/* Copyright (c) 2006-2015, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/config.hpp" #include "libtorrent/aux_/disable_warnings_push.hpp" #include #include #include #ifdef TORRENT_USE_VALGRIND #include #endif #include "libtorrent/aux_/disable_warnings_pop.hpp" #include "libtorrent/io.hpp" #include "libtorrent/bencode.hpp" #include "libtorrent/hasher.hpp" #include "libtorrent/socket.hpp" #include "libtorrent/random.hpp" #include "libtorrent/aux_/session_impl.hpp" #include "libtorrent/alert_types.hpp" // for dht_lookup #include "libtorrent/performance_counters.hpp" // for counters #include "libtorrent/kademlia/node_id.hpp" #include "libtorrent/kademlia/rpc_manager.hpp" #include "libtorrent/kademlia/routing_table.hpp" #include "libtorrent/kademlia/node.hpp" #include "libtorrent/kademlia/dht_observer.hpp" #include "libtorrent/kademlia/direct_request.hpp" #include "libtorrent/kademlia/refresh.hpp" #include "libtorrent/kademlia/get_peers.hpp" #include "libtorrent/kademlia/get_item.hpp" namespace libtorrent { namespace dht { using detail::write_endpoint; namespace { void nop() {} node_id calculate_node_id(node_id const& nid, dht_observer* observer) { address external_address; if (observer) external_address = observer->external_address(); if (nid == (node_id::min)() || !verify_id(nid, external_address)) return generate_id(external_address); return nid; } } // anonymous namespace node::node(udp_socket_interface* sock , dht_settings const& settings, node_id nid , dht_observer* observer , struct counters& cnt , dht_storage_constructor_type storage_constructor) : m_settings(settings) , m_id(calculate_node_id(nid, observer)) , m_table(m_id, 8, settings, observer) , m_rpc(m_id, m_settings, m_table, sock, observer) , m_observer(observer) , m_last_tracker_tick(aux::time_now()) , m_last_self_refresh(min_time()) , m_sock(sock) , m_counters(cnt) , m_storage(storage_constructor(m_id, m_settings)) { m_secret[0] = random(); m_secret[1] = random(); TORRENT_ASSERT(m_storage.get() != NULL); } node::~node() { } bool node::verify_token(std::string const& token, char const* info_hash , udp::endpoint const& addr) const { if (token.length() != 4) { #ifndef TORRENT_DISABLE_LOGGING if (m_observer) { m_observer->log(dht_logger::node, "token of incorrect length: %d" , int(token.length())); } #endif return false; } hasher h1; error_code ec; std::string address = addr.address().to_string(ec); if (ec) return false; h1.update(&address[0], address.length()); h1.update(reinterpret_cast(&m_secret[0]), sizeof(m_secret[0])); h1.update(reinterpret_cast(info_hash), sha1_hash::size); sha1_hash h = h1.final(); if (std::equal(token.begin(), token.end(), reinterpret_cast(&h[0]))) return true; hasher h2; h2.update(&address[0], address.length()); h2.update(reinterpret_cast(&m_secret[1]), sizeof(m_secret[1])); h2.update(info_hash, sha1_hash::size); h = h2.final(); if (std::equal(token.begin(), token.end(), reinterpret_cast(&h[0]))) return true; return false; } std::string node::generate_token(udp::endpoint const& addr, char const* info_hash) { std::string token; token.resize(4); hasher h; error_code ec; std::string address = addr.address().to_string(ec); TORRENT_ASSERT(!ec); h.update(&address[0], address.length()); h.update(reinterpret_cast(&m_secret[0]), sizeof(m_secret[0])); h.update(info_hash, sha1_hash::size); sha1_hash hash = h.final(); std::copy(hash.begin(), hash.begin() + 4, reinterpret_cast(&token[0])); TORRENT_ASSERT(std::equal(token.begin(), token.end(), reinterpret_cast(&hash[0]))); return token; } void node::bootstrap(std::vector const& nodes , find_data::nodes_callback const& f) { node_id target = m_id; make_id_secret(target); boost::intrusive_ptr r(new dht::bootstrap(*this, target, f)); m_last_self_refresh = aux::time_now(); #ifndef TORRENT_DISABLE_LOGGING int count = 0; #endif for (std::vector::const_iterator i = nodes.begin() , end(nodes.end()); i != end; ++i) { #ifndef TORRENT_DISABLE_LOGGING ++count; #endif r->add_entry(node_id(0), *i, observer::flag_initial); } // make us start as far away from our node ID as possible r->trim_seed_nodes(); #ifndef TORRENT_DISABLE_LOGGING if (m_observer) m_observer->log(dht_logger::node, "bootstrapping with %d nodes", count); #endif r->start(); } int node::bucket_size(int bucket) { return m_table.bucket_size(bucket); } void node::new_write_key() { m_secret[1] = m_secret[0]; m_secret[0] = random(); } void node::unreachable(udp::endpoint const& ep) { m_rpc.unreachable(ep); } void node::incoming(msg const& m) { // is this a reply? bdecode_node y_ent = m.message.dict_find_string("y"); if (!y_ent || y_ent.string_length() == 0) { // don't respond to this obviously broken messages. We don't // want to open up a magnification opportunity // entry e; // incoming_error(e, "missing 'y' entry"); // m_sock.send_packet(e, m.addr, 0); return; } char y = *(y_ent.string_ptr()); bdecode_node ext_ip = m.message.dict_find_string("ip"); // backwards compatibility if (!ext_ip) { bdecode_node r = m.message.dict_find_dict("r"); if (r) ext_ip = r.dict_find_string("ip"); } #if TORRENT_USE_IPV6 if (ext_ip && ext_ip.string_length() >= 16) { // this node claims we use the wrong node-ID! address_v6::bytes_type b; memcpy(&b[0], ext_ip.string_ptr(), 16); if (m_observer) m_observer->set_external_address(address_v6(b) , m.addr.address()); } else #endif if (ext_ip && ext_ip.string_length() >= 4) { address_v4::bytes_type b; memcpy(&b[0], ext_ip.string_ptr(), 4); if (m_observer) m_observer->set_external_address(address_v4(b) , m.addr.address()); } switch (y) { case 'r': { node_id id; m_rpc.incoming(m, &id); break; } case 'q': { TORRENT_ASSERT(m.message.dict_find_string_value("y") == "q"); // When a DHT node enters the read-only state, it no longer // responds to 'query' messages that it receives. if (m_settings.read_only) break; entry e; incoming_request(m, e); m_sock->send_packet(e, m.addr, 0); break; } case 'e': { #ifndef TORRENT_DISABLE_LOGGING bdecode_node err = m.message.dict_find_list("e"); if (err && err.list_size() >= 2 && m_observer) { m_observer->log(dht_logger::node, "INCOMING ERROR: %s" , err.list_string_value_at(1).c_str()); } #endif node_id id; m_rpc.incoming(m, &id); break; } } } namespace { void announce_fun(std::vector > const& v , node& node, int listen_port, sha1_hash const& ih, int flags) { #ifndef TORRENT_DISABLE_LOGGING if (node.observer()) { char hex_ih[41]; to_hex(reinterpret_cast(&ih[0]), 20, hex_ih); node.observer()->log(dht_logger::node, "sending announce_peer [ ih: %s " " p: %d nodes: %d ]", hex_ih, listen_port, int(v.size())); } #endif // create a dummy traversal_algorithm boost::intrusive_ptr algo( new traversal_algorithm(node, (node_id::min)())); // store on the first k nodes for (std::vector >::const_iterator i = v.begin() , end(v.end()); i != end; ++i) { #ifndef TORRENT_DISABLE_LOGGING if (node.observer()) { node.observer()->log(dht_logger::node, "announce-distance: %d" , (160 - distance_exp(ih, i->first.id))); } #endif void* ptr = node.m_rpc.allocate_observer(); if (ptr == 0) return; observer_ptr o(new (ptr) announce_observer(algo, i->first.ep(), i->first.id)); #if defined TORRENT_DEBUG || defined TORRENT_RELEASE_ASSERTS o->m_in_constructor = false; #endif entry e; e["y"] = "q"; e["q"] = "announce_peer"; entry& a = e["a"]; a["info_hash"] = ih.to_string(); a["port"] = listen_port; a["token"] = i->second; a["seed"] = (flags & node::flag_seed) ? 