/* Copyright (c) 2007, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Disk queue elevator patch by Morten Husveit */ #include "libtorrent/storage.hpp" #include "libtorrent/disk_io_thread.hpp" #include "libtorrent/disk_buffer_holder.hpp" #include "libtorrent/alloca.hpp" #include "libtorrent/invariant_check.hpp" #include "libtorrent/error_code.hpp" #include "libtorrent/error.hpp" #include "libtorrent/file_pool.hpp" #include #include #include "libtorrent/time.hpp" #if TORRENT_USE_MLOCK && !defined TORRENT_WINDOWS #include #endif #ifdef TORRENT_BSD #include #endif #if TORRENT_USE_RLIMIT #include #endif namespace libtorrent { bool should_cancel_on_abort(disk_io_job const& j); bool is_read_operation(disk_io_job const& j); bool operation_has_buffer(disk_io_job const& j); disk_buffer_pool::disk_buffer_pool(int block_size) : m_block_size(block_size) , m_in_use(0) #ifndef TORRENT_DISABLE_POOL_ALLOCATOR , m_pool(block_size, m_settings.cache_buffer_chunk_size) #endif { #if defined TORRENT_DISK_STATS || defined TORRENT_STATS m_allocations = 0; #endif #ifdef TORRENT_DISK_STATS m_log.open("disk_buffers.log", std::ios::trunc); m_categories["read cache"] = 0; m_categories["write cache"] = 0; m_disk_access_log.open("disk_access.log", std::ios::trunc); #endif #ifdef TORRENT_DEBUG m_magic = 0x1337; #endif } #ifdef TORRENT_DEBUG disk_buffer_pool::~disk_buffer_pool() { TORRENT_ASSERT(m_magic == 0x1337); m_magic = 0; } #endif #if defined TORRENT_DEBUG || defined TORRENT_DISK_STATS bool disk_buffer_pool::is_disk_buffer(char* buffer , mutex::scoped_lock& l) const { TORRENT_ASSERT(m_magic == 0x1337); #ifdef TORRENT_DISK_STATS if (m_buf_to_category.find(buffer) == m_buf_to_category.end()) return false; #endif #ifdef TORRENT_DISABLE_POOL_ALLOCATOR return true; #else return m_pool.is_from(buffer); #endif } bool disk_buffer_pool::is_disk_buffer(char* buffer) const { mutex::scoped_lock l(m_pool_mutex); return is_disk_buffer(buffer, l); } #endif char* disk_buffer_pool::allocate_buffer(char const* category) { mutex::scoped_lock l(m_pool_mutex); TORRENT_ASSERT(m_magic == 0x1337); #ifdef TORRENT_DISABLE_POOL_ALLOCATOR char* ret = page_aligned_allocator::malloc(m_block_size); #else char* ret = (char*)m_pool.ordered_malloc(); m_pool.set_next_size(m_settings.cache_buffer_chunk_size); #endif ++m_in_use; #if TORRENT_USE_MLOCK if (m_settings.lock_disk_cache) { #ifdef TORRENT_WINDOWS VirtualLock(ret, m_block_size); #else mlock(ret, m_block_size); #endif } #endif #if defined TORRENT_DISK_STATS || defined TORRENT_STATS ++m_allocations; #endif #ifdef TORRENT_DISK_STATS ++m_categories[category]; m_buf_to_category[ret] = category; m_log << log_time() << " " << category << ": " << m_categories[category] << "\n"; #endif TORRENT_ASSERT(ret == 0 || is_disk_buffer(ret, l)); return ret; } #ifdef TORRENT_DISK_STATS void disk_buffer_pool::rename_buffer(char* buf, char const* category) { mutex::scoped_lock l(m_pool_mutex); TORRENT_ASSERT(is_disk_buffer(buf, l)); TORRENT_ASSERT(m_categories.find(m_buf_to_category[buf]) != m_categories.end()); std::string const& prev_category = m_buf_to_category[buf]; --m_categories[prev_category]; m_log << log_time() << " " << prev_category << ": " << m_categories[prev_category] << "\n"; ++m_categories[category]; m_buf_to_category[buf] = category; m_log << log_time() << " " << category << ": " << m_categories[category] << "\n"; TORRENT_ASSERT(m_categories.find(m_buf_to_category[buf]) != m_categories.end()); } #endif void disk_buffer_pool::free_buffer(char* buf) { TORRENT_ASSERT(buf); mutex::scoped_lock l(m_pool_mutex); TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(is_disk_buffer(buf, l)); #if defined TORRENT_DISK_STATS || defined TORRENT_STATS --m_allocations; #endif #ifdef TORRENT_DISK_STATS TORRENT_ASSERT(m_categories.find(m_buf_to_category[buf]) != m_categories.end()); std::string const& category = m_buf_to_category[buf]; --m_categories[category]; m_log << log_time() << " " << category << ": " << m_categories[category] << "\n"; m_buf_to_category.erase(buf); #endif #if TORRENT_USE_MLOCK if (m_settings.lock_disk_cache) { #ifdef TORRENT_WINDOWS VirtualUnlock(buf, m_block_size); #else munlock(buf, m_block_size); #endif } #endif #ifdef TORRENT_DISABLE_POOL_ALLOCATOR page_aligned_allocator::free(buf); #else m_pool.ordered_free(buf); #endif --m_in_use; } char* disk_buffer_pool::allocate_buffers(int num_blocks, char const* category) { mutex::scoped_lock l(m_pool_mutex); TORRENT_ASSERT(m_magic == 0x1337); #ifdef TORRENT_DISABLE_POOL_ALLOCATOR char* ret = page_aligned_allocator::malloc(m_block_size * num_blocks); #else char* ret = (char*)m_pool.ordered_malloc(num_blocks); m_pool.set_next_size(m_settings.cache_buffer_chunk_size); #endif m_in_use += num_blocks; #if TORRENT_USE_MLOCK if (m_settings.lock_disk_cache) { #ifdef TORRENT_WINDOWS VirtualLock(ret, m_block_size * num_blocks); #else mlock(ret, m_block_size * num_blocks); #endif } #endif #if defined TORRENT_DISK_STATS || defined TORRENT_STATS m_allocations += num_blocks; #endif #ifdef TORRENT_DISK_STATS m_categories[category] += num_blocks; m_buf_to_category[ret] = category; m_log << log_time() << " " << category << ": " << m_categories[category] << "\n"; #endif TORRENT_ASSERT(ret == 0 || is_disk_buffer(ret, l)); return ret; } void disk_buffer_pool::free_buffers(char* buf, int num_blocks) { TORRENT_ASSERT(buf); TORRENT_ASSERT(num_blocks >= 1); mutex::scoped_lock l(m_pool_mutex); TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(is_disk_buffer(buf, l)); #if defined TORRENT_DISK_STATS || defined TORRENT_STATS m_allocations -= num_blocks; #endif #ifdef TORRENT_DISK_STATS TORRENT_ASSERT(m_categories.find(m_buf_to_category[buf]) != m_categories.end()); std::string const& category = m_buf_to_category[buf]; m_categories[category] -= num_blocks; m_log << log_time() << " " << category << ": " << m_categories[category] << "\n"; m_buf_to_category.erase(buf); #endif #if TORRENT_USE_MLOCK if (m_settings.lock_disk_cache) { #ifdef TORRENT_WINDOWS VirtualUnlock(buf, m_block_size * num_blocks); #else munlock(buf, m_block_size * num_blocks); #endif } #endif #ifdef TORRENT_DISABLE_POOL_ALLOCATOR page_aligned_allocator::free(buf); #else m_pool.ordered_free(buf, num_blocks); #endif m_in_use -= num_blocks; } void disk_buffer_pool::release_memory() { TORRENT_ASSERT(m_magic == 0x1337); #ifndef TORRENT_DISABLE_POOL_ALLOCATOR mutex::scoped_lock l(m_pool_mutex); m_pool.release_memory(); #endif } // ------- disk_io_thread ------ disk_io_thread::disk_io_thread(io_service& ios , boost::function const& queue_callback , file_pool& fp , int block_size) : disk_buffer_pool(block_size) , m_abort(false) , m_waiting_to_shutdown(false) , m_queue_buffer_size(0) , m_last_file_check(time_now_hires()) , m_physical_ram(0) , m_ios(ios) , m_queue_callback(queue_callback) , m_work(io_service::work(m_ios)) , m_file_pool(fp) , m_disk_io_thread(boost::bind(&disk_io_thread::thread_fun, this)) { #ifdef TORRENT_DISK_STATS