/* Copyright (c) 2007, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/storage.hpp" #include #include "libtorrent/disk_io_thread.hpp" #include "libtorrent/disk_buffer_holder.hpp" #include #ifdef _WIN32 #include #define alloca(s) _alloca(s) #endif #ifdef TORRENT_DISK_STATS #include "libtorrent/time.hpp" #endif namespace libtorrent { disk_io_thread::disk_io_thread(asio::io_service& ios, int block_size) : m_abort(false) , m_queue_buffer_size(0) , m_cache_size(512) // 512 * 16kB = 8MB , m_cache_expiry(60) // 1 minute , m_coalesce_writes(true) , m_coalesce_reads(true) , m_use_read_cache(true) #ifndef TORRENT_DISABLE_POOL_ALLOCATOR , m_pool(block_size) #endif , m_block_size(block_size) , m_ios(ios) , m_disk_io_thread(boost::ref(*this)) { #ifdef TORRENT_STATS m_allocations = 0; #endif #ifdef TORRENT_DISK_STATS m_log.open("disk_io_thread.log", std::ios::trunc); #endif } disk_io_thread::~disk_io_thread() { TORRENT_ASSERT(m_abort == true); } void disk_io_thread::join() { mutex_t::scoped_lock l(m_mutex); m_abort = true; m_signal.notify_all(); l.unlock(); m_disk_io_thread.join(); } void disk_io_thread::get_cache_info(sha1_hash const& ih, std::vector& ret) const { mutex_t::scoped_lock l(m_mutex); ret.clear(); ret.reserve(m_pieces.size()); for (cache_t::const_iterator i = m_pieces.begin() , end(m_pieces.end()); i != end; ++i) { torrent_info const& ti = *i->storage->info(); if (ti.info_hash() != ih) continue; cached_piece_info info; info.piece = i->piece; info.last_use = i->last_use; int blocks_in_piece = (ti.piece_size(i->piece) + (m_block_size) - 1) / m_block_size; info.blocks.resize(blocks_in_piece); for (int b = 0; b < blocks_in_piece; ++b) if (i->blocks[b]) info.blocks[b] = true; ret.push_back(info); } } cache_status disk_io_thread::status() const { mutex_t::scoped_lock l(m_mutex); return m_cache_stats; } void disk_io_thread::set_cache_size(int s) { mutex_t::scoped_lock l(m_mutex); TORRENT_ASSERT(s >= 0); m_cache_size = s; } void disk_io_thread::set_cache_expiry(int ex) { mutex_t::scoped_lock l(m_mutex); TORRENT_ASSERT(ex > 0); m_cache_expiry = ex; } // aborts read operations void disk_io_thread::stop(boost::intrusive_ptr s) { mutex_t::scoped_lock l(m_mutex); // read jobs are aborted, write and move jobs are syncronized for (std::list::iterator i = m_jobs.begin(); i != m_jobs.end();) { if (i->storage != s) { ++i; continue; } if (i->action == disk_io_job::read) { if (i->callback) m_ios.post(bind(i->callback, -1, *i)); m_jobs.erase(i++); continue; } ++i; } m_signal.notify_all(); } bool range_overlap(int start1, int length1, int start2, int length2) { return (start1 <= start2 && start1 + length1 > start2) || (start2 <= start1 && start2 + length2 > start1); } namespace { // The semantic of this operator is: // should lhs come before rhs in the job queue bool operator<(disk_io_job const& lhs, disk_io_job const& rhs) { // NOTE: comparison inverted to make higher priority // skip _in_front_of_ lower priority if (lhs.priority > rhs.priority) return true; if (lhs.priority < rhs.priority) return false; if (lhs.storage.get() < rhs.storage.get()) return true; if (lhs.storage.get() > rhs.storage.get()) return false; if (lhs.piece < rhs.piece) return true; if (lhs.piece > rhs.piece) return false; if (lhs.offset < rhs.offset) return true; // if (lhs.offset > rhs.offset) return false; return