1 : 0; if (flags & node::flag_implied_port) a["implied_port"] = 1; node.stats_counters().inc_stats_counter(counters::dht_announce_peer_out); node.m_rpc.invoke(e, i->first.ep(), o); } } } void node::add_router_node(udp::endpoint router) { #ifndef TORRENT_DISABLE_LOGGING if (m_observer) { m_observer->log(dht_logger::node, "adding router node: %s" , print_endpoint(router).c_str()); } #endif m_table.add_router_node(router); } void node::add_node(udp::endpoint node) { // ping the node, and if we get a reply, it // will be added to the routing table send_single_refresh(node, m_table.num_active_buckets()); } void node::get_peers(sha1_hash const& info_hash , boost::function const&)> dcallback , boost::function > const&)> ncallback , bool noseeds) { // search for nodes with ids close to id or with peers // for info-hash id. then send announce_peer to them. boost::intrusive_ptr ta; if (m_settings.privacy_lookups) { ta.reset(new dht::obfuscated_get_peers(*this, info_hash, dcallback, ncallback, noseeds)); } else { ta.reset(new dht::get_peers(*this, info_hash, dcallback, ncallback, noseeds)); } ta->start(); } void node::announce(sha1_hash const& info_hash, int listen_port, int flags , boost::function const&)> f) { #ifndef TORRENT_DISABLE_LOGGING if (m_observer) { char hex_ih[41]; to_hex(reinterpret_cast(&info_hash[0]), 20, hex_ih); m_observer->log(dht_logger::node, "announcing [ ih: %s p: %d ]" , hex_ih, listen_port); } #endif get_peers(info_hash, f , boost::bind(&announce_fun, _1, boost::ref(*this) , listen_port, info_hash, flags), flags & node::flag_seed); } void node::direct_request(boost::asio::ip::udp::endpoint ep, entry& e , boost::function f) { // not really a traversal boost::intrusive_ptr algo( new direct_traversal(*this, (node_id::min)(), f)); void* ptr = m_rpc.allocate_observer(); if (ptr == 0) return; observer_ptr o(new (ptr) direct_observer(algo, ep, (node_id::min)())); #if defined TORRENT_DEBUG || defined TORRENT_RELEASE_ASSERTS o->m_in_constructor = false; #endif m_rpc.invoke(e, ep, o); } void node::get_item(sha1_hash const& target , boost::function f) { #ifndef TORRENT_DISABLE_LOGGING if (m_observer) { char hex_target[41]; to_hex(reinterpret_cast(&target[0]), 20, hex_target); m_observer->log(dht_logger::node, "starting get for [ hash: %s ]" , hex_target); } #endif boost::intrusive_ptr ta; ta.reset(new dht::get_item(*this, target, f)); ta->start(); } void node::get_item(char const* pk, std::string const& salt , boost::function f) { #ifndef TORRENT_DISABLE_LOGGING if (m_observer) { char hex_key[65]; to_hex(pk, 32, hex_key); m_observer->log(dht_logger::node, "starting get for [ key: %s ]", hex_key); } #endif boost::intrusive_ptr ta; ta.reset(new dht::get_item(*this, pk, salt, f)); ta->start(); } struct ping_observer : observer { ping_observer( boost::intrusive_ptr const& algorithm , udp::endpoint const& ep, node_id const& id) : observer(algorithm, ep, id) {} // parses out "nodes" virtual void reply(msg const& m) { flags |= flag_done; bdecode_node r = m.message.dict_find_dict("r"); if (!r) { #ifndef TORRENT_DISABLE_LOGGING if (get_observer()) { get_observer()->log(dht_logger::node , "[%p] missing response dict" , static_cast(algorithm())); } #endif return; } // look for nodes bdecode_node n = r.dict_find_string("nodes"); if (n) { char const* nodes = n.string_ptr(); char const* end = nodes + n.string_length(); while (end - nodes >= 26) { node_id id; std::copy(nodes, nodes + 20, id.begin()); nodes += 20; algorithm()->get_node().m_table.heard_about(id , detail::read_v4_endpoint(nodes)); } } } }; void node::tick() { // every now and then we refresh our own ID, just to keep // expanding the routing table buckets closer to us. // if m_table.depth() < 4, means routing_table doesn't // have enough nodes. time_point now = aux::time_now(); if (m_last_self_refresh + minutes(10) < now && m_table.depth() < 4) { node_id target = m_id; make_id_secret(target); boost::intrusive_ptr r(new dht::bootstrap(*this, target , boost::bind(&nop))); r->start(); m_last_self_refresh = now; return; } node_entry const* ne = m_table.next_refresh(); if (ne == NULL) return; // this shouldn't happen TORRENT_ASSERT(m_id != ne->id); if (ne->id == m_id) return; int bucket = 159 - distance_exp(m_id, ne->id); TORRENT_ASSERT(bucket < 160); send_single_refresh(ne->ep(), bucket, ne->id); } void node::send_single_refresh(udp::endpoint const& ep, int bucket , node_id const& id) { TORRENT_ASSERT(id != m_id); void* ptr = m_rpc.allocate_observer(); if (ptr == 0) return; TORRENT_ASSERT(bucket >= 0); TORRENT_ASSERT(bucket <= 159); // generate a random node_id within the given bucket // TODO: 2 it would be nice to have a bias towards node-id prefixes that // are missing in the bucket node_id mask = generate_prefix_mask(bucket + 1); node_id target = generate_secret_id() & ~mask; target |= m_id & mask; // create a dummy traversal_algorithm // this is unfortunately necessary for the observer // to free itself from the pool when it's being released boost::intrusive_ptr algo( new traversal_algorithm(*this, (node_id::min)())); observer_ptr o(new (ptr) ping_observer(algo, ep, id)); #if defined TORRENT_DEBUG || defined TORRENT_RELEASE_ASSERTS o->m_in_constructor = false; #endif entry e; e["y"] = "q"; entry& a = e["a"]; if (m_table.is_full(bucket)) { // current bucket is full, just ping it. e["q"] = "ping"; m_counters.inc_stats_counter(counters::dht_ping_out); } else { // use get_peers instead of find_node. We'll get nodes in the response // either way. e["q"] = "get_peers"; a["info_hash"] = target.to_string(); m_counters.inc_stats_counter(counters::dht_get_peers_out); } m_rpc.invoke(e, ep, o); } time_duration node::connection_timeout() { time_duration d = m_rpc.tick(); time_point now(aux::time_now()); if (now - minutes(2) < m_last_tracker_tick) return d; m_last_tracker_tick = now; m_storage->tick(); return d; } void node::status(std::vector& table , std::vector& requests) { mutex_t::scoped_lock l(m_mutex); m_table.status(table); for (std::set::iterator i = m_running_requests.begin() , end(m_running_requests.end()); i != end; ++i) { requests.push_back(dht_lookup()); dht_lookup& lookup = requests.back(); (*i)->status(lookup); } } // TODO: in the future, this function should update all the // dht related counter. For now, it just update the storage // related ones. void node::update_stats_counters(counters& c) const { const dht_storage_counters& dht_cnt = m_storage->counters(); c.set_value(counters::dht_torrents, dht_cnt.torrents); c.set_value(counters::dht_peers, dht_cnt.peers); c.set_value(counters::dht_immutable_data, dht_cnt.immutable_data); c.set_value(counters::dht_mutable_data, dht_cnt.mutable_data); } #ifndef TORRENT_NO_DEPRECATE // TODO: 2 use the non deprecated function instead of this one void node::status(session_status& s) { mutex_t::scoped_lock l(m_mutex); m_table.status(s); s.dht_torrents = int(m_storage->num_torrents()); s.active_requests.clear(); s.dht_total_allocations = m_rpc.num_allocated_observers(); for (std::set::iterator i = m_running_requests.begin() , end(m_running_requests.end()); i != end; ++i) { s.active_requests.push_back(dht_lookup()); dht_lookup& lookup = s.active_requests.back(); (*i)->status(lookup); } } #endif void node::lookup_peers(sha1_hash const& info_hash, entry& reply , bool noseed, bool scrape) const { if (m_observer) m_observer->get_peers(info_hash); m_storage->get_peers(info_hash, noseed, scrape, reply); } void TORRENT_EXTRA_EXPORT write_nodes_entry(entry& r, nodes_t const& nodes) { entry& n = r["nodes"]; std::back_insert_iterator out(n.string()); for (nodes_t::const_iterator i = nodes.begin() , end(nodes.end()); i != end; ++i) { if (!i->addr().is_v4()) continue; std::copy(i->id.begin(), i->id.end(), out); write_endpoint(udp::endpoint(i->addr(), i->port()), out); } } // verifies that a message has all the required // entries and returns them in ret bool verify_message(bdecode_node const& message, key_desc_t const desc[] , bdecode_node ret[], int size , char* error, int error_size) { // get a non-root bdecode_node that still // points to the root. message should not be copied bdecode_node msg = message.non_owning(); // clear the return buffer for (int i = 0; i < size; ++i) ret[i].clear(); // when parsing child nodes, this is the stack // of bdecode_nodes to return to bdecode_node stack[5]; int stack_ptr = -1; if (msg.type() != bdecode_node::dict_t) { snprintf(error, error_size, "not a dictionary"); return false; } ++stack_ptr; stack[stack_ptr] = msg; for (int i = 0; i < size; ++i) { key_desc_t const& k = desc[i]; // fprintf(stderr, "looking for %s in %s\n", k.name, print_entry(*msg).c_str()); ret[i] = msg.dict_find(k.name); // none_t means any type if (ret[i] && ret[i].type() != k.type && k.type != bdecode_node::none_t) ret[i].clear(); if (ret[i] == 0 && (k.flags & key_desc_t::optional) == 0) { // the key was not found, and it's not an optional key snprintf(error, error_size, "missing '%s' key", k.name); return false; } if (k.size > 0 && ret[i] && k.type == bdecode_node::string_t) { bool invalid = false; if (k.flags & key_desc_t::size_divisible) invalid = (ret[i].string_length() % k.size) != 0; else invalid = ret[i].string_length() != k.size; if (invalid) { // the string was not of the required size ret[i].clear(); if ((k.flags & key_desc_t::optional) == 0) { snprintf(error, error_size, "invalid value for '%s'", k.name); return false; } } } if (k.flags & key_desc_t::parse_children) { TORRENT_ASSERT(k.type == bdecode_node::dict_t); if (ret[i]) { ++stack_ptr; TORRENT_ASSERT(stack_ptr < int(sizeof(stack)/sizeof(stack[0]))); msg = ret[i]; stack[stack_ptr] = msg; } else { // skip all children while (i < size && (desc[i].flags & key_desc_t::last_child) == 0) ++i; // if this assert is hit, desc is incorrect TORRENT_ASSERT(i < size); } } else if (k.flags & key_desc_t::last_child) { TORRENT_ASSERT(stack_ptr > 0); // this can happen if the specification passed // in is unbalanced. i.e. contain more last_child // nodes than parse_children if (stack_ptr == 0) return false; --stack_ptr; msg = stack[stack_ptr]; } } return true; } void incoming_error(entry& e, char const* msg, int error_code) { e["y"] = "e"; entry::list_type& l = e["e"].list(); l.push_back(entry(error_code)); l.push_back(entry(msg)); } // build response void node::incoming_request(msg const& m, entry& e) { if (!m_sock->has_quota()) return; e = entry(entry::dictionary_t); e["y"] = "r"; e["t"] = m.message.dict_find_string_value("t"); key_desc_t top_desc[] = { {"q", bdecode_node::string_t, 