/* Copyright (c) 2006-2018, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "libtorrent/kademlia/node_id.hpp" #include "libtorrent/kademlia/node_entry.hpp" #include "libtorrent/assert.hpp" #include "libtorrent/broadcast_socket.hpp" // for is_local et.al #include "libtorrent/random.hpp" // for random #include "libtorrent/hasher.hpp" // for hasher #include "libtorrent/crc32c.hpp" // for crc32c namespace libtorrent { namespace dht { // returns the distance between the two nodes // using the kademlia XOR-metric node_id distance(node_id const& n1, node_id const& n2) { return n1 ^ n2; } // returns true if: distance(n1, ref) < distance(n2, ref) bool compare_ref(node_id const& n1, node_id const& n2, node_id const& ref) { node_id const lhs = n1 ^ ref; node_id const rhs = n2 ^ ref; return lhs < rhs; } // returns n in: 2^n <= distance(n1, n2) < 2^(n+1) // useful for finding out which bucket a node belongs to int distance_exp(node_id const& n1, node_id const& n2) { // TODO: it's a little bit weird to return 159 - leading zeroes. It should // probably be 160 - leading zeroes, but all other code in here is tuned to // this expectation now, and it doesn't really matter (other than complexity) return std::max(159 - distance(n1, n2).count_leading_zeroes(), 0); } int min_distance_exp(node_id const& n1, std::vector const& ids) { TORRENT_ASSERT(ids.size() > 0); int min = 160; // see distance_exp for the why of this constant for (auto const& node_id : ids) { min = std::min(min, distance_exp(n1, node_id)); } return min; } node_id generate_id_impl(address const& ip_, std::uint32_t r) { std::uint8_t* ip = nullptr; static std::uint8_t const v4mask[] = { 0x03, 0x0f, 0x3f, 0xff }; static std::uint8_t const v6mask[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff }; std::uint8_t const* mask = nullptr; int num_octets = 0; address_v4::bytes_type b4{}; address_v6::bytes_type b6{}; if (ip_.is_v6()) { b6 = ip_.to_v6().to_bytes(); ip = b6.data(); num_octets = 8; mask = v6mask; } else { b4 = ip_.to_v4().to_bytes(); ip = b4.data(); num_octets = 4; mask = v4mask; } for (int i = 0; i < num_octets; ++i) ip[i] &= mask[i]; ip[0] |= (r & 0x7) << 5; // this is the crc32c (Castagnoli) polynomial std::uint32_t c; if (num_octets == 4) { c = crc32c_32(*reinterpret_cast(ip)); } else { TORRENT_ASSERT(num_octets == 8); c = crc32c(reinterpret_cast(ip), 1); } node_id id; id[0] = (c >> 24) & 0xff; id[1] = (c >> 16) & 0xff; id[2] = (((c >> 8) & 0xf8) | random(0x7)) & 0xff; for (int i = 3; i < 19; ++i) id[i] = random(0xff) & 0xff; id[19] = r & 0xff; return id; } static std::uint32_t secret = 0; void make_id_secret(node_id& in) { if (secret == 0) secret = random(0xfffffffe) + 1; std::uint32_t const rand = random(0xffffffff); // generate the last 4 bytes as a "signature" of the previous 4 bytes. This // lets us verify whether a hash came from this function or not in the future. hasher h(reinterpret_cast(&secret), 4); h.update(reinterpret_cast(&rand), 4); sha1_hash const secret_hash = h.final(); std::memcpy(&in[20 - 4], &secret_hash[0], 4); std::memcpy(&in[20 - 8], &rand, 4); } node_id generate_random_id() { char r[20]; aux::random_bytes(r); return hasher(r, 20).final(); } node_id generate_secret_id() { node_id ret = generate_random_id(); make_id_secret(ret); return ret; } bool verify_secret_id(node_id const& nid) { if (secret == 0) return false; hasher h(reinterpret_cast(&secret), 4); h.update(reinterpret_cast(&nid[20 - 8]), 4); sha1_hash secret_hash = h.final(); return std::memcmp(&nid[20 - 4], &secret_hash[0], 4) == 0; } // verifies whether a node-id matches the IP it's used from // returns true if the node-id is OK coming from this source // and false otherwise. bool verify_id(node_id const& nid, address const& source_ip) { // no need to verify local IPs, they would be incorrect anyway if (is_local(source_ip)) return true; node_id h = generate_id_impl(source_ip, nid[19]); return nid[0] == h[0] && nid[1] == h[1] && (nid[2] & 0xf8) == (h[2] & 0xf8); } node_id generate_id(address const& ip) { return generate_id_impl(ip, random(0xffffffff)); } bool matching_prefix(node_id const& nid, int mask, int prefix, int offset) { node_id id = nid; id <<= offset; return (id[0] & mask) == prefix; } node_id generate_prefix_mask(int const bits) { TORRENT_ASSERT(bits >= 0); TORRENT_ASSERT(bits <= 160); node_id mask; std::size_t b = 0; for (; int(b) < bits - 7; b += 8) mask[b / 8] |= 0xff; if (bits < 160) mask[b / 8] |= (0xff << (8 - (bits & 7))) & 0xff; return mask; } } } // namespace libtorrent::dht