/* Copyright (c) 2007-2018, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/http_connection.hpp" #include "libtorrent/aux_/escape_string.hpp" #include "libtorrent/aux_/instantiate_connection.hpp" #include "libtorrent/gzip.hpp" #include "libtorrent/parse_url.hpp" #include "libtorrent/socket.hpp" #include "libtorrent/aux_/socket_type.hpp" // for async_shutdown #include "libtorrent/resolver_interface.hpp" #include "libtorrent/settings_pack.hpp" #include "libtorrent/aux_/time.hpp" #include "libtorrent/random.hpp" #include "libtorrent/debug.hpp" #include "libtorrent/time.hpp" #include #include #include #include #ifdef TORRENT_USE_OPENSSL #include "libtorrent/aux_/disable_warnings_push.hpp" #include #include "libtorrent/aux_/disable_warnings_pop.hpp" #endif using namespace std::placeholders; namespace libtorrent { http_connection::http_connection(io_service& ios , resolver_interface& resolver , http_handler const& handler , bool bottled , int max_bottled_buffer_size , http_connect_handler const& ch , http_filter_handler const& fh #ifdef TORRENT_USE_OPENSSL , ssl::context* ssl_ctx #endif ) : m_next_ep(0) , m_sock(ios) #ifdef TORRENT_USE_OPENSSL , m_ssl_ctx(ssl_ctx) , m_own_ssl_context(false) #endif #if TORRENT_USE_I2P , m_i2p_conn(nullptr) #endif , m_resolver(resolver) , m_handler(handler) , m_connect_handler(ch) , m_filter_handler(fh) , m_timer(ios) , m_read_timeout(seconds(5)) , m_completion_timeout(seconds(5)) , m_limiter_timer(ios) , m_last_receive(aux::time_now()) , m_start_time(aux::time_now()) , m_read_pos(0) , m_redirects(5) , m_max_bottled_buffer_size(max_bottled_buffer_size) , m_rate_limit(0) , m_download_quota(0) , m_priority(0) , m_resolve_flags{} , m_port(0) , m_bottled(bottled) , m_called(false) , m_limiter_timer_active(false) , m_ssl(false) , m_abort(false) , m_connecting(false) { TORRENT_ASSERT(m_handler); } http_connection::~http_connection() { #ifdef TORRENT_USE_OPENSSL if (m_own_ssl_context) delete m_ssl_ctx; #endif } void http_connection::get(std::string const& url, time_duration timeout, int prio , aux::proxy_settings const* ps, int handle_redirects, std::string const& user_agent , boost::optional
const& bind_addr, resolver_flags const resolve_flags, std::string const& auth_ #if TORRENT_USE_I2P , i2p_connection* i2p_conn #endif ) { m_user_agent = user_agent; m_resolve_flags = resolve_flags; std::string protocol; std::string auth; std::string hostname; std::string path; error_code ec; int port; std::tie(protocol, auth, hostname, port, path) = parse_url_components(url, ec); if (auth.empty()) auth = auth_; m_auth = auth; int default_port = protocol == "https" ? 443 : 80; if (port == -1) port = default_port; // keep ourselves alive even if the callback function // deletes this object std::shared_ptr me(shared_from_this()); if (ec) { lt::get_io_service(m_timer).post(std::bind(&http_connection::callback , me, ec, span{})); return; } if (protocol != "http" #ifdef TORRENT_USE_OPENSSL && protocol != "https" #endif ) { error_code err(errors::unsupported_url_protocol); lt::get_io_service(m_timer).post(std::bind(&http_connection::callback , me, err, span{})); return; } TORRENT_ASSERT(prio >= 0 && prio < 3); bool const ssl = (protocol == "https"); std::stringstream request; // exclude ssl here, because SSL assumes CONNECT support in the // proxy and is handled at the lower layer if (ps && (ps->type == settings_pack::http || ps->type == settings_pack::http_pw) && !ssl) { // if we're using an http proxy and not an ssl // connection, just do a regular