m_log.open("disk_io_thread.log", std::ios::trunc); #endif // figure out how much physical RAM there is in // this machine. This is used for automatically // sizing the disk cache size when it's set to // automatic. #ifdef TORRENT_BSD int mib[2] = { CTL_HW, HW_MEMSIZE }; size_t len = sizeof(m_physical_ram); if (sysctl(mib, 2, &m_physical_ram, &len, NULL, 0) != 0) m_physical_ram = 0; #elif defined TORRENT_WINDOWS MEMORYSTATUSEX ms; ms.dwLength = sizeof(MEMORYSTATUSEX); if (GlobalMemoryStatusEx(&ms)) m_physical_ram = ms.ullTotalPhys; else m_physical_ram = 0; #elif defined TORRENT_LINUX m_physical_ram = sysconf(_SC_PHYS_PAGES); m_physical_ram *= sysconf(_SC_PAGESIZE); #elif defined TORRENT_AMIGA m_physical_ram = AvailMem(MEMF_PUBLIC); #endif #if TORRENT_USE_RLIMIT if (m_physical_ram > 0) { struct rlimit r; if (getrlimit(RLIMIT_AS, &r) == 0 && r.rlim_cur != RLIM_INFINITY) { if (m_physical_ram > r.rlim_cur) m_physical_ram = r.rlim_cur; } } #endif } disk_io_thread::~disk_io_thread() { TORRENT_ASSERT(m_abort == true); } void disk_io_thread::join() { mutex::scoped_lock l(m_queue_mutex); disk_io_job j; m_waiting_to_shutdown = true; j.action = disk_io_job::abort_thread; m_jobs.insert(m_jobs.begin(), j); m_signal.signal(l); l.unlock(); m_disk_io_thread.join(); l.lock(); TORRENT_ASSERT(m_abort == true); m_jobs.clear(); } void disk_io_thread::get_cache_info(sha1_hash const& ih, std::vector& ret) const { mutex::scoped_lock l(m_piece_mutex); ret.clear(); ret.reserve(m_pieces.size()); for (cache_t::const_iterator i = m_pieces.begin() , end(m_pieces.end()); i != end; ++i) { torrent_info const& ti = *i->storage->info(); if (ti.info_hash() != ih) continue; cached_piece_info info; info.piece = i->piece; info.last_use = i->expire; info.kind = cached_piece_info::write_cache; int blocks_in_piece = (ti.piece_size(i->piece) + (m_block_size) - 1) / m_block_size; info.blocks.resize(blocks_in_piece); for (int b = 0; b < blocks_in_piece; ++b) if (i->blocks[b].buf) info.blocks[b] = true; ret.push_back(info); } for (cache_t::const_iterator i = m_read_pieces.begin() , end(m_read_pieces.end()); i != end; ++i) { torrent_info const& ti = *i->storage->info(); if (ti.info_hash() != ih) continue; cached_piece_info info; info.piece = i->piece; info.last_use = i->expire; info.kind = cached_piece_info::read_cache; int blocks_in_piece = (ti.piece_size(i->piece) + (m_block_size) - 1) / m_block_size; info.blocks.resize(blocks_in_piece); for (int b = 0; b < blocks_in_piece; ++b) if (i->blocks[b].buf) info.blocks[b] = true; ret.push_back(info); } } cache_status disk_io_thread::status() const { mutex::scoped_lock l(m_piece_mutex); m_cache_stats.total_used_buffers = in_use(); m_cache_stats.queued_bytes = m_queue_buffer_size; cache_status ret = m_cache_stats; ret.average_queue_time = m_queue_time.mean(); ret.average_read_time = m_read_time.mean(); ret.job_queue_length = m_jobs.size(); return ret; } // aborts read operations void disk_io_thread::stop(boost::intrusive_ptr s) { mutex::scoped_lock l(m_queue_mutex); // read jobs are aborted, write and move jobs are syncronized for (std::list::iterator i = m_jobs.begin(); i != m_jobs.end();) { if (i->storage != s) { ++i; continue; } if (should_cancel_on_abort(*i)) { if (i->action == disk_io_job::write) { TORRENT_ASSERT(m_queue_buffer_size >= i->buffer_size); m_queue_buffer_size -= i->buffer_size; } post_callback(i->callback, *i, -3); m_jobs.erase(i++); continue; } ++i; } disk_io_job j; j.action = disk_io_job::abort_torrent; j.storage = s; add_job(j, l); } struct update_last_use { update_last_use(int exp): expire(exp) {} void operator()(disk_io_thread::cached_piece_entry& p) { TORRENT_ASSERT(p.storage); p.expire = time_now() + seconds(expire); } int expire; }; disk_io_thread::cache_piece_index_t::iterator disk_io_thread::find_cached_piece( disk_io_thread::cache_t& cache , disk_io_job const& j, mutex::scoped_lock& l) { cache_piece_index_t& idx = cache.get<0>(); cache_piece_index_t::iterator i = idx.find(std::pair(j.storage.get(), j.piece)); TORRENT_ASSERT(i == idx.end() || (i->storage == j.storage && i->piece == j.piece)); return i; } void disk_io_thread::flush_expired_pieces() { ptime now = time_now(); mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; // flush write cache cache_lru_index_t& widx = m_pieces.get<1>(); cache_lru_index_t::iterator i = widx.begin(); time_duration cut_off = seconds(m_settings.cache_expiry); while (i != widx.end() && now - i->expire > cut_off) { TORRENT_ASSERT(i->storage); flush_range(const_cast(*i), 0, INT_MAX, l); widx.erase(i++); } if (m_settings.explicit_read_cache) return; // flush read cache cache_lru_index_t& ridx = m_read_pieces.get<1>(); i = ridx.begin(); while (i != ridx.end() && now - i->expire > cut_off) { free_piece(const_cast(*i), l); ridx.erase(i++); } } // returns the number of blocks that were freed int disk_io_thread::free_piece(cached_piece_entry& p, mutex::scoped_lock& l) { int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int ret = 0; for (int i = 0; i < blocks_in_piece; ++i) { if (p.blocks[i].buf == 0) continue; free_buffer(p.blocks[i].buf); ++ret; p.blocks[i].buf = 0; --p.num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; } return ret; } // returns the number of blocks that were freed int disk_io_thread::clear_oldest_read_piece( int num_blocks, int ignore, mutex::scoped_lock& l) { INVARIANT_CHECK; cache_lru_index_t& idx = m_read_pieces.get<1>(); if (idx.empty()) return 0; cache_lru_index_t::iterator i = idx.begin(); if (i->piece == ignore) { ++i; if (i == idx.end()) return 0; } // don't replace an entry that is is too young if (time_now() > i->expire) return 0; int blocks = 0; if (num_blocks >= i->num_blocks) { blocks = free_piece(const_cast(*i), l); } else { // delete blocks from the start and from the end // until num_blocks have been freed int end = (i->storage->info()->piece_size(i->piece) + m_block_size - 1) / m_block_size - 1; int start = 0; while (num_blocks) { // if we have a volatile read cache, only clear // from the end, since we're already clearing // from the start as blocks are read if (!m_settings.volatile_read_cache) { while (i->blocks[start].buf == 0 && start <= end) ++start; if (start > end) break; free_buffer(i->blocks[start].buf); i->blocks[start].buf = 0; ++blocks; --const_cast(*i).num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; --num_blocks; if (!num_blocks) break; } while (i->blocks[end].buf == 0 && start <= end) --end; if (start > end) break; free_buffer(i->blocks[end].buf); i->blocks[end].buf = 0; ++blocks; --const_cast(*i).num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; --num_blocks; } } if (i->num_blocks == 0) idx.erase(i); return blocks; } int contiguous_blocks(disk_io_thread::cached_piece_entry const& b) { int ret = 0; int current = 0; int blocks_in_piece = (b.storage->info()->piece_size(b.piece) + 16 * 1024 - 1) / (16 * 1024); for (int i = 0; i < blocks_in_piece; ++i) { if (b.blocks[i].buf) ++current; else { if (current > ret) ret = current; current = 0; } } if (current > ret) ret = current; return ret; } int disk_io_thread::flush_contiguous_blocks(cached_piece_entry& p , mutex::scoped_lock& l, int lower_limit) { // first find the largest range of contiguous blocks int len = 0; int current = 0; int pos = 0; int start = 0; int blocks_in_piece = (p.storage->info()->piece_size(p.piece) + m_block_size - 1) / m_block_size; for (int i = 0; i < blocks_in_piece; ++i) { if (p.blocks[i].buf) ++current; else { if (current > len) { len = current; pos = start; } current = 0; start = i + 1; } } if (current > len) { len = current; pos = start; } if (len < lower_limit || len <= 0) return 0; len = flush_range(p, pos, pos + len, l); return len; } // flushes 'blocks' blocks from the cache int disk_io_thread::flush_cache_blocks(mutex::scoped_lock& l , int blocks, int ignore, int options) { // first look if there are any read cache entries that can // be cleared int ret = 0; int tmp = 0; do { tmp = clear_oldest_read_piece(blocks, ignore, l); blocks -= tmp; ret += tmp; } while (tmp > 0 && blocks > 0); if (options & dont_flush_write_blocks) return ret; if (m_settings.disk_cache_algorithm == session_settings::lru) { cache_lru_index_t& idx = m_pieces.get<1>(); while (blocks > 0) { cache_lru_index_t::iterator i = idx.begin(); if (i == idx.end()) return ret; tmp = flush_range(const_cast(*i), 0, INT_MAX, l); idx.erase(i); blocks -= tmp; ret += tmp; } } else if (m_settings.disk_cache_algorithm == session_settings::largest_contiguous) { cache_lru_index_t& idx = m_pieces.get<1>(); while (blocks > 0) { cache_lru_index_t::iterator i = std::max_element(idx.begin(), idx.end() , bind(&contiguous_blocks, _1) < bind(&contiguous_blocks, _2)); if (i == idx.end()) return ret; tmp = flush_contiguous_blocks(const_cast(*i), l); if (i->num_blocks == 0) idx.erase(i); blocks -= tmp; ret += tmp; } } return ret; } int disk_io_thread::flush_range(cached_piece_entry& p , int start, int end, mutex::scoped_lock& l) { INVARIANT_CHECK; TORRENT_ASSERT(start < end); int piece_size = p.storage->info()->piece_size(p.piece); #ifdef TORRENT_DISK_STATS m_log << log_time() << " flushing " << piece_size << std::endl; #endif TORRENT_ASSERT(piece_size > 0); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int buffer_size = 0; int offset = 0; boost::scoped_array buf; file::iovec_t* iov = 0; int iov_counter = 0; if (m_settings.coalesce_writes) buf.reset(new (std::nothrow) char[piece_size]); else iov = TORRENT_ALLOCA(file::iovec_t, blocks_in_piece); end = (std::min)(end, blocks_in_piece); for (int i = start; i <= end; ++i) { if (i == end || p.blocks[i].buf == 0) { if (buffer_size == 0) continue; TORRENT_ASSERT(buffer_size <= i * m_block_size); l.unlock(); if (iov) { p.storage->write_impl(iov, p.piece, (std::min)( i * m_block_size, piece_size) - buffer_size, iov_counter); iov_counter = 0; } else { TORRENT_ASSERT(buf); file::iovec_t b = { buf.get(), buffer_size }; p.storage->write_impl(&b, p.piece, (std::min)( i * m_block_size, piece_size) - buffer_size, 1); } l.lock(); ++m_cache_stats.writes; // std::cerr << " flushing p: " << p.piece << " bytes: " << buffer_size << std::endl; buffer_size = 0; offset = 0; continue; } int block_size = (std::min)(piece_size - i * m_block_size, m_block_size); TORRENT_ASSERT(offset + block_size <= piece_size); TORRENT_ASSERT(offset + block_size > 0); if (!buf) { iov[iov_counter].iov_base = p.blocks[i].buf; iov[iov_counter].iov_len = block_size; ++iov_counter; } else { std::memcpy(buf.get() + offset, p.blocks[i].buf, block_size); offset += m_block_size; } buffer_size += block_size; TORRENT_ASSERT(p.num_blocks > 0); --p.num_blocks; ++m_cache_stats.blocks_written; --m_cache_stats.cache_size; } int ret = 0; disk_io_job j; j.storage = p.storage; j.action = disk_io_job::write; j.buffer = 0; j.piece = p.piece; test_error(j); for (int i = start; i < end; ++i) { if (p.blocks[i].buf == 0) continue; j.buffer_size = (std::min)(piece_size - i * m_block_size, m_block_size); int result = j.error ? -1 : j.buffer_size; j.offset = i * m_block_size; free_buffer(p.blocks[i].buf); post_callback(p.blocks[i].callback, j, result); p.blocks[i].callback.clear(); p.blocks[i].buf = 0; ++ret; } TORRENT_ASSERT(buffer_size == 0); // std::cerr << " flushing p: " << p.piece << " cached_blocks: " << m_cache_stats.cache_size << std::endl; #ifdef TORRENT_DEBUG for (int i = start; i < end; ++i) TORRENT_ASSERT(p.blocks[i].buf == 0); #endif return ret; } // returns -1 on failure int disk_io_thread::cache_block(disk_io_job& j , boost::function& handler , int cache_expire , mutex::scoped_lock& l) { INVARIANT_CHECK; TORRENT_ASSERT(find_cached_piece(m_pieces, j, l) == m_pieces.end()); TORRENT_ASSERT((j.offset & (m_block_size-1)) == 0); TORRENT_ASSERT(j.cache_min_time >= 0); cached_piece_entry p; int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; // there's no point in caching the piece if // there's only one block in it if (blocks_in_piece <= 1) return -1; #ifdef TORRENT_DISK_STATS rename_buffer(j.buffer, "write cache"); #endif p.piece = j.piece; p.storage = j.storage; p.expire = time_now() + seconds(j.cache_min_time); p.num_blocks = 1; p.blocks.reset(new (std::nothrow) cached_block_entry[blocks_in_piece]); if (!p.blocks) return -1; int block = j.offset / m_block_size; // std::cerr << " adding cache entry for p: " << j.piece << " block: " << block << " cached_blocks: " << m_cache_stats.cache_size << std::endl; p.blocks[block].buf = j.buffer; p.blocks[block].callback.swap(handler); ++m_cache_stats.cache_size; cache_lru_index_t& idx = m_pieces.get<1>(); TORRENT_ASSERT(p.storage); idx.insert(p); return 0; } // fills a piece with data from disk, returns the total number of bytes // read or -1 if there was an error int disk_io_thread::read_into_piece(cached_piece_entry& p, int start_block , int options, int num_blocks, mutex::scoped_lock& l) { TORRENT_ASSERT(num_blocks > 0); int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int end_block = start_block; int num_read = 0; int iov_counter = 0; file::iovec_t* iov = TORRENT_ALLOCA(file::iovec_t, (std::min)(blocks_in_piece - start_block, num_blocks)); int piece_offset = start_block * m_block_size; int ret = 0; boost::scoped_array buf; for (int i = start_block; i < blocks_in_piece && ((options & ignore_cache_size) || in_use() < m_settings.cache_size); ++i) { int block_size = (std::min)(piece_size - piece_offset, m_block_size); TORRENT_ASSERT(piece_offset <= piece_size); // this is a block that is already allocated // free it and allocate a new one if (p.blocks[i].buf) { free_buffer(p.blocks[i].buf); --p.num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; } p.blocks[i].buf = allocate_buffer("read cache"); // the allocation failed, break if (p.blocks[i].buf == 0) { free_piece(p, l); return -1; } ++p.num_blocks; ++m_cache_stats.cache_size; ++m_cache_stats.read_cache_size; ++end_block; ++num_read; iov[iov_counter].iov_base = p.blocks[i].buf; iov[iov_counter].iov_len = block_size; ++iov_counter; piece_offset += m_block_size; if (num_read >= num_blocks) break; } if (end_block == start_block) { // something failed. Free all buffers // we just allocated free_piece(p, l); return -2; } TORRENT_ASSERT(iov_counter <= (std::min)(blocks_in_piece - start_block, num_blocks)); // the buffer_size is the size of the buffer we need to read // all these blocks. const int buffer_size = (std::min)((end_block - start_block) * m_block_size , piece_size - start_block * m_block_size); TORRENT_ASSERT(buffer_size > 0); TORRENT_ASSERT(buffer_size <= piece_size); TORRENT_ASSERT(buffer_size + start_block * m_block_size <= piece_size); if (m_settings.coalesce_reads) buf.reset(new (std::nothrow) char[buffer_size]); if (buf) { l.unlock(); file::iovec_t b = { buf.get(), buffer_size }; ret = p.storage->read_impl(&b, p.piece, start_block * m_block_size, 1); l.lock(); ++m_cache_stats.reads; if (p.storage->error()) { free_piece(p, l); return -1; } if (ret != buffer_size) { // this means the file wasn't big enough for this read p.storage->get_storage_impl()->set_error("" , errors::file_too_short); free_piece(p, l); return -1; } int offset = 0; for (int i = 0; i < iov_counter; ++i) { TORRENT_ASSERT(iov[i].iov_base); TORRENT_ASSERT(iov[i].iov_len > 0); TORRENT_ASSERT(offset + iov[i].iov_len <= buffer_size); std::memcpy(iov[i].iov_base, buf.get() + offset, iov[i].iov_len); offset += iov[i].iov_len; } } else { l.unlock(); ret = p.storage->read_impl(iov, p.piece, start_block * m_block_size, iov_counter); l.lock(); ++m_cache_stats.reads; if (p.storage->error()) { free_piece(p, l); return -1; } if (ret != buffer_size) { // this means the file wasn't big enough for this read p.storage->get_storage_impl()->set_error("" , errors::file_too_short); free_piece(p, l); return -1; } } TORRENT_ASSERT(ret == buffer_size); return ret; } // returns -1 on read error, -2 if there isn't any space in the cache // or the number of bytes read int disk_io_thread::cache_read_block(disk_io_job const& j, mutex::scoped_lock& l) { INVARIANT_CHECK; TORRENT_ASSERT(j.cache_min_time >= 0); // this function will create a new cached_piece_entry // and requires that it doesn't already exist cache_piece_index_t& idx = m_read_pieces.get<0>(); TORRENT_ASSERT(find_cached_piece(m_read_pieces, j, l) == idx.end()); int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int start_block = j.offset / m_block_size; int blocks_to_read = blocks_in_piece - start_block; blocks_to_read = (std::min)(blocks_to_read, (std::max)((m_settings.cache_size + m_cache_stats.read_cache_size - in_use())/2, 3)); blocks_to_read = (std::min)(blocks_to_read, m_settings.read_cache_line_size); if (j.max_cache_line > 0) blocks_to_read = (std::min)(blocks_to_read, j.max_cache_line); if (in_use() + blocks_to_read > m_settings.cache_size) { int clear = in_use() + blocks_to_read - m_settings.cache_size; if (flush_cache_blocks(l, clear, j.piece, dont_flush_write_blocks) < clear) return -2; } cached_piece_entry p; p.piece = j.piece; p.storage = j.storage; p.expire = time_now() + seconds(j.cache_min_time); p.num_blocks = 0; p.blocks.reset(new (std::nothrow) cached_block_entry[blocks_in_piece]); if (!p.blocks) return -1; int ret = read_into_piece(p, start_block, 0, blocks_to_read, l); TORRENT_ASSERT(p.storage); if (ret >= 0) idx.insert(p); return ret; } #ifdef TORRENT_DEBUG void disk_io_thread::check_invariant() const { int cached_write_blocks = 0; cache_piece_index_t const& idx = m_pieces.get<0>(); for (cache_piece_index_t::const_iterator i = idx.begin() , end(idx.end()); i != end; ++i) { cached_piece_entry const& p = *i; TORRENT_ASSERT(p.blocks); TORRENT_ASSERT(p.storage); int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int blocks = 0; for (int k = 0; k < blocks_in_piece; ++k) { if (p.blocks[k].buf) { #ifndef TORRENT_DISABLE_POOL_ALLOCATOR TORRENT_ASSERT(is_disk_buffer(p.blocks[k].buf)); #endif ++blocks; } } // TORRENT_ASSERT(blocks == p.num_blocks); cached_write_blocks += blocks; } int cached_read_blocks = 0; for (cache_t::const_iterator i = m_read_pieces.begin() , end(m_read_pieces.end()); i != end; ++i) { cached_piece_entry const& p = *i; TORRENT_ASSERT(p.blocks); int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int blocks = 0; for (int k = 0; k < blocks_in_piece; ++k) { if (p.blocks[k].buf) { #ifndef TORRENT_DISABLE_POOL_ALLOCATOR TORRENT_ASSERT(is_disk_buffer(p.blocks[k].buf)); #endif ++blocks; } } // TORRENT_ASSERT(blocks == p.num_blocks); cached_read_blocks += blocks; } TORRENT_ASSERT(cached_read_blocks == m_cache_stats.read_cache_size); TORRENT_ASSERT(cached_read_blocks + cached_write_blocks == m_cache_stats.cache_size); #ifdef TORRENT_DISK_STATS int read_allocs = m_categories.find(std::string("read cache"))->second; int write_allocs = m_categories.find(std::string("write cache"))->second; TORRENT_ASSERT(cached_read_blocks == read_allocs); TORRENT_ASSERT(cached_write_blocks == write_allocs); #endif // when writing, there may be a one block difference, right before an old piece // is flushed TORRENT_ASSERT(m_cache_stats.cache_size <= m_settings.cache_size + 1); } #endif // reads the full piece specified by j into the read cache // returns the iterator to it and whether or not it already // was in the cache (hit). int disk_io_thread::cache_piece(disk_io_job const& j, cache_piece_index_t::iterator& p , bool& hit, int options, mutex::scoped_lock& l) { INVARIANT_CHECK; TORRENT_ASSERT(j.cache_min_time >= 0); cache_piece_index_t& idx = m_read_pieces.get<0>(); p = find_cached_piece(m_read_pieces, j, l); hit = true; int ret = 0; int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; if (p != m_read_pieces.end() && p->num_blocks != blocks_in_piece) { INVARIANT_CHECK; // we have the piece in the cache, but not all of the blocks ret = read_into_piece(const_cast(*p), 0 , options, blocks_in_piece, l); hit = false; if (ret < 0) return ret; idx.modify(p, update_last_use(j.cache_min_time)); } else if (p == m_read_pieces.end()) { INVARIANT_CHECK; // if the piece cannot be found in the cache, // read the whole piece starting at the block // we got a request for. cached_piece_entry pe; pe.piece = j.piece; pe.storage = j.storage; pe.expire = time_now() + seconds(j.cache_min_time); pe.num_blocks = 0; pe.blocks.reset(new (std::nothrow) cached_block_entry[blocks_in_piece]); if (!pe.blocks) return -1; ret = read_into_piece(pe, 0, options, INT_MAX, l); hit = false; if (ret < 0) return ret; TORRENT_ASSERT(pe.storage); p = idx.insert(pe).first; } else { idx.modify(p, update_last_use(j.cache_min_time)); } TORRENT_ASSERT(!m_read_pieces.empty()); TORRENT_ASSERT(p->piece == j.piece); TORRENT_ASSERT(p->storage == j.storage); return ret; } // cache the entire piece and hash it int disk_io_thread::read_piece_from_cache_and_hash(disk_io_job const& j, sha1_hash& h) { TORRENT_ASSERT(j.buffer); TORRENT_ASSERT(j.cache_min_time >= 0); mutex::scoped_lock l(m_piece_mutex); cache_piece_index_t::iterator