else id_shift = bucket_index + 1; for (bucket_t::const_iterator j = i->live_nodes.begin() , end(i->live_nodes.end()); j != end; ++j) { node_id id = j->id; id <<= id_shift; int b = (id[0] & top_mask) >> mask_shift; TORRENT_ASSERT(b >= 0 && b < int(sizeof(sub_buckets)/sizeof(sub_buckets[0]))); sub_buckets[b] = true; } os << std::dec << std::setw(2) << bucket_index << " mask: " << std::setw(2) << std::hex << (top_mask >> mask_shift) << ": ["; for (int i = 0; i < bucket_size_limit; ++i) os << (sub_buckets[i] ? "X" : " "); os << "]\n"; } } #endif node_entry const* routing_table::next_refresh() { // find the node with the least recent 'last_queried' field. if it's too // recent, return false. Otherwise return a random target ID that's close to // a missing prefix for that bucket node_entry* candidate = NULL; int bucket_idx = -1; // this will have a bias towards pinging nodes close to us first. int idx = m_buckets.size() - 1; for (table_t::reverse_iterator i = m_buckets.rbegin() , end(m_buckets.rend()); i != end; ++i, --idx) { for (bucket_t::iterator j = i->live_nodes.begin() , end(i->live_nodes.end()); j != end; ++j) { if (j->last_queried == min_time()) { bucket_idx = idx; candidate = &*j; goto out; } if (candidate == NULL || j->last_queried < candidate->last_queried) { candidate = &*j; bucket_idx = idx; } } } out: // make sure we don't pick the same node again next time we want to refresh // the routing table if (candidate) candidate->last_queried = time_now(); return candidate; } void routing_table::replacement_cache(bucket_t& nodes) const { for (table_t::const_iterator i = m_buckets.begin() , end(m_buckets.end()); i != end; ++i) { std::copy(i->replacements.begin(), i->replacements.end() , std::back_inserter(nodes)); } } routing_table::table_t::iterator routing_table::find_bucket(node_id const& id) { // TORRENT_ASSERT(id != m_id); int num_buckets = m_buckets.size(); if (num_buckets == 0) { m_buckets.push_back(routing_table_node()); ++num_buckets; } int bucket_index = (std::min)(159 - distance_exp(m_id, id), num_buckets - 1); TORRENT_ASSERT(bucket_index < int(m_buckets.size())); TORRENT_ASSERT(bucket_index >= 0); table_t::iterator i = m_buckets.begin(); std::advance(i, bucket_index); return i; } bool compare_ip_cidr(node_entry const& lhs, node_entry const& rhs) { TORRENT_ASSERT(lhs.addr().is_v4() == rhs.addr().is_v4()); // the number of bits in the IPs that may match. If // more bits that this matches, something suspicious is // going on and we shouldn't add the second one to our // routing table int cutoff = rhs.addr().is_v4() ? 8 : 64; int dist = cidr_distance(lhs.addr(), rhs.addr()); return dist <= cutoff; } node_entry* routing_table::find_node(udp::endpoint const& ep , routing_table::table_t::iterator* bucket) { for (table_t::iterator i = m_buckets.begin() , end(m_buckets.end()); i != end; ++i) { for (bucket_t::iterator j = i->replacements.begin(); j != i->replacements.end(); ++j) { if (j->addr() != ep.address()) continue; if (j->port() != ep.port()) continue; *bucket = i; return &*j; } for (bucket_t::iterator j = i->live_nodes.begin(); j != i->live_nodes.end(); ++j) { if (j->addr() != ep.address()) continue; if (j->port() != ep.port()) continue; *bucket = i; return &*j; } } *bucket = m_buckets.end(); return 0; } void routing_table::remove_node(node_entry* n , routing_table::table_t::iterator bucket) { INVARIANT_CHECK; if (!bucket->replacements.empty() && n >= &bucket->replacements[0] && n < &bucket->replacements[0] + bucket->replacements.size()) { int idx = n - &bucket->replacements[0]; TORRENT_ASSERT(m_ips.count(n->a) > 0); erase_one(m_ips, n->a); bucket->replacements.erase(bucket->replacements.begin() + idx); } if (!bucket->live_nodes.empty() && n >= &bucket->live_nodes[0] && n < &bucket->live_nodes[0] + bucket->live_nodes.size()) { int