http proxy request request << "GET " << url << " HTTP/1.1\r\n"; if (ps->type == settings_pack::http_pw) request << "Proxy-Authorization: Basic " << base64encode( ps->username + ":" + ps->password) << "\r\n"; request << "Host: " << hostname; if (port != default_port) request << ":" << port << "\r\n"; else request << "\r\n"; hostname = ps->hostname; port = ps->port; } else { request << "GET " << path << " HTTP/1.1\r\nHost: " << hostname; if (port != default_port) request << ":" << port << "\r\n"; else request << "\r\n"; } // request << "Accept: */*\r\n"; if (!m_user_agent.empty()) request << "User-Agent: " << m_user_agent << "\r\n"; if (m_bottled) request << "Accept-Encoding: gzip\r\n"; if (!auth.empty()) request << "Authorization: Basic " << base64encode(auth) << "\r\n"; request << "Connection: close\r\n\r\n"; m_sendbuffer.assign(request.str()); m_url = url; start(hostname, port, timeout, prio , ps, ssl, handle_redirects, bind_addr, m_resolve_flags #if TORRENT_USE_I2P , i2p_conn #endif ); } void http_connection::start(std::string const& hostname, int port , time_duration timeout, int prio, aux::proxy_settings const* ps, bool ssl , int handle_redirects , boost::optional
const& bind_addr , resolver_flags const resolve_flags #if TORRENT_USE_I2P , i2p_connection* i2p_conn #endif ) { TORRENT_ASSERT(prio >= 0 && prio < 3); m_redirects = handle_redirects; m_resolve_flags = resolve_flags; if (ps) m_proxy = *ps; // keep ourselves alive even if the callback function // deletes this object std::shared_ptr me(shared_from_this()); m_completion_timeout = timeout; m_read_timeout = seconds(5); if (m_read_timeout < timeout / 5) m_read_timeout = timeout / 5; error_code ec; m_timer.expires_from_now(std::min( m_read_timeout, m_completion_timeout), ec); ADD_OUTSTANDING_ASYNC("http_connection::on_timeout"); m_timer.async_wait(std::bind(&http_connection::on_timeout , std::weak_ptr(me), _1)); m_called = false; m_parser.reset(); m_recvbuffer.clear(); m_read_pos = 0; m_priority = prio; if (ec) { lt::get_io_service(m_timer).post(std::bind(&http_connection::callback , me, ec, span{})); return; } if (m_sock.is_open() && m_hostname == hostname && m_port == port && m_ssl == ssl && m_bind_addr == bind_addr) { ADD_OUTSTANDING_ASYNC("http_connection::on_write"); async_write(m_sock, boost::asio::buffer(m_sendbuffer) , std::bind(&http_connection::on_write, me, _1)); } else { m_ssl = ssl; m_bind_addr = bind_addr; error_code err; if (m_sock.is_open()) m_sock.close(err); aux::proxy_settings const* proxy = ps; #if TORRENT_USE_I2P bool is_i2p = false; char const* top_domain = strrchr(hostname.c_str(), '.'); aux::proxy_settings i2p_proxy; if (top_domain && top_domain == ".i2p"_sv && i2p_conn) { // this is an i2p name, we need to use the sam connection // to do the name lookup is_i2p = true; m_i2p_conn = i2p_conn; // quadruple the timeout for i2p destinations // because i2p is sloooooow m_completion_timeout *= 4; m_read_timeout *= 4; #if TORRENT_USE_I2P if (i2p_conn->proxy().type != settings_pack::i2p_proxy) { lt::get_io_service(m_timer).post(std::bind(&http_connection::callback , me, error_code(errors::no_i2p_router), span{})); return; } #endif i2p_proxy = i2p_conn->proxy(); proxy = &i2p_proxy; } #endif // in this case, the upper layer is assumed to have taken // care of the proxying already. Don't instantiate the socket // with this proxy if (proxy && (proxy->type == settings_pack::http || proxy->type == settings_pack::http_pw) && !ssl) { proxy = nullptr; } aux::proxy_settings