p; bool hit; int ret = cache_piece(j, p, hit, ignore_cache_size, l); if (ret < 0) return ret; int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; hasher ctx; for (int i = 0; i < blocks_in_piece; ++i) { TORRENT_ASSERT(p->blocks[i].buf); ctx.update((char const*)p->blocks[i].buf, (std::min)(piece_size, m_block_size)); piece_size -= m_block_size; } h = ctx.final(); ret = copy_from_piece(const_cast(*p), hit, j, l); TORRENT_ASSERT(ret > 0); if (ret < 0) return ret; cache_piece_index_t& idx = m_read_pieces.get<0>(); if (p->num_blocks == 0) idx.erase(p); else idx.modify(p, update_last_use(j.cache_min_time)); // if read cache is disabled or we exceeded the // limit, remove this piece from the cache // also, if the piece wasn't in the cache when // the function was called, and we're using an // explicit read cache, remove it again if (in_use() >= m_settings.cache_size || !m_settings.use_read_cache || (m_settings.explicit_read_cache && !hit)) { TORRENT_ASSERT(!m_read_pieces.empty()); TORRENT_ASSERT(p->piece == j.piece); TORRENT_ASSERT(p->storage == j.storage); if (p != m_read_pieces.end()) { free_piece(const_cast(*p), l); m_read_pieces.erase(p); } } ret = j.buffer_size; ++m_cache_stats.blocks_read; if (hit) ++m_cache_stats.blocks_read_hit; return ret; } // this doesn't modify the read cache, it only // checks to see if the given read request can // be fully satisfied from the given cached piece // this is similar to copy_from_piece() but it // doesn't do anything but determining if it's a // cache hit or not bool disk_io_thread::is_cache_hit(cached_piece_entry& p , disk_io_job const& j, mutex::scoped_lock& l) { int block = j.offset / m_block_size; int block_offset = j.offset & (m_block_size-1); int size = j.buffer_size; int min_blocks_to_read = block_offset > 0 ? 2 : 1; TORRENT_ASSERT(size <= m_block_size); int start_block = block; // if we have to read more than one block, and // the first block is there, make sure we test // for the second block if (p.blocks[start_block].buf != 0 && min_blocks_to_read > 1) ++start_block; return p.blocks[start_block].buf != 0; } int disk_io_thread::copy_from_piece(cached_piece_entry& p, bool& hit , disk_io_job const& j, mutex::scoped_lock& l) { TORRENT_ASSERT(j.buffer); // copy from the cache and update the last use timestamp int block = j.offset / m_block_size; int block_offset = j.offset & (m_block_size-1); int buffer_offset = 0; int size = j.buffer_size; int min_blocks_to_read = block_offset > 0 ? 2 : 1; TORRENT_ASSERT(size <= m_block_size); int start_block = block; if (p.blocks[start_block].buf != 0 && min_blocks_to_read > 1) ++start_block; // if block_offset > 0, we need to read two blocks, and then // copy parts of both, because it's not aligned to the block // boundaries if (p.blocks[start_block].buf == 0) { // if we use an explicit read cache, pretend there's no // space to force hitting disk without caching anything if (m_settings.explicit_read_cache) return -2; int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int end_block = start_block; while (end_block < blocks_in_piece && p.blocks[end_block].buf == 0) ++end_block; int blocks_to_read = end_block - block; blocks_to_read = (std::min)(blocks_to_read, (std::max)((m_settings.cache_size + m_cache_stats.read_cache_size - in_use())/2, 3)); blocks_to_read = (std::min)(blocks_to_read, m_settings.read_cache_line_size); blocks_to_read = (std::max)(blocks_to_read, min_blocks_to_read); if (j.max_cache_line > 0) blocks_to_read = (std::min)(blocks_to_read, j.max_cache_line); // if we don't have enough space for the new piece, try flushing something else if (in_use() + blocks_to_read > m_settings.cache_size) { int clear = in_use() + blocks_to_read - m_settings.cache_size; if (flush_cache_blocks(l, clear, p.piece, dont_flush_write_blocks) < clear) return -2; } int ret = read_into_piece(p, block, 0, blocks_to_read, l); hit = false; if (ret < 0) return ret; if (ret < size + block_offset) return -2; TORRENT_ASSERT(p.blocks[block].buf); } while (size > 0) { TORRENT_ASSERT(p.blocks[block].buf); int to_copy = (std::min)(m_block_size - block_offset, size); std::memcpy(j.buffer + buffer_offset , p.blocks[block].buf + block_offset , to_copy); size -= to_copy; block_offset = 0; buffer_offset += to_copy; if (m_settings.volatile_read_cache) { // if volatile read cache is set, the assumption is // that no other peer is likely to request the same // piece. Therefore, for each request out of the cache // we clear the block that was requested and any blocks // the peer skipped for (int i = block; i >= 0 && p.blocks[i].buf; --i) { free_buffer(p.blocks[i].buf); p.blocks[i].buf = 0; --p.num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; } } ++block; } return j.buffer_size; } int disk_io_thread::try_read_from_cache(disk_io_job const& j, bool& hit) { TORRENT_ASSERT(j.buffer); TORRENT_ASSERT(j.cache_min_time >= 0); mutex::scoped_lock l(m_piece_mutex); if (!m_settings.use_read_cache) return -2; cache_piece_index_t& idx = m_read_pieces.get<0>(); cache_piece_index_t::iterator p = find_cached_piece(m_read_pieces, j, l); hit = true; int ret = 0; // if the piece cannot be found in the cache, // read the whole piece starting at the block // we got a request for. if (p == idx.end()) { // if we use an explicit read cache and we // couldn't find the block in the cache, // pretend that there's not enough space // to cache it, to force the read operation // go go straight to disk if (m_settings.explicit_read_cache) return -2; ret = cache_read_block(j, l); hit = false; if (ret < 0) return ret; p = find_cached_piece(m_read_pieces, j, l); TORRENT_ASSERT(!m_read_pieces.empty()); TORRENT_ASSERT(p->piece == j.piece); TORRENT_ASSERT(p->storage == j.storage); } TORRENT_ASSERT(p != idx.end()); ret = copy_from_piece(const_cast(*p), hit, j, l); if (ret < 0) return ret; if (p->num_blocks == 0) idx.erase(p); else idx.modify(p, update_last_use(j.cache_min_time)); ret = j.buffer_size; ++m_cache_stats.blocks_read; if (hit) ++m_cache_stats.blocks_read_hit; return ret; } size_type disk_io_thread::queue_buffer_size() const { mutex::scoped_lock l(m_queue_mutex); return m_queue_buffer_size; } void disk_io_thread::add_job(disk_io_job const& j , mutex::scoped_lock& l , boost::function const& f) { m_jobs.push_back(j); m_jobs.back().callback.swap(const_cast&>(f)); m_jobs.back().start_time = time_now_hires(); if (j.action == disk_io_job::write) m_queue_buffer_size += j.buffer_size; m_signal.signal(l); } void disk_io_thread::add_job(disk_io_job const& j , boost::function const& f) { TORRENT_ASSERT(!m_abort); TORRENT_ASSERT(j.storage || j.action == disk_io_job::abort_thread || j.action == disk_io_job::update_settings); TORRENT_ASSERT(j.buffer_size <= m_block_size); mutex::scoped_lock l(m_queue_mutex); add_job(j, l, f); } bool disk_io_thread::test_error(disk_io_job& j) { TORRENT_ASSERT(j.storage); error_code const& ec = j.storage->error(); if (ec) { j.buffer = 0; j.str.clear(); j.error = ec; j.error_file = j.storage->error_file(); #ifdef TORRENT_DEBUG printf("ERROR: '%s' in %s\n", ec.message().c_str(), j.error_file.c_str()); #endif j.storage->clear_error(); return true; } return false; } void disk_io_thread::post_callback( boost::function const& handler , disk_io_job const& j, int ret) { if (!handler) return; m_ios.post(boost::bind(handler, ret, j)); } enum action_flags_t { read_operation = 1 , buffer_operation = 2 , cancel_on_abort = 4 }; static const boost::uint8_t action_flags[] = { read_operation + buffer_operation + cancel_on_abort // read , buffer_operation // write , 0 // hash , 0 // move_storage , 0 // release_files , 0 // delete_files , 0 // check_fastresume , read_operation + cancel_on_abort // check_files , 0 // save_resume_data , 0 // rename_file , 0 // abort_thread , 0 // clear_read_cache , 0 // abort_torrent , cancel_on_abort // update_settings , read_operation + cancel_on_abort // read_and_hash , read_operation + cancel_on_abort // cache_piece , 0 // finalize_file }; bool should_cancel_on_abort(disk_io_job const& j) { TORRENT_ASSERT(j.action >= 0 && j.action < sizeof(action_flags)); return action_flags[j.action] & cancel_on_abort; } bool is_read_operation(disk_io_job const& j) { TORRENT_ASSERT(j.action >= 0 && j.action < sizeof(action_flags)); return action_flags[j.action] & read_operation; } bool operation_has_buffer(disk_io_job const& j) { TORRENT_ASSERT(j.action >= 0 && j.action < sizeof(action_flags)); return action_flags[j.action] & buffer_operation; } void disk_io_thread::thread_fun() { // 1 = forward in list, -1 = backwards in list int elevator_direction = 1; typedef std::multimap read_jobs_t; read_jobs_t sorted_read_jobs; read_jobs_t::iterator elevator_job_pos = sorted_read_jobs.begin(); for (;;) { #ifdef TORRENT_DISK_STATS m_log << log_time() << " idle" << std::endl; #endif mutex::scoped_lock jl(m_queue_mutex); while (m_jobs.empty() && sorted_read_jobs.empty() && !m_abort) { // if there hasn't been an event in one second // see if we should flush the cache // if (!m_signal.timed_wait(jl, boost::posix_time::seconds(1))) // flush_expired_pieces(); m_signal.wait(jl); m_signal.clear(jl); } if (m_abort && m_jobs.empty()) { jl.unlock(); mutex::scoped_lock l(m_piece_mutex); // flush all disk caches cache_piece_index_t& widx = m_pieces.get<0>(); for (cache_piece_index_t::iterator i = widx.begin() , end(widx.end()); i != end; ++i) flush_range(const_cast(*i), 0, INT_MAX, l); cache_piece_index_t& idx = m_read_pieces.get<0>(); for (cache_piece_index_t::iterator i = idx.begin() , end(idx.end()); i != end; ++i) free_piece(const_cast(*i), l); m_pieces.clear(); m_read_pieces.clear(); // release the io_service to allow the run() call to return // we do this once we stop posting new callbacks to it. m_work.reset(); return; } disk_io_job j; if (!m_jobs.empty()) { // we have a job in the job queue. If it's // a read operation and we are allowed to // reorder jobs, sort it into the read job // list and continue, otherwise just pop it // and use it later j = m_jobs.front(); m_jobs.pop_front(); if (j.action == disk_io_job::write) { TORRENT_ASSERT(m_queue_buffer_size >= j.buffer_size); m_queue_buffer_size -= j.buffer_size; } jl.unlock(); bool defer = false; if (is_read_operation(j)) { defer = true; // at this point the operation we're looking // at is a read operation. If this read operation // can be fully satisfied by the read cache, handle // it immediately if (m_settings.use_read_cache) { #ifdef TORRENT_DISK_STATS m_log << log_time() << " check_cache_hit" << std::endl; #endif // unfortunately we need to lock the cache // if the cache querying function would be // made asyncronous, this would not be // necessary anymore mutex::scoped_lock l(m_piece_mutex); cache_piece_index_t::iterator p = find_cached_piece(m_read_pieces, j, l); cache_piece_index_t& idx = m_read_pieces.get<0>(); // if it's a cache hit, process the job immediately if (p != idx.end() && is_cache_hit(const_cast(*p), j, l)) defer = false; } } TORRENT_ASSERT(j.offset >= 0); if (m_settings.allow_reordered_disk_operations && defer) { #ifdef TORRENT_DISK_STATS m_log << log_time() << " sorting_job" << std::endl; #endif size_type phys_off = j.storage->physical_offset(j.piece, j.offset); bool update_pos = sorted_read_jobs.empty(); sorted_read_jobs.insert(std::pair(phys_off, j)); // if sorted_read_jobs used to be empty, // we need to update the elevator position if (update_pos) elevator_job_pos = sorted_read_jobs.begin(); continue; } } else { // the job queue is empty, pick the next read job // from the sorted job list. So we don't need the // job queue lock anymore jl.unlock(); TORRENT_ASSERT(!sorted_read_jobs.empty()); // if we've reached the end, change the elevator direction if (elevator_job_pos == sorted_read_jobs.end() && elevator_direction == 1) { elevator_direction = -1; --elevator_job_pos; } TORRENT_ASSERT(!sorted_read_jobs.empty()); TORRENT_ASSERT(elevator_job_pos != sorted_read_jobs.end()); j = elevator_job_pos->second; read_jobs_t::iterator to_erase = elevator_job_pos; // if we've reached the begining of the sorted list, // change the elvator direction if (elevator_job_pos == sorted_read_jobs.begin() && elevator_direction == -1) elevator_direction = 1; // move the elevator before erasing the job we're processing // to keep the iterator valid if (elevator_direction > 0) ++elevator_job_pos; else --elevator_job_pos; TORRENT_ASSERT(to_erase != elevator_job_pos); sorted_read_jobs.erase(to_erase); } // if there's a buffer in this job, it will be freed // when this holder is destructed, unless it has been // released. disk_buffer_holder holder(*this , operation_has_buffer(j) ? j.buffer : 0); bool post = false; if (m_queue_buffer_size + j.buffer_size >= m_settings.max_queued_disk_bytes && m_queue_buffer_size < m_settings.max_queued_disk_bytes && m_queue_callback && m_settings.max_queued_disk_bytes > 0) { // we just dropped below the high watermark of number of bytes // queued for writing to the disk. Notify the session so that it // can trigger all the connections waiting for this event post = true; } if (post) m_ios.post(m_queue_callback); flush_expired_pieces(); int ret = 0; TORRENT_ASSERT(j.storage || j.action == disk_io_job::abort_thread || j.action == disk_io_job::update_settings); #ifdef TORRENT_DISK_STATS ptime start = time_now(); #endif if (j.cache_min_time < 0) j.cache_min_time = j.cache_min_time == 0 ? m_settings.default_cache_min_age : (std::max)(m_settings.default_cache_min_age, j.cache_min_time); #ifndef BOOST_NO_EXCEPTIONS try { #endif if (j.storage && j.storage->get_storage_impl()->m_settings == 0) j.storage->get_storage_impl()->m_settings = &m_settings; ptime now = time_now_hires(); m_queue_time.add_sample(total_microseconds(now - j.start_time)); switch (j.action) { case disk_io_job::update_settings: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " update_settings " << std::endl; #endif TORRENT_ASSERT(j.buffer); session_settings