idx = n - &bucket->live_nodes[0]; TORRENT_ASSERT(m_ips.count(n->a) > 0); erase_one(m_ips, n->a); bucket->live_nodes.erase(bucket->live_nodes.begin() + idx); } } bool routing_table::add_node(node_entry e) { INVARIANT_CHECK; // if we already have this (IP,port), don't do anything if (m_router_nodes.find(e.ep()) != m_router_nodes.end()) return false; bool ret = need_bootstrap(); // don't add ourself if (e.id == m_id) return ret; // do we already have this IP in the table? if (m_ips.count(e.addr().to_v4().to_bytes()) > 0) { // this exact IP already exists in the table. It might be the case // that the node changed IP. If pinged is true, and the port also // matches then we assume it's in fact the same node, and just update // the routing table // pinged means that we have sent a message to the IP, port and received // a response with a correct transaction ID, i.e. it is verified to not // be the result of a poisoned routing table table_t::iterator existing_bucket; node_entry* existing = find_node(e.ep(), &existing_bucket); if (!e.pinged() || existing == 0) { // the new node is not pinged, or it's not an existing node // we should ignore it, unless we allow duplicate IPs in our // routing table if (m_settings.restrict_routing_ips) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(table) << "ignoring node (duplicate IP): " << e.id << " " << e.addr(); #endif return ret; } } else if (existing && existing->id == e.id) { // if the node ID is the same, just update the failcount // and be done with it existing->timeout_count = 0; existing->update_rtt(e.rtt); existing->last_queried = e.last_queried; return ret; } else if (existing) { TORRENT_ASSERT(existing->id != e.id); // this is the same IP and port, but with // a new node ID. remove the old entry and // replace it with this new ID remove_node(existing, existing_bucket); } } table_t::iterator i = find_bucket(e.id); bucket_t& b = i->live_nodes; bucket_t& rb = i->replacements; int bucket_index = std::distance(m_buckets.begin(), i); int bucket_size_limit = bucket_limit(bucket_index); bucket_t::iterator j; // if the node already exists, we don't need it j = std::find_if(b.begin(), b.end() , boost::bind(&node_entry::id, _1) == e.id); if (j != b.end()) { // a new IP address just claimed this node-ID // ignore it if (j->addr() != e.addr() || j->port() != e.port()) return ret; // we already have the node in our bucket TORRENT_ASSERT(j->id == e.id && j->ep() == e.ep()); j->timeout_count = 0; j->update_rtt(e.rtt); // TORRENT_LOG(table) << "updating node: " << i->id << " " << i->addr(); return ret; } // if this node exists in the replacement bucket. update it and // pull it out from there. We may add it back to the replacement // bucket, but we may also replace a node in the main bucket, now // that we have an updated RTT j = std::find_if(rb.begin(), rb.end(), boost::bind(&node_entry::id, _1) == e.id); if (j != rb.end()) { // a new IP address just claimed this node-ID // ignore it if (j->addr() != e.addr() || j->port() != e.port()) return ret; TORRENT_ASSERT(j->id == e.id && j->ep() == e.ep()); j->timeout_count = 0; j->update_rtt(e.rtt); e = *j; erase_one(m_ips, j->addr().to_v4().to_bytes()); rb.erase(j); } if (m_settings.restrict_routing_ips) { // don't allow multiple entries from IPs very close to each other j = std::find_if(b.begin(), b.end(), boost::bind(&compare_ip_cidr, _1, e)); if (j != b.end()) { // we already have a node in this bucket with an IP very // close to this one. We know that it's not the same, because // it claims a different node-ID. Ignore this to avoid attacks #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(table) << "ignoring node: " << e.id << " " << e.addr() << " existing node: " << j->id << " " << j->addr(); #endif return