null_proxy; void* userdata = nullptr; #ifdef TORRENT_USE_OPENSSL if (m_ssl) { if (m_ssl_ctx == nullptr) { m_ssl_ctx = new (std::nothrow) ssl::context(ssl::context::sslv23_client); if (m_ssl_ctx) { m_own_ssl_context = true; m_ssl_ctx->set_verify_mode(ssl::context::verify_none, ec); if (ec) { lt::get_io_service(m_timer).post(std::bind(&http_connection::callback , me, ec, span{})); return; } } } userdata = m_ssl_ctx; } #endif // assume this is not a tracker connection. Tracker connections that // shouldn't be subject to the proxy should pass in nullptr as the proxy // pointer. instantiate_connection(lt::get_io_service(m_timer) , proxy ? *proxy : null_proxy, m_sock, userdata, nullptr, false, false); if (m_bind_addr) { m_sock.open(m_bind_addr->is_v4() ? tcp::v4() : tcp::v6(), ec); m_sock.bind(tcp::endpoint(*m_bind_addr, 0), ec); if (ec) { lt::get_io_service(m_timer).post(std::bind(&http_connection::callback , me, ec, span{})); return; } } setup_ssl_hostname(m_sock, hostname, ec); if (ec) { lt::get_io_service(m_timer).post(std::bind(&http_connection::callback , me, ec, span{})); return; } m_endpoints.clear(); m_next_ep = 0; #if TORRENT_USE_I2P if (is_i2p) { if (hostname.length() < 516) // Base64 encoded destination with optional .i2p { ADD_OUTSTANDING_ASYNC("http_connection::on_i2p_resolve"); i2p_conn->async_name_lookup(hostname.c_str(), std::bind(&http_connection::on_i2p_resolve , me, _1, _2)); } else connect_i2p_tracker(hostname.c_str()); } else #endif m_hostname = hostname; if (ps && ps->proxy_hostnames && (ps->type == settings_pack::socks5 || ps->type == settings_pack::socks5_pw)) { m_port = std::uint16_t(port); m_endpoints.emplace_back(address(), m_port); connect(); } else { ADD_OUTSTANDING_ASYNC("http_connection::on_resolve"); m_resolver.async_resolve(hostname, m_resolve_flags , std::bind(&http_connection::on_resolve , me, _1, _2)); } m_port = std::uint16_t(port); } } void http_connection::on_timeout(std::weak_ptr p , error_code const& e) { COMPLETE_ASYNC("http_connection::on_timeout"); std::shared_ptr c = p.lock(); if (!c) return; if (e == boost::asio::error::operation_aborted) return; if (c->m_abort) return; time_point const now = clock_type::now(); if (c->m_start_time + c->m_completion_timeout <= now || c->m_last_receive + c->m_read_timeout <= now) { // the connection timed out. If we have more endpoints to try, just // close this connection. The on_connect handler will try the next // endpoint in the list. if (c->m_next_ep < int(c->m_endpoints.size())) { error_code ec; c->m_sock.close(ec); if (!c->m_connecting) c->connect(); c->m_last_receive = now; c->m_start_time = c->m_last_receive; } else { // the socket may have an outstanding operation, that keeps the // http_connection object alive. We want to cancel all that. error_code ec; c->m_sock.close(ec); c->callback(boost::asio::error::timed_out); return; } } else { if (!c->m_sock.is_open()) return; } ADD_OUTSTANDING_ASYNC("http_connection::on_timeout"); error_code ec; c->m_timer.expires_at(std::min( c->m_last_receive + c->m_read_timeout , c->m_start_time + c->m_completion_timeout), ec); c->m_timer.async_wait(std::bind(&http_connection::on_timeout, p, _1)); } void http_connection::close(bool force) { if (m_abort) return; error_code ec; if (force) m_sock.close(ec); else async_shutdown(m_sock, shared_from_this()); m_timer.cancel(ec); m_limiter_timer.cancel(ec); m_hostname.clear(); m_port = 0; m_handler = nullptr; m_abort = true; } #if TORRENT_USE_I2P void http_connection::connect_i2p_tracker(char