const& s = *((session_settings*)j.buffer); TORRENT_ASSERT(s.cache_size >= 0); TORRENT_ASSERT(s.cache_expiry > 0); #if defined TORRENT_WINDOWS if (m_settings.low_prio_disk != s.low_prio_disk) { m_file_pool.set_low_prio_io(s.low_prio_disk); // we need to close all files, since the prio // only takes affect when files are opened m_file_pool.release(0); } #endif m_settings = s; m_file_pool.resize(m_settings.file_pool_size); #if defined __APPLE__ && defined __MACH__ && MAC_OS_X_VERSION_MIN_REQUIRED >= 1050 setiopolicy_np(IOPOL_TYPE_DISK, IOPOL_SCOPE_THREAD , m_settings.low_prio_disk ? IOPOL_THROTTLE : IOPOL_DEFAULT); #endif if (m_settings.cache_size == -1) { // the cache size is set to automatic. Make it // depend on the amount of physical RAM // if we don't know how much RAM we have, just set the // cache size to 16 MiB (1024 blocks) if (m_physical_ram == 0) m_settings.cache_size = 1024; else m_settings.cache_size = m_physical_ram / 8 / m_block_size; } break; } case disk_io_job::abort_torrent: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " abort_torrent " << std::endl; #endif mutex::scoped_lock jl(m_queue_mutex); for (std::list::iterator i = m_jobs.begin(); i != m_jobs.end();) { if (i->storage != j.storage) { ++i; continue; } if (should_cancel_on_abort(*i)) { if (i->action == disk_io_job::write) { TORRENT_ASSERT(m_queue_buffer_size >= i->buffer_size); m_queue_buffer_size -= i->buffer_size; } post_callback(i->callback, *i, -3); m_jobs.erase(i++); continue; } ++i; } // now clear all the read jobs for (read_jobs_t::iterator i = sorted_read_jobs.begin(); i != sorted_read_jobs.end();) { if (i->second.storage != j.storage) { ++i; continue; } post_callback(i->second.callback, i->second, -3); if (elevator_job_pos == i) ++elevator_job_pos; sorted_read_jobs.erase(i++); } jl.unlock(); mutex::scoped_lock l(m_piece_mutex); for (cache_t::iterator i = m_read_pieces.begin(); i != m_read_pieces.end();) { if (i->storage == j.storage) { free_piece(const_cast(*i), l); i = m_read_pieces.erase(i); } else { ++i; } } l.unlock(); release_memory(); break; } case disk_io_job::abort_thread: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " abort_thread " << std::endl; #endif // clear all read jobs mutex::scoped_lock jl(m_queue_mutex); for (std::list::iterator i = m_jobs.begin(); i != m_jobs.end();) { if (should_cancel_on_abort(*i)) { if (i->action == disk_io_job::write) { TORRENT_ASSERT(m_queue_buffer_size >= i->buffer_size); m_queue_buffer_size -= i->buffer_size; } post_callback(i->callback, *i, -3); m_jobs.erase(i++); continue; } ++i; } jl.unlock(); for (read_jobs_t::iterator i = sorted_read_jobs.begin(); i != sorted_read_jobs.end();) { if (i->second.storage != j.storage) { ++i; continue; } post_callback(i->second.callback, i->second, -3); if (elevator_job_pos == i) ++elevator_job_pos; sorted_read_jobs.erase(i++); } m_abort = true; break; } case disk_io_job::read_and_hash: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " read_and_hash " << j.buffer_size << std::endl; #endif INVARIANT_CHECK; TORRENT_ASSERT(j.buffer == 0); j.buffer = allocate_buffer("send buffer"); TORRENT_ASSERT(j.buffer_size <= m_block_size); if (j.buffer == 0) { ret = -1; #if BOOST_VERSION == 103500 j.error = error_code(boost::system::posix_error::not_enough_memory , get_posix_category()); #elif BOOST_VERSION > 103500 j.error = error_code(boost::system::errc::not_enough_memory , get_posix_category()); #else j.error = error::no_memory; #endif j.str.clear(); break; } disk_buffer_holder read_holder(*this, j.buffer); // read the entire piece and verify the piece hash // since we need to check the hash, this function // will ignore the cache size limit (at least for // reading and hashing, not for keeping it around) sha1_hash h; ret = read_piece_from_cache_and_hash(j, h); // -2 means there's no space in the read cache // or that the read cache is disabled if (ret == -1) { test_error(j); break; } if (!m_settings.disable_hash_checks) ret = (j.storage->info()->hash_for_piece(j.piece) == h)?ret:-3; if (ret == -3) { j.storage->mark_failed(j.piece); j.error = errors::failed_hash_check; j.str.clear(); j.buffer = 0; break; } TORRENT_ASSERT(j.buffer == read_holder.get()); read_holder.release(); #if TORRENT_DISK_STATS rename_buffer(j.buffer, "released send buffer"); #endif break; } case disk_io_job::finalize_file: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " finalize_file " << j.piece << std::endl; #endif j.storage->finalize_file(j.piece); break; } case disk_io_job::read: { if (test_error(j)) { ret = -1; break; } #ifdef TORRENT_DISK_STATS m_log << log_time(); #endif INVARIANT_CHECK; TORRENT_ASSERT(j.buffer == 0); j.buffer = allocate_buffer("send buffer"); TORRENT_ASSERT(j.buffer_size <= m_block_size); if (j.buffer == 0) { #ifdef TORRENT_DISK_STATS m_log << " read 0" << std::endl; #endif ret = -1; #if BOOST_VERSION == 103500 j.error = error_code(boost::system::posix_error::not_enough_memory , get_posix_category()); #elif BOOST_VERSION > 103500 j.error = error_code(boost::system::errc::not_enough_memory , get_posix_category()); #else j.error = error::no_memory; #endif j.str.clear(); break; } disk_buffer_holder read_holder(*this, j.buffer); bool hit; ret = try_read_from_cache(j, hit); #ifdef TORRENT_DISK_STATS m_log << (hit?" read-cache-hit ":" read ") << j.buffer_size << std::endl; #endif // -2 means there's no space in the read cache // or that the read cache is disabled if (ret == -1) { j.buffer = 0; test_error(j); break; } else if (ret == -2) { file::iovec_t b = { j.buffer, j.buffer_size }; ret = j.storage->read_impl(&b, j.piece, j.offset, 1); if (ret < 0) { test_error(j); break; } if (ret != j.buffer_size) { // this means the file wasn't big enough for this read j.buffer = 0; j.error = errors::file_too_short; j.error_file.clear(); j.str.clear(); ret = -1; break; } ++m_cache_stats.blocks_read; hit = false; } if (!hit) { ptime now = time_now_hires(); m_read_time.add_sample(total_microseconds(now - j.start_time)); } TORRENT_ASSERT(j.buffer == read_holder.get()); read_holder.release(); #if TORRENT_DISK_STATS rename_buffer(j.buffer, "released send buffer"); #endif break; } case disk_io_job::write: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " write " << j.buffer_size << std::endl; #endif mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; TORRENT_ASSERT(j.cache_min_time >= 0); if (in_use() >= m_settings.cache_size) flush_cache_blocks(l, in_use() - m_settings.cache_size + 1); cache_piece_index_t& idx = m_pieces.get<0>(); cache_piece_index_t::iterator p = find_cached_piece(m_pieces, j, l); int block = j.offset / m_block_size; TORRENT_ASSERT(j.buffer); TORRENT_ASSERT(j.buffer_size <= m_block_size); if (p != idx.end()) { TORRENT_ASSERT(p->blocks[block].buf == 0); if (p->blocks[block].buf) { free_buffer(p->blocks[block].buf); --m_cache_stats.cache_size; --const_cast(*p).num_blocks; } p->blocks[block].buf = j.buffer; p->blocks[block].callback.swap(j.callback); #ifdef