0, 0}, {"ro", bdecode_node::int_t, 0, key_desc_t::optional}, {"a", bdecode_node::dict_t, 0, key_desc_t::parse_children}, {"id", bdecode_node::string_t, 20, key_desc_t::last_child}, }; bdecode_node top_level[4]; char error_string[200]; if (!verify_message(m.message, top_desc, top_level, 4, error_string , sizeof(error_string))) { incoming_error(e, error_string); return; } e["ip"] = endpoint_to_bytes(m.addr); bdecode_node arg_ent = top_level[2]; bool read_only = top_level[1] && top_level[1].int_value() != 0; node_id id(top_level[3].string_ptr()); // if this nodes ID doesn't match its IP, tell it what // its IP is with an error // don't enforce this yet if (m_settings.enforce_node_id && !verify_id(id, m.addr.address())) { incoming_error(e, "invalid node ID"); return; } if (!read_only) m_table.heard_about(id, m.addr); entry& reply = e["r"]; m_rpc.add_our_id(reply); // mirror back the other node's external port reply["p"] = m.addr.port(); char const* query = top_level[0].string_ptr(); int query_len = top_level[0].string_length(); if (m_observer && m_observer->on_dht_request(query, query_len, m, e)) return; if (query_len == 4 && memcmp(query, "ping", 4) == 0) { m_counters.inc_stats_counter(counters::dht_ping_in); // we already have 't' and 'id' in the response // no more left to add } else if (query_len == 9 && memcmp(query, "get_peers", 9) == 0) { key_desc_t msg_desc[] = { {"info_hash", bdecode_node::string_t, 20, 0}, {"noseed", bdecode_node::int_t, 0, key_desc_t::optional}, {"scrape", bdecode_node::int_t, 0, key_desc_t::optional}, }; bdecode_node msg_keys[3]; if (!verify_message(arg_ent, msg_desc, msg_keys, 3, error_string , sizeof(error_string))) { m_counters.inc_stats_counter(counters::dht_invalid_get_peers); incoming_error(e, error_string); return; } reply["token"] = generate_token(m.addr, msg_keys[0].string_ptr()); m_counters.inc_stats_counter(counters::dht_get_peers_in); sha1_hash info_hash(msg_keys[0].string_ptr()); nodes_t n; // always return nodes as well as peers m_table.find_node(info_hash, n, 0); write_nodes_entry(reply, n); bool noseed = false; bool scrape = false; if (msg_keys[1] && msg_keys[1].int_value() != 0) noseed = true; if (msg_keys[2] && msg_keys[2].int_value() != 0) scrape = true; lookup_peers(info_hash, reply, noseed, scrape); #ifndef TORRENT_DISABLE_LOGGING if (reply.find_key("values") && m_observer) { m_observer->log(dht_logger::node, "values: %d" , int(reply["values"].list().size())); } #endif } else if (query_len == 9 && memcmp(query, "find_node", 9) == 0) { key_desc_t msg_desc[] = { {"target", bdecode_node::string_t, 20, 0}, }; bdecode_node msg_keys[1]; if (!verify_message(arg_ent, msg_desc, msg_keys, 1, error_string, sizeof(error_string))) { incoming_error(e, error_string); return; } m_counters.inc_stats_counter(counters::dht_find_node_in); sha1_hash target(msg_keys[0].string_ptr()); // TODO: 2 find_node should write directly to the response entry nodes_t n; m_table.find_node(target, n, 0); write_nodes_entry(reply, n); } else if (query_len == 13 && memcmp(query, "announce_peer", 13) == 0) { key_desc_t msg_desc[] = { {"info_hash", bdecode_node::string_t, 20, 0}, {"port", bdecode_node::int_t, 0, 0}, {"token", bdecode_node::string_t, 0, 0}, {"n", bdecode_node::string_t, 0, key_desc_t::optional}, {"seed", bdecode_node::int_t, 0, key_desc_t::optional}, {"implied_port", bdecode_node::int_t, 0, key_desc_t::optional}, }; bdecode_node msg_keys[6]; if (!verify_message(arg_ent, msg_desc, msg_keys, 6, error_string, sizeof(error_string))) { m_counters.inc_stats_counter(counters::dht_invalid_announce); incoming_error(e, error_string); return; } int