false; } } disk_io_thread::cache_t::iterator disk_io_thread::find_cached_piece( disk_io_thread::cache_t& cache , disk_io_job const& j, mutex_t::scoped_lock& l) { for (cache_t::iterator i = cache.begin() , end(cache.end()); i != end; ++i) { if (i->storage != j.storage || i->piece != j.piece) continue; return i; } return cache.end(); } void disk_io_thread::flush_expired_pieces(mutex_t::scoped_lock& l) { ptime now = time_now(); INVARIANT_CHECK; for (;;) { cache_t::iterator i = std::min_element( m_pieces.begin(), m_pieces.end() , bind(&cached_piece_entry::last_use, _1) < bind(&cached_piece_entry::last_use, _2)); if (i == m_pieces.end()) return; int age = total_seconds(now - i->last_use); if (age < m_cache_expiry) return; flush_and_remove(i, l); } } void disk_io_thread::free_piece(cached_piece_entry& p, mutex_t::scoped_lock& l) { int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; for (int i = 0; i < blocks_in_piece; ++i) { if (p.blocks[i] == 0) continue; free_buffer(p.blocks[i], l); p.blocks[i] = 0; --p.num_blocks; --m_cache_stats.cache_size; --m_cache_stats.read_cache_size; } } bool disk_io_thread::clear_oldest_read_piece( cache_t::iterator ignore , mutex_t::scoped_lock& l) { INVARIANT_CHECK; cache_t::iterator i = std::min_element( m_read_pieces.begin(), m_read_pieces.end() , bind(&cached_piece_entry::last_use, _1) < bind(&cached_piece_entry::last_use, _2)); if (i != m_read_pieces.end() && i != ignore) { // don't replace an entry that is less than one second old if (time_now() - i->last_use < seconds(1)) return false; free_piece(*i, l); m_read_pieces.erase(i); return true; } return false; } void disk_io_thread::flush_oldest_piece(mutex_t::scoped_lock& l) { INVARIANT_CHECK; // first look if there are any read cache entries that can // be cleared if (clear_oldest_read_piece(m_read_pieces.end(), l)) return; cache_t::iterator i = std::min_element( m_pieces.begin(), m_pieces.end() , bind(&cached_piece_entry::last_use, _1) < bind(&cached_piece_entry::last_use, _2)); if (i == m_pieces.end()) return; flush_and_remove(i, l); } void disk_io_thread::flush_and_remove(disk_io_thread::cache_t::iterator e , mutex_t::scoped_lock& l) { flush(e, l); m_pieces.erase(e); } void disk_io_thread::flush(disk_io_thread::cache_t::iterator e , mutex_t::scoped_lock& l) { INVARIANT_CHECK; cached_piece_entry& p = *e; int piece_size = p.storage->info()->piece_size(p.piece); #ifdef TORRENT_DISK_STATS m_log << log_time() << " flushing " << piece_size << std::endl; #endif TORRENT_ASSERT(piece_size > 0); boost::scoped_array buf; if (m_coalesce_writes) buf.reset(new (std::nothrow) char[piece_size]); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int buffer_size = 0; int offset = 0; for (int i = 0; i <= blocks_in_piece; ++i) { if (i == blocks_in_piece || p.blocks[i] == 0) { if (buffer_size == 0) continue; TORRENT_ASSERT(buf); TORRENT_ASSERT(buffer_size <= i * m_block_size); l.unlock(); p.storage->write_impl(buf.get(), p.piece, (std::min)( i * m_block_size, piece_size) - buffer_size, buffer_size); l.lock(); ++m_cache_stats.writes; // std::cerr << " flushing p: " << p.piece << " bytes: " << buffer_size << std::endl; buffer_size = 0; offset = 0; continue; } int block_size = (std::min)(piece_size - i * m_block_size, m_block_size); TORRENT_ASSERT(offset + block_size <= piece_size); TORRENT_ASSERT(offset + block_size > 0); if (!buf) { l.unlock(); p.storage->write_impl(p.blocks[i], p.piece, i * m_block_size, block_size); l.lock(); ++m_cache_stats.writes; } else { std::memcpy(buf.get() + offset, p.blocks[i], block_size); offset += m_block_size; buffer_size += block_size; } free_buffer(p.blocks[i], l); p.blocks[i] = 0; TORRENT_ASSERT(p.num_blocks > 0); --p.num_blocks; ++m_cache_stats.blocks_written; --m_cache_stats.cache_size; } TORRENT_ASSERT(buffer_size == 0); // std::cerr << " flushing p: " << p.piece << " cached_blocks: " << m_cache_stats.cache_size << std::endl; #ifndef NDEBUG for (int i = 0; i < blocks_in_piece; ++i) TORRENT_ASSERT(p.blocks[i] == 0); #endif } void disk_io_thread::cache_block(disk_io_job& j, mutex_t::scoped_lock& l) { INVARIANT_CHECK; TORRENT_ASSERT(find_cached_piece(m_pieces, j, l) == m_pieces.end()); cached_piece_entry p; int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; p.piece = j.piece; p.storage = j.storage; p.last_use = time_now(); p.num_blocks = 1; p.blocks.reset(new char*[blocks_in_piece]); std::memset(&p.blocks[0], 0, blocks_in_piece * sizeof(char*)); int block = j.offset / m_block_size; // std::cerr << " adding cache entry for p: " << j.piece << " block: " << block << " cached_blocks: " << m_cache_stats.cache_size << std::endl; p.blocks[block] = j.buffer; ++m_cache_stats.cache_size; m_pieces.push_back(p); } // fills a piece with data from disk, returns the total number of bytes // read or -1 if there was an error int disk_io_thread::read_into_piece(cached_piece_entry& p, int start_block, mutex_t::scoped_lock& l) { int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int end_block = start_block; for (int i = start_block; i < blocks_in_piece && m_cache_stats.cache_size < m_cache_size; ++i) { // this is a block that is already allocated // stop allocating and don't read more than // what we've allocated now if (p.blocks[i]) break; p.blocks[i] = allocate_buffer(l); // the allocation failed, break if (p.blocks[i] == 0) break; ++p.num_blocks; ++m_cache_stats.cache_size; ++m_cache_stats.read_cache_size; ++end_block; } if (end_block == start_block) return -2; int buffer_size = piece_size - (end_block - 1) * m_block_size + (end_block - start_block - 1) * m_block_size; TORRENT_ASSERT(buffer_size <= piece_size); TORRENT_ASSERT(buffer_size + start_block * m_block_size <= piece_size); boost::scoped_array buf; if (m_coalesce_reads) buf.reset(new (std::nothrow) char[buffer_size]); int ret = 0; if (buf) { l.unlock(); ret += p.storage->read_impl(buf.get(), p.piece, start_block * m_block_size, buffer_size); l.lock(); if (!p.storage->error().empty()) { return -1; } ++m_cache_stats.reads; } int piece_offset = start_block * m_block_size; int offset = 0; for (int i = start_block; i < end_block; ++i) { int block_size = (std::min)(piece_size - piece_offset, m_block_size); if (p.blocks[i] == 0) break; TORRENT_ASSERT(offset <= buffer_size); TORRENT_ASSERT(piece_offset <= piece_size); if (buf) { std::memcpy(p.blocks[i], buf.get() + offset, block_size); } else { l.unlock(); ret += p.storage->read_impl(p.blocks[i], p.piece, piece_offset, block_size); if (!p.storage->error().empty()) { return -1; } l.lock(); ++m_cache_stats.reads; } offset += m_block_size; piece_offset += m_block_size; } TORRENT_ASSERT(ret <= buffer_size); return (ret != buffer_size) ? -1 : ret; } bool disk_io_thread::make_room(int num_blocks , cache_t::iterator