ret; } j = std::find_if(rb.begin(), rb.end(), boost::bind(&compare_ip_cidr, _1, e)); if (j != rb.end()) { // same thing but for the replacement bucket #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(table) << "ignoring (replacement) node: " << e.id << " " << e.addr() << " existing node: " << j->id << " " << j->addr(); #endif return ret; } } // if there's room in the main bucket, just insert it if (int(b.size()) < bucket_size_limit) { if (b.empty()) b.reserve(bucket_size_limit); b.push_back(e); m_ips.insert(e.addr().to_v4().to_bytes()); // TORRENT_LOG(table) << "inserting node: " << e.id << " " << e.addr(); return ret; } // if there is no room, we look for nodes that are not 'pinged', // i.e. we haven't confirmed that they respond to messages. // Then we look for nodes marked as stale // in the k-bucket. If we find one, we can replace it. // then we look for nodes with the same 3 bit prefix (or however // many bits prefix the bucket size warrants). If there is no other // node with this prefix, remove the duplicate with the highest RTT. // as the last replacement strategy, if the node we found matching our // bit prefix has higher RTT than the new node, replace it. // can we split the bucket? // only nodes that haven't failed can split the bucket, and we can only // split the last bucket bool can_split = (boost::next(i) == m_buckets.end() && m_buckets.size() < 159) && e.fail_count() == 0; if (e.pinged() && e.fail_count() == 0) { // if the node we're trying to insert is considered pinged, // we may replace other nodes that aren't pinged j = std::find_if(b.begin(), b.end(), boost::bind(&node_entry::pinged, _1) == false); if (j != b.end() && !j->pinged()) { // j points to a node that has not been pinged. // Replace it with this new one erase_one(m_ips, j->addr().to_v4().to_bytes()); *j = e; m_ips.insert(e.addr().to_v4().to_bytes()); // TORRENT_LOG(table) << "replacing unpinged node: " << e.id << " " << e.addr(); return ret; } // A node is considered stale if it has failed at least one // time. Here we choose the node that has failed most times. // If we don't find one, place this node in the replacement- // cache and replace any nodes that will fail in the future // with nodes from that cache. j = std::max_element(b.begin(), b.end() , boost::bind(&node_entry::fail_count, _1) < boost::bind(&node_entry::fail_count, _2)); TORRENT_ASSERT(j != b.end()); if (j->fail_count() > 0) { // i points to a node that has been marked // as stale. Replace it with this new one erase_one(m_ips, j->addr().to_v4().to_bytes()); *j = e; m_ips.insert(e.addr().to_v4().to_bytes()); // TORRENT_LOG(table) << "replacing stale node: " << e.id << " " << e.addr(); return ret; } // in order to provide as few lookups as possible before finding // the data someone is looking for, make sure there is an affinity // towards having a good spread of node IDs in each bucket boost::uint32_t mask = bucket_size_limit - 1; int mask_shift = 0; TORRENT_ASSERT_VAL(mask > 0, mask); while ((mask & 0x80) == 0) { mask <<= 1; ++mask_shift; } // in case bucket_size_limit is not an even power of 2 mask = (0xff << mask_shift) & 0xff; node_id id = e.id; // the last bucket is special, since it hasn't been split yet, it // includes that top bit as well if (bucket_index + 1 == m_buckets.size()) id <<= bucket_index; else id <<= bucket_index + 1; // pick out all nodes that have the same prefix as the new node std::vector nodes; bool force_replace = false; for (j = b.begin(); j != b.end(); ++j) { if (!matching_prefix(*j, mask, id[0] & mask, bucket_index)) continue; nodes.push_back(j); } if (!nodes.empty()) { j = *std::max_element(nodes.begin(), nodes.end() , boost::bind(&node_entry::rtt, boost::bind(&bucket_t::iterator::operator*, _1)) < boost::bind(&node_entry::rtt, boost::bind(&bucket_t::iterator::operator*, _2))); } else { // there is no node in this prefix-slot, there may be some // nodes sharing a prefix. Find all nodes that do not // have a unique prefix // find node entries with duplicate prefixes in O(1) std::vector prefix(1 << (8 - mask_shift), b.end()); TORRENT_ASSERT(int(prefix.size()) >= bucket_size_limit); // the begin iterator from this object is used as a placeholder // for an occupied slot whose node has already been added to the // duplicate nodes list. bucket_t placeholder; nodes.reserve(b.size()); for (j = b.begin(); j != b.end(); ++j) { node_id id = j->id; id <<= bucket_index + 1; int this_prefix = (id[0] & mask) >> mask_shift; TORRENT_ASSERT(this_prefix >= 0); TORRENT_ASSERT(this_prefix < int(prefix.size())); if (prefix[this_prefix] != b.end()) { // there's already a node with this prefix. Remember both // duplicates. nodes.push_back(j); if (prefix[this_prefix] != placeholder.begin()) { nodes.push_back(prefix[this_prefix]); prefix[this_prefix] = placeholder.begin(); } } } if (!nodes.empty()) { // from these nodes, pick the one with the highest RTT // and replace it std::vector::iterator k = std::max_element(nodes.begin(), nodes.end() , boost::bind(&node_entry::rtt, boost::bind(&bucket_t::iterator::operator*, _1)) < boost::bind(&node_entry::rtt, boost::bind(&bucket_t::iterator::operator*, _2))); // in this case, we would really rather replace the node even if // the new node has higher RTT, becase it fills a new prefix that we otherwise // don't have. force_replace = true; j = *k; } else { j = std::max_element(b.begin(), b.end() , boost::bind(&node_entry::rtt, _1) < boost::bind(&node_entry::rtt, _2)); } } if (j != b.end() && (force_replace || j->rtt > e.rtt)) { erase_one(m_ips, j->addr().to_v4().to_bytes()); *j = e; m_ips.insert(e.addr().to_v4().to_bytes()); #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(table) << "replacing node with higher RTT: " << e.id << " " << e.addr(); #endif return ret; } // in order to keep lookup times small, prefer nodes with low RTTs } // if we can't split, try to insert into the replacement bucket if (!can_split) { // if we don't have any identified stale nodes in // the bucket, and the bucket is full, we have to // cache this node and wait until some node fails // and then replace it. j = std::find_if(rb.begin(), rb.end() , boost::bind(&node_entry::id, _1) == e.id); // if the node is already in the replacement bucket // just return. if (j != rb.end()) { // if the IP address matches, it's the same node // make sure it's marked as pinged if (j->ep() == e.ep()) j->set_pinged(); return ret; } if ((int)rb.size() >= m_bucket_size) { // if the replacement bucket is full, remove the oldest entry // but prefer nodes that haven't been pinged, since they are // less reliable than this one, that has been pinged j = std::find_if(rb.begin(), rb.end(), boost::bind(&node_entry::pinged, _1) == false); if (j == rb.end()) j = rb.begin(); erase_one(m_ips, j->addr().to_v4().to_bytes()); rb.erase(j); } if (rb.empty()) rb.reserve(m_bucket_size); rb.push_back(e); m_ips.insert(e.addr().to_v4().to_bytes()); // TORRENT_LOG(table) << "inserting node in replacement cache: " << e.id << " " << e.addr(); return ret; } split_bucket(); // now insert the new node in the appropriate bucket i = find_bucket(e.id); int dst_bucket = std::distance(m_buckets.begin(), i); bucket_t& nb = i->live_nodes; bucket_t& nrb = i->replacements; if (int(nb.size()) < bucket_limit(dst_bucket)) nb.push_back(e); else if (int(nrb.size()) < m_bucket_size) nrb.push_back(e); else nb.push_back(e); // trigger another split m_ips.insert(e.addr().to_v4().to_bytes()); while (int(m_buckets.back().live_nodes.size()) > bucket_limit(m_buckets.size() - 1)) split_bucket(); return ret; } void