const* destination) { TORRENT_ASSERT(m_sock.get()); #ifdef TORRENT_USE_OPENSSL TORRENT_ASSERT(m_ssl == false); #endif m_sock.get()->set_destination(destination); m_sock.get()->set_command(i2p_stream::cmd_connect); m_sock.get()->set_session_id(m_i2p_conn->session_id()); ADD_OUTSTANDING_ASYNC("http_connection::on_connect"); TORRENT_ASSERT(!m_connecting); m_connecting = true; m_sock.async_connect(tcp::endpoint(), std::bind(&http_connection::on_connect , shared_from_this(), _1)); } void http_connection::on_i2p_resolve(error_code const& e, char const* destination) { COMPLETE_ASYNC("http_connection::on_i2p_resolve"); if (e) { callback(e); return; } connect_i2p_tracker(destination); } #endif void http_connection::on_resolve(error_code const& e , std::vector
const& addresses) { COMPLETE_ASYNC("http_connection::on_resolve"); if (e) { callback(e); return; } TORRENT_ASSERT(!addresses.empty()); for (auto const& addr : addresses) m_endpoints.emplace_back(addr, m_port); if (m_filter_handler) m_filter_handler(*this, m_endpoints); if (m_endpoints.empty()) { close(); return; } aux::random_shuffle(m_endpoints); // if we have been told to bind to a particular address // only connect to addresses of the same family if (m_bind_addr) { auto new_end = std::partition(m_endpoints.begin(), m_endpoints.end() , [this] (tcp::endpoint const& ep) { if (is_v4(ep) != m_bind_addr->is_v4()) return false; if (is_v4(ep) && m_bind_addr->is_v4()) return true; TORRENT_ASSERT(is_v6(ep) && m_bind_addr->is_v6()); // don't try to connect to a global address with a local source address // this is mainly needed to prevent attempting to connect to a global // address using a ULA as the source if (!is_local(ep.address()) && is_local(*m_bind_addr)) return false; return ep.address().to_v6().scope_id() == m_bind_addr->to_v6().scope_id(); }); m_endpoints.erase(new_end, m_endpoints.end()); if (m_endpoints.empty()) { callback(error_code(boost::system::errc::address_family_not_supported, generic_category())); close(); return; } } connect(); } void http_connection::connect() { TORRENT_ASSERT(m_next_ep < int(m_endpoints.size())); std::shared_ptr me(shared_from_this()); if (m_proxy.proxy_hostnames && (m_proxy.type == settings_pack::socks5 || m_proxy.type == settings_pack::socks5_pw)) { // test to see if m_hostname really just is an IP (and not a hostname). If it // is, ec will be represent "success". If so, don't set it as the socks5 // hostname, just connect to the IP error_code ec; address adr = make_address(m_hostname, ec); if (ec) { // we're using a socks proxy and we're resolving // hostnames through it #ifdef TORRENT_USE_OPENSSL if (m_ssl) { TORRENT_ASSERT(m_sock.get>()); m_sock.get>()->next_layer().set_dst_name(m_hostname); } else #endif { TORRENT_ASSERT(m_sock.get()); m_sock.get()->set_dst_name(m_hostname); } } else { m_endpoints[0].address(adr); } } TORRENT_ASSERT(m_next_ep < int(m_endpoints.size())); if (m_next_ep >= int(m_endpoints.size())) return; tcp::endpoint target_address = m_endpoints[m_next_ep]; ++m_next_ep; ADD_OUTSTANDING_ASYNC("http_connection::on_connect"); TORRENT_ASSERT(!m_connecting); m_connecting = true; m_sock.async_connect(target_address, std::bind(&http_connection::on_connect , me, _1)); } void http_connection::on_connect(error_code const& e) { COMPLETE_ASYNC("http_connection::on_connect"); TORRENT_ASSERT(m_connecting); m_connecting = false; m_last_receive = clock_type::now(); m_start_time = m_last_receive; if (!e) { if (m_connect_handler) m_connect_handler(*this); ADD_OUTSTANDING_ASYNC("http_connection::on_write"); async_write(m_sock, boost::asio::buffer(m_sendbuffer) , std::bind(&http_connection::on_write, shared_from_this(), _1)); } else if (m_next_ep < int(m_endpoints.size()) && !m_abort) { // The connection failed. Try the next endpoint in the list. error_code ec; m_sock.close(ec); connect(); } else { error_code ec; m_sock.close(ec); callback(e); } } void http_connection::callback(error_code e, span data) { if (m_bottled && m_called) return; std::vector buf; if (!data.empty() && m_bottled && m_parser.header_finished()) { data = m_parser.collapse_chunk_headers(data); std::string const& encoding = m_parser.header("content-encoding"); if (encoding == "gzip" || encoding == "x-gzip") { error_code ec; inflate_gzip(data, buf, m_max_bottled_buffer_size, ec); if (ec) { if (m_handler) m_handler(ec, m_parser, data, *this); return; } data = buf; } // if we completed the whole response, no need // to tell the user that the connection was closed by // the server or by us. Just clear any error if (m_parser.finished()) e.clear(); } m_called = true; error_code ec; m_timer.cancel(ec); if (m_handler) m_handler(e, m_parser, data, *this); } void http_connection::on_write(error_code const& e) { COMPLETE_ASYNC("http_connection::on_write"); if (e == boost::asio::error::operation_aborted) return; if (e) { callback(e); return; } if (m_abort) return; std::string().swap(m_sendbuffer); m_recvbuffer.resize(4096); int amount_to_read = int(m_recvbuffer.size()) - m_read_pos; if (m_rate_limit > 0 && amount_to_read > m_download_quota) { amount_to_read = m_download_quota; if (m_download_quota == 0) { if (!m_limiter_timer_active) { ADD_OUTSTANDING_ASYNC("http_connection::on_assign_bandwidth"); on_assign_bandwidth(error_code()); } return; } } ADD_OUTSTANDING_ASYNC("http_connection::on_read"); m_sock.async_read_some(boost::asio::buffer(m_recvbuffer.data() + m_read_pos , std::size_t(amount_to_read)) , std::bind(&http_connection::on_read , shared_from_this(), _1, _2)); } void http_connection::on_read(error_code const& e , std::size_t bytes_transferred) { COMPLETE_ASYNC("http_connection::on_read"); if (m_rate_limit) { m_download_quota -= int(bytes_transferred); TORRENT_ASSERT(m_download_quota >= 0); } if (e == boost::asio::error::operation_aborted) return; if (m_abort) return; // keep ourselves alive even if the callback function // deletes this object std::shared_ptr me(shared_from_this()); // when using the asio SSL wrapper, it seems like // we get the shut_down error instead of EOF if (e == boost::asio::error::eof || e == boost::asio::error::shut_down) { error_code ec = boost::asio::error::eof; TORRENT_ASSERT(bytes_transferred == 0); span body; if (m_bottled && m_parser.header_finished()) { body = span(m_recvbuffer.data() + m_parser.body_start() , m_parser.get_body().size()); } callback(ec, body); return; } if (e) { TORRENT_ASSERT(bytes_transferred == 0); callback(e); return; } m_read_pos += int(bytes_transferred); TORRENT_ASSERT(m_read_pos <= int(m_recvbuffer.size())); if (m_bottled || !m_parser.header_finished()) { span rcv_buf(m_recvbuffer); bool error = false; m_parser.incoming(rcv_buf.first(m_read_pos), error); if (error) { // HTTP parse error error_code ec = errors::http_parse_error; callback(ec); return; } // having a nonempty path means we should handle redirects if (m_redirects && m_parser.header_finished()) { int code = m_parser.status_code(); if (is_redirect(code)) { // attempt a redirect std::string const& location = m_parser.header("location"); if (location.empty()) { // missing location header callback(error_code(errors::http_missing_location)); return; } error_code ec; // it would be nice to gracefully shut down SSL here // but then we'd have to do all the reconnect logic // in its handler. For now, just kill the connection. // async_shutdown(m_sock, me); m_sock.close(ec); std::string url = resolve_redirect_location(m_url, location); get(url, m_completion_timeout, m_priority, &m_proxy, m_redirects - 1 , m_user_agent, m_bind_addr, m_resolve_flags, m_auth #if TORRENT_USE_I2P , m_i2p_conn #endif ); return; } m_redirects = 0; } if (!m_bottled && m_parser.header_finished()) { if (m_read_pos > m_parser.body_start()) { callback(e, span(m_recvbuffer) .first(m_read_pos) .subspan(m_parser.body_start())); } m_read_pos = 0; m_last_receive = clock_type::now(); } else if (m_bottled && m_parser.finished()) { error_code ec; m_timer.cancel(ec); callback(e, span(m_recvbuffer) .first(m_read_pos) .subspan(m_parser.body_start())); } } else { TORRENT_ASSERT(!m_bottled); callback(e, span(m_recvbuffer).first(m_read_pos)); m_read_pos = 0; m_last_receive = clock_type::now(); } // if we've hit the limit, double the buffer size if (int(m_recvbuffer.size()) == m_read_pos) m_recvbuffer.resize(std::min(m_read_pos * 2, m_max_bottled_buffer_size)); if (m_read_pos == m_max_bottled_buffer_size) { // if we've reached the size limit, terminate the connection and // report the error callback(error_code(boost::system::errc::file_too_large, generic_category())); return; } int amount_to_read = int(m_recvbuffer.size()) - m_read_pos; if (m_rate_limit > 0 && amount_to_read > m_download_quota) { amount_to_read = m_download_quota; if (m_download_quota == 0) { if (!m_limiter_timer_active) { ADD_OUTSTANDING_ASYNC("http_connection::on_assign_bandwidth"); on_assign_bandwidth(error_code()); } return; } } ADD_OUTSTANDING_ASYNC("http_connection::on_read"); m_sock.async_read_some(boost::asio::buffer(m_recvbuffer.data() + m_read_pos , std::size_t(amount_to_read)) , std::bind(&http_connection::on_read , me, _1, _2)); } void http_connection::on_assign_bandwidth(error_code const& e) { COMPLETE_ASYNC("http_connection::on_assign_bandwidth"); if ((e == boost::asio::error::operation_aborted && m_limiter_timer_active) || !m_sock.is_open()) { callback(boost::asio::error::eof); return; } m_limiter_timer_active = false; if (e) return; if (m_abort) return; if (m_download_quota > 0) return; m_download_quota = m_rate_limit / 4; int amount_to_read = int(m_recvbuffer.size()) - m_read_pos; if (amount_to_read > m_download_quota) amount_to_read = m_download_quota; if (!m_sock.is_open()) return; ADD_OUTSTANDING_ASYNC("http_connection::on_read"); m_sock.async_read_some(boost::asio::buffer(m_recvbuffer.data() + m_read_pos , std::size_t(amount_to_read)) , std::bind(&http_connection::on_read , shared_from_this(), _1, _2)); error_code ec; m_limiter_timer_active = true; m_limiter_timer.expires_from_now(milliseconds(250), ec); ADD_OUTSTANDING_ASYNC("http_connection::on_assign_bandwidth"); m_limiter_timer.async_wait(std::bind(&http_connection::on_assign_bandwidth , shared_from_this(), _1)); } void http_connection::rate_limit(int limit) { if (!m_sock.is_open()) return; if (!m_limiter_timer_active) { error_code ec; m_limiter_timer_active = true; m_limiter_timer.expires_from_now(milliseconds(250), ec); ADD_OUTSTANDING_ASYNC("http_connection::on_assign_bandwidth"); m_limiter_timer.async_wait(std::bind(&http_connection::on_assign_bandwidth , shared_from_this(), _1)); } m_rate_limit = limit; } }