port = int(msg_keys[1].int_value()); // is the announcer asking to ignore the explicit // listen port and instead use the source port of the packet? if (msg_keys[5] && msg_keys[5].int_value() != 0) port = m.addr.port(); if (port < 0 || port >= 65536) { m_counters.inc_stats_counter(counters::dht_invalid_announce); incoming_error(e, "invalid port"); return; } sha1_hash info_hash(msg_keys[0].string_ptr()); if (m_observer) m_observer->announce(info_hash, m.addr.address(), port); if (!verify_token(msg_keys[2].string_value(), msg_keys[0].string_ptr(), m.addr)) { m_counters.inc_stats_counter(counters::dht_invalid_announce); incoming_error(e, "invalid token"); return; } m_counters.inc_stats_counter(counters::dht_announce_peer_in); // the token was correct. That means this // node is not spoofing its address. So, let // the table get a chance to add it. m_table.node_seen(id, m.addr, 0xffff); tcp::endpoint addr = tcp::endpoint(m.addr.address(), port); std::string name = msg_keys[3] ? msg_keys[3].string_value() : std::string(); bool seed = msg_keys[4] && msg_keys[4].int_value(); m_storage->announce_peer(info_hash, addr, name, seed); } else if (query_len == 3 && memcmp(query, "put", 3) == 0) { // the first 2 entries are for both mutable and // immutable puts static const key_desc_t msg_desc[] = { {"token", bdecode_node::string_t, 0, 0}, {"v", bdecode_node::none_t, 0, 0}, {"seq", bdecode_node::int_t, 0, key_desc_t::optional}, // public key {"k", bdecode_node::string_t, item_pk_len, key_desc_t::optional}, {"sig", bdecode_node::string_t, item_sig_len, key_desc_t::optional}, {"cas", bdecode_node::int_t, 0, key_desc_t::optional}, {"salt", bdecode_node::string_t, 0, key_desc_t::optional}, }; // attempt to parse the message bdecode_node msg_keys[7]; if (!verify_message(arg_ent, msg_desc, msg_keys, 7, error_string, sizeof(error_string))) { m_counters.inc_stats_counter(counters::dht_invalid_put); incoming_error(e, error_string); return; } m_counters.inc_stats_counter(counters::dht_put_in); // is this a mutable put? bool mutable_put = (msg_keys[2] && msg_keys[3] && msg_keys[4]); // public key (only set if it's a mutable put) char const* pk = NULL; if (msg_keys[3]) pk = msg_keys[3].string_ptr(); // signature (only set if it's a mutable put) char const* sig = NULL; if (msg_keys[4]) sig = msg_keys[4].string_ptr(); // pointer and length to the whole entry std::pair buf = msg_keys[1].data_section(); if (buf.second > 1000 || buf.second <= 0) { m_counters.inc_stats_counter(counters::dht_invalid_put); incoming_error(e, "message too big", 205); return; } std::pair salt(static_cast(NULL), 0); if (msg_keys[6]) salt = std::pair( msg_keys[6].string_ptr(), msg_keys[6].string_length()); if (salt.second > 64) { m_counters.inc_stats_counter(counters::dht_invalid_put); incoming_error(e, "salt too big", 207); return; } sha1_hash target; if (pk) target = item_target_id(salt, pk); else target = item_target_id(buf); // fprintf(stderr, "%s PUT target: %s salt: %s key: %s\n" // , mutable_put ? "mutable":"immutable" // , to_hex(target.to_string()).c_str() // , salt.second > 0 ? std::string(salt.first, salt.second).c_str() : "" // , pk ? to_hex(std::string(pk, 32)).c_str() : ""); // verify the write-token. tokens are only valid to write to // specific target hashes. it must match the one we got a "get" for if (!verify_token(msg_keys[0].string_value() , reinterpret_cast(&target[0]), m.addr)) { m_counters.inc_stats_counter(counters::dht_invalid_put); incoming_error(e, "invalid token"); return; } if (!mutable_put) { m_storage->put_immutable_item(target, buf.first, buf.second, m.addr.address()); } else { // mutable put, we must verify the signature #ifdef TORRENT_USE_VALGRIND VALGRIND_CHECK_MEM_IS_DEFINED(msg_keys[4].string_ptr(), item_sig_len); VALGRIND_CHECK_MEM_IS_DEFINED(pk, item_pk_len); #endif boost::int64_t seq = msg_keys[2].int_value(); if (seq < 0) { m_counters.inc_stats_counter(counters::dht_invalid_put); incoming_error(e, "invalid (negative) sequence number"); return; } // msg_keys[4] is the signature, msg_keys[3] is the public key if (!verify_mutable_item(buf, salt , seq, pk, sig)) { m_counters.inc_stats_counter(counters::dht_invalid_put); incoming_error(e, "invalid signature", 206); return; } TORRENT_ASSERT(item_sig_len == msg_keys[4].string_length()); boost::int64_t item_seq; if (!m_storage->get_mutable_item_seq(target, item_seq)) { m_storage->put_mutable_item(target , buf.first, buf.second , sig, seq, pk , salt.first, salt.second , m.addr.address()); } else { // this is the "cas" field in the put message // if it was specified, we MUST make sure the current sequence // number matches the expected value before replacing it // this is critical for avoiding race conditions when multiple // writers are accessing the same slot if (msg_keys[5] && item_seq != msg_keys[5].int_value()) { m_counters.inc_stats_counter(counters::dht_invalid_put); incoming_error(e, "CAS mismatch", 301); return; } if (item_seq > seq) { m_counters.inc_stats_counter(counters::dht_invalid_put); incoming_error(e, "old sequence number", 302); return; } m_storage->put_mutable_item(target , buf.first, buf.second , sig, seq, pk , salt.first, salt.second , m.addr.address()); } } m_table.node_seen(id, m.addr, 0xffff); } else if (query_len == 3 && memcmp(query, "get", 3) == 0) { key_desc_t msg_desc[] = { {"seq", bdecode_node::int_t, 0, key_desc_t::optional}, {"target", bdecode_node::string_t, 20, 0}, }; // k is not used for now // attempt to parse the message bdecode_node msg_keys[2]; if (!verify_message(arg_ent, msg_desc, msg_keys, 2, error_string , sizeof(error_string))) { m_counters.inc_stats_counter(counters::dht_invalid_get); incoming_error(e, error_string); return; } m_counters.inc_stats_counter(counters::dht_get_in); sha1_hash target(msg_keys[1].string_ptr()); // fprintf(stderr, "%s GET target: %s\n" // , msg_keys[1] ? "mutable":"immutable" // , to_hex(target.to_string()).c_str()); reply["token"] = generate_token(m.addr, msg_keys[1].string_ptr()); nodes_t n; // always return nodes as well as peers m_table.find_node(target, n, 0); write_nodes_entry(reply, n); // if the get has a sequence number it must be for a mutable item // so don't bother searching the immutable table if (!msg_keys[0]) { if (!m_storage->get_immutable_item(target, reply)) // ok, check for a mutable one { m_storage->get_mutable_item(target, 0, true, reply); } } else { m_storage->get_mutable_item(target , msg_keys[0].int_value(), false , reply); } } else { // if we don't recognize the message but there's a // 'target' or 'info_hash' in the arguments, treat it // as find_node to be future compatible bdecode_node target_ent = arg_ent.dict_find_string("target"); if (!target_ent || target_ent.string_length() != 20) { target_ent = arg_ent.dict_find_string("info_hash"); if (!target_ent || target_ent.string_length() != 20) { incoming_error(e, "unknown message"); return; } } sha1_hash target(target_ent.string_ptr()); nodes_t n; // always return nodes as well as peers m_table.find_node(target, n, 0); write_nodes_entry(reply, n); return; } } } } // namespace libtorrent::dht