routing_table::split_bucket() { INVARIANT_CHECK; int bucket_index = m_buckets.size()-1; int bucket_size_limit = bucket_limit(bucket_index); TORRENT_ASSERT(int(m_buckets.back().live_nodes.size()) >= bucket_size_limit); // this is the last bucket, and it's full already. Split // it by adding another bucket m_buckets.push_back(routing_table_node()); bucket_t& new_bucket = m_buckets.back().live_nodes; bucket_t& new_replacement_bucket = m_buckets.back().replacements; bucket_t& b = m_buckets[bucket_index].live_nodes; bucket_t& rb = m_buckets[bucket_index].replacements; // move any node whose (160 - distane_exp(m_id, id)) >= (i - m_buckets.begin()) // to the new bucket int new_bucket_size = bucket_limit(bucket_index + 1); for (bucket_t::iterator j = b.begin(); j != b.end();) { if (distance_exp(m_id, j->id) >= 159 - bucket_index) { ++j; continue; } // this entry belongs in the new bucket new_bucket.push_back(*j); j = b.erase(j); } // split the replacement bucket as well. If the live bucket // is not full anymore, also move the replacement entries // into the main bucket for (bucket_t::iterator j = rb.begin(); j != rb.end();) { if (distance_exp(m_id, j->id) >= 159 - bucket_index) { if (int(b.size()) >= bucket_size_limit) { ++j; continue; } b.push_back(*j); } else { // this entry belongs in the new bucket if (int(new_bucket.size()) < new_bucket_size) new_bucket.push_back(*j); else if (int(new_replacement_bucket.size()) < m_bucket_size) new_replacement_bucket.push_back(*j); else erase_one(m_ips, j->addr().to_v4().to_bytes()); } j = rb.erase(j); } } void routing_table::for_each_node( void (*fun1)(void*, node_entry const&) , void (*fun2)(void*, node_entry const&) , void* userdata) const { for (table_t::const_iterator i = m_buckets.begin() , end(m_buckets.end()); i != end; ++i) { if (fun1) { for (bucket_t::const_iterator j = i->live_nodes.begin() , end(i->live_nodes.end()); j != end; ++j) fun1(userdata, *j); } if (fun2) { for (bucket_t::const_iterator j = i->replacements.begin() , end(i->replacements.end()); j != end; ++j) fun2(userdata, *j); } } } void routing_table::node_failed(node_id const& nid, udp::endpoint const& ep) { INVARIANT_CHECK; // if messages to ourself fails, ignore it if (nid == m_id) return; table_t::iterator i = find_bucket(nid); bucket_t& b = i->live_nodes; bucket_t& rb = i->replacements; bucket_t::iterator j = std::find_if(b.begin(), b.end() , boost::bind(&node_entry::id, _1) == nid); if (j == b.end()) { j = std::find_if(rb.begin(), rb.end() , boost::bind(&node_entry::id, _1) == nid); if (j == rb.end() || j->ep() != ep) return; j->timed_out(); #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(table) << " NODE FAILED" " id: " << nid << " ip: " << j->ep() << " fails: " << j->fail_count() << " pinged: " << j->pinged() << " up-time: " << total_seconds(time_now() - j->first_seen); #endif return; } // if the endpoint doesn't match, it's a different node // claiming the same ID. The node we have in our routing // table is not necessarily stale if (j->ep() != ep) return; if (rb.empty()) { j->timed_out(); #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(table) << " NODE FAILED" " id: " << nid << " ip: " << j->ep() << " fails: " << j->fail_count() << " pinged: " << j->pinged() << " up-time: " << total_seconds(time_now() - j->first_seen); #endif // if this node has failed too many times, or if this node // has never responded at all, remove it if (j->fail_count() >= m_settings.max_fail_count || !j->pinged()) { erase_one(m_ips, j->addr().to_v4().to_bytes()); b.erase(j); } return; } erase_one(m_ips, j->a); b.erase(j); // sort by RTT first, to find the node with the lowest // RTT that is pinged std::sort(rb.begin(), rb.end() , boost::bind(&node_entry::rtt, _1) < boost::bind(&node_entry::rtt, _2)); j = std::find_if(rb.begin(), rb.end(), boost::bind(&node_entry::pinged, _1)); if (j == rb.end()) j = rb.begin(); b.push_back(*j); rb.erase(j); } void routing_table::add_router_node(udp::endpoint router) { m_router_nodes.insert(router); } // we heard from this node, but we don't know if it was spoofed or not (i.e. // pinged == false) void routing_table::heard_about(node_id const& id, udp::endpoint const& ep) { add_node(node_entry(id, ep)); } // this function is called every time the node sees a sign of a node being // alive. This node will either be inserted in the k-buckets or be moved to the // top of its bucket. the return value indicates if the table needs a refresh. // if true, the node should refresh the table (i.e. do a find_node on its own // id) bool routing_table::node_seen(node_id const& id, udp::endpoint ep, int rtt) { return add_node(node_entry(id, ep, rtt, true)); } bool routing_table::need_bootstrap() const { ptime now = time_now(); if (now - seconds(30) < m_last_bootstrap) return false; for (table_t::const_iterator i = m_buckets.begin() , end(m_buckets.end()); i != end; ++i) { for (bucket_t::const_iterator j = i->live_nodes.begin() , end(i->live_nodes.end()); j != end; ++j) { if (j->confirmed()) return false; } } m_last_bootstrap = now; return true; } // fills the vector with the k nodes from our buckets that // are nearest to the given id. void routing_table::find_node(node_id const& target , std::vector& l, int options, int count) { l.clear(); if (count == 0) count = m_bucket_size; table_t::iterator i = find_bucket(target); int bucket_index = std::distance(m_buckets.begin(), i); int bucket_size_limit = bucket_limit(bucket_index); l.reserve(bucket_size_limit); table_t::iterator j = i; int unsorted_start_idx = 0; for (; j != m_buckets.end() && int(l.size()) < count; ++j) { bucket_t& b = j->live_nodes; if (options & include_failed) { copy(b.begin(), b.end() , std::back_inserter(l)); } else { std::remove_copy_if(b.begin(), b.end() , std::back_inserter(l) , !boost::bind(&node_entry::confirmed, _1)); } if (int(l.size()) == count) return; if (int(l.size()) > count) { // sort the nodes by how close they are to the target std::sort(l.begin() + unsorted_start_idx, l.end(), boost::bind(&compare_ref , boost::bind(&node_entry::id, _1) , boost::bind(&node_entry::id, _2), target)); l.resize(count); return; } unsorted_start_idx = int(l.size()); } // if we still don't have enough nodes, copy nodes // further away from us if (i == m_buckets.begin()) return; j = i; unsorted_start_idx = int(l.size()); do { --j; bucket_t& b = j->live_nodes; if (options & include_failed) { std::copy(b.begin(), b.end(), std::back_inserter(l)); } else { std::remove_copy_if(b.begin(), b.end(), std::back_inserter(l) , !boost::bind(&node_entry::confirmed, _1)); } if (int(l.size()) == count) return; if (int(l.size()) > count) { // sort the nodes by how close they are to the target std::sort(l.begin() + unsorted_start_idx, l.end(), boost::bind(&compare_ref , boost::bind(&node_entry::id, _1) , boost::bind(&node_entry::id, _2), target)); l.resize(count); return; } unsorted_start_idx = int(l.size()); } while (j != m_buckets.begin() && int(l.size()) < count); TORRENT_ASSERT(int(l.size()) <= count); } #if TORRENT_USE_INVARIANT_CHECKS void routing_table::check_invariant() const { boost::unordered_multiset all_ips; for (table_t::const_iterator i = m_buckets.begin() , end(m_buckets.end()); i != end; ++i) { for (bucket_t::const_iterator j = i->replacements.begin(); j != i->replacements.end(); ++j) { all_ips.insert(j->addr().to_v4().to_bytes()); } for (bucket_t::const_iterator j = i->live_nodes.begin(); j != i->live_nodes.end(); ++j) { all_ips.insert(j->addr().to_v4().to_bytes()); } } TORRENT_ASSERT(all_ips == m_ips); } #endif } } // namespace libtorrent::dht