TORRENT_DISK_STATS rename_buffer(j.buffer, "write cache"); #endif ++m_cache_stats.cache_size; ++const_cast(*p).num_blocks; idx.modify(p, update_last_use(j.cache_min_time)); // we might just have created a contiguous range // that meets the requirement to be flushed. try it flush_contiguous_blocks(const_cast(*p) , l, m_settings.write_cache_line_size); if (p->num_blocks == 0) idx.erase(p); } else { if (cache_block(j, j.callback, j.cache_min_time, l) < 0) { l.unlock(); file::iovec_t iov = {j.buffer, j.buffer_size}; ret = j.storage->write_impl(&iov, j.piece, j.offset, 1); l.lock(); if (ret < 0) { test_error(j); break; } break; } } // we've now inserted the buffer // in the cache, we should not // free it at the end holder.release(); if (in_use() > m_settings.cache_size) flush_cache_blocks(l, in_use() - m_settings.cache_size); break; } case disk_io_job::cache_piece: { mutex::scoped_lock l(m_piece_mutex); if (test_error(j)) { ret = -1; break; } #ifdef TORRENT_DISK_STATS m_log << log_time() << " cache " << j.piece << std::endl; #endif INVARIANT_CHECK; TORRENT_ASSERT(j.buffer == 0); cache_piece_index_t::iterator p; bool hit; ret = cache_piece(j, p, hit, 0, l); if (ret == -2) ret = -1; if (ret < 0) test_error(j); break; } case disk_io_job::hash: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " hash" << std::endl; #endif mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; cache_piece_index_t& idx = m_pieces.get<0>(); cache_piece_index_t::iterator i = find_cached_piece(m_pieces, j, l); if (i != idx.end()) { TORRENT_ASSERT(i->storage); int ret = flush_range(const_cast(*i), 0, INT_MAX, l); idx.erase(i); if (test_error(j)) { ret = -1; j.storage->mark_failed(j.piece); break; } } l.unlock(); if (m_settings.disable_hash_checks) { ret = 0; break; } sha1_hash h = j.storage->hash_for_piece_impl(j.piece); if (test_error(j)) { ret = -1; j.storage->mark_failed(j.piece); break; } ret = (j.storage->info()->hash_for_piece(j.piece) == h)?0:-2; if (ret == -2) j.storage->mark_failed(j.piece); break; } case disk_io_job::move_storage: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " move" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); ret = j.storage->move_storage_impl(j.str); if (ret != 0) { test_error(j); break; } j.str = j.storage->save_path(); break; } case disk_io_job::release_files: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " release" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; for (cache_t::iterator i = m_pieces.begin(); i != m_pieces.end();) { if (i->storage == j.storage) { flush_range(const_cast(*i), 0, INT_MAX, l); i = m_pieces.erase(i); } else { ++i; } } l.unlock(); release_memory(); ret = j.storage->release_files_impl(); if (ret != 0) test_error(j); break; } case disk_io_job::clear_read_cache: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " clear-cache" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; for (cache_t::iterator i = m_read_pieces.begin(); i != m_read_pieces.end();) { if (i->storage == j.storage) { free_piece(const_cast(*i), l); i = m_read_pieces.erase(i); } else { ++i; } } l.unlock(); release_memory(); ret = 0; break; } case disk_io_job::delete_files: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " delete" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); mutex::scoped_lock l(m_piece_mutex); INVARIANT_CHECK; cache_piece_index_t& idx = m_pieces.get<0>(); cache_piece_index_t::iterator start = idx.lower_bound(std::pair(j.storage.get(), 0)); cache_piece_index_t::iterator end = idx.upper_bound(std::pair(j.storage.get(), INT_MAX)); for (cache_piece_index_t::iterator i = start; i != end; ++i) { torrent_info const& ti = *i->storage->info(); int blocks_in_piece = (ti.piece_size(i->piece) + m_block_size - 1) / m_block_size; for (int j = 0; j < blocks_in_piece; ++j) { if (i->blocks[j].buf == 0) continue; free_buffer(i->blocks[j].buf); i->blocks[j].buf = 0; --m_cache_stats.cache_size; } } idx.erase(start, end); l.unlock(); release_memory(); ret = j.storage->delete_files_impl(); if (ret != 0) test_error(j); break; } case disk_io_job::check_fastresume: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " check_fastresume" << std::endl; #endif lazy_entry const* rd = (lazy_entry const*)j.buffer; TORRENT_ASSERT(rd != 0); ret = j.storage->check_fastresume(*rd, j.error); break; } case disk_io_job::check_files: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " check_files" << std::endl; #endif int piece_size = j.storage->info()->piece_length(); for (int processed = 0; processed < 4 * 1024 * 1024; processed += piece_size) { ptime now = time_now_hires(); TORRENT_ASSERT(now >= m_last_file_check); #if BOOST_VERSION > 103600 if (now - m_last_file_check < milliseconds(m_settings.file_checks_delay_per_block)) { int sleep_time = m_settings.file_checks_delay_per_block * (piece_size / (16 * 1024)) - total_milliseconds(now - m_last_file_check); if (sleep_time < 0) sleep_time = 0; TORRENT_ASSERT(sleep_time < 5 * 1000); sleep(sleep_time); } m_last_file_check = time_now_hires(); #endif if (m_waiting_to_shutdown) break; ret = j.storage->check_files(j.piece, j.offset, j.error); #ifndef BOOST_NO_EXCEPTIONS try { #endif TORRENT_ASSERT(j.callback); if (j.callback && ret == piece_manager::need_full_check) post_callback(j.callback, j, ret); #ifndef BOOST_NO_EXCEPTIONS } catch (std::exception&) {} #endif if (ret != piece_manager::need_full_check) break; } if (test_error(j)) { ret = piece_manager::fatal_disk_error; break; } TORRENT_ASSERT(ret != -2 || !j.str.empty()); // if the check is not done, add it at the end of the job queue if (ret == piece_manager::need_full_check) { // offset needs to be reset to 0 so that the disk // job sorting can be done correctly j.offset = 0; add_job(j, j.callback); continue; } break; } case disk_io_job::save_resume_data: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " save_resume_data" << std::endl; #endif j.resume_data.reset(new entry(entry::dictionary_t)); j.storage->write_resume_data(*j.resume_data); ret = 0; break; } case disk_io_job::rename_file: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " rename_file" << std::endl; #endif ret = j.storage->rename_file_impl(j.piece, j.str); if (ret != 0) { test_error(j); break; } } } #ifndef BOOST_NO_EXCEPTIONS } catch (std::exception& e) { ret = -1; try { j.str = e.what(); } catch (std::exception&) {} } #endif // if (!j.callback) std::cerr << "DISK THREAD: no callback specified" << std::endl; // else std::cerr << "DISK THREAD: invoking callback" << std::endl; #ifndef BOOST_NO_EXCEPTIONS try { #endif TORRENT_ASSERT(ret != -2 || !j.str.empty() || j.action == disk_io_job::hash); #if TORRENT_DISK_STATS if ((j.action == disk_io_job::read || j.action == disk_io_job::read_and_hash) && j.buffer != 0) rename_buffer(j.buffer, "posted send buffer"); #endif post_callback(j.callback, j, ret); #ifndef BOOST_NO_EXCEPTIONS } catch (std::exception&) { TORRENT_ASSERT(false); } #endif } TORRENT_ASSERT(false); } }