ignore , mutex_t::scoped_lock& l) { if (m_cache_size - m_cache_stats.cache_size < num_blocks) { // there's not enough room in the cache, clear a piece // from the read cache if (!clear_oldest_read_piece(ignore, l)) return false; } return m_cache_size - m_cache_stats.cache_size >= num_blocks; } // returns -1 on read error, -2 if there isn't any space in the cache // or the number of bytes read int disk_io_thread::cache_read_block(disk_io_job const& j, mutex_t::scoped_lock& l) { INVARIANT_CHECK; int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int start_block = j.offset / m_block_size; if (!make_room(blocks_in_piece - start_block , m_read_pieces.end(), l)) return -2; cached_piece_entry p; p.piece = j.piece; p.storage = j.storage; p.last_use = time_now(); p.num_blocks = 0; p.blocks.reset(new char*[blocks_in_piece]); std::memset(&p.blocks[0], 0, blocks_in_piece * sizeof(char*)); int ret = read_into_piece(p, start_block, l); if (ret == -1) free_piece(p, l); else m_read_pieces.push_back(p); return ret; } #ifndef NDEBUG void disk_io_thread::check_invariant() const { int cached_write_blocks = 0; for (cache_t::const_iterator i = m_pieces.begin() , end(m_pieces.end()); i != end; ++i) { cached_piece_entry const& p = *i; TORRENT_ASSERT(p.blocks); int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int blocks = 0; for (int k = 0; k < blocks_in_piece; ++k) { if (p.blocks[k]) { #ifndef TORRENT_DISABLE_POOL_ALLOCATOR TORRENT_ASSERT(m_pool.is_from(p.blocks[k])); #endif ++blocks; } } // TORRENT_ASSERT(blocks == p.num_blocks); cached_write_blocks += blocks; } int cached_read_blocks = 0; for (cache_t::const_iterator i = m_read_pieces.begin() , end(m_read_pieces.end()); i != end; ++i) { cached_piece_entry const& p = *i; TORRENT_ASSERT(p.blocks); int piece_size = p.storage->info()->piece_size(p.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int blocks = 0; for (int k = 0; k < blocks_in_piece; ++k) { if (p.blocks[k]) { #ifndef TORRENT_DISABLE_POOL_ALLOCATOR TORRENT_ASSERT(m_pool.is_from(p.blocks[k])); #endif ++blocks; } } // TORRENT_ASSERT(blocks == p.num_blocks); cached_read_blocks += blocks; } TORRENT_ASSERT(cached_read_blocks + cached_write_blocks == m_cache_stats.cache_size); TORRENT_ASSERT(cached_read_blocks == m_cache_stats.read_cache_size); // when writing, there may be a one block difference, right before an old piece // is flushed TORRENT_ASSERT(m_cache_stats.cache_size <= m_cache_size + 1); } #endif int disk_io_thread::try_read_from_cache(disk_io_job const& j, mutex_t::scoped_lock& l) { TORRENT_ASSERT(j.buffer); if (!m_use_read_cache) return -2; cache_t::iterator p = find_cached_piece(m_read_pieces, j, l); bool hit = true; int ret = 0; // if the piece cannot be found in the cache, // read the whole piece starting at the block // we got a request for. if (p == m_read_pieces.end()) { ret = cache_read_block(j, l); hit = false; if (ret < 0) return ret; p = m_read_pieces.end(); --p; TORRENT_ASSERT(!m_read_pieces.empty()); TORRENT_ASSERT(p->piece == j.piece); TORRENT_ASSERT(p->storage == j.storage); } if (p != m_read_pieces.end()) { // copy from the cache and update the last use timestamp int block = j.offset / m_block_size; int block_offset = j.offset % m_block_size; int buffer_offset = 0; int size = j.buffer_size; if (p->blocks[block] == 0) { int piece_size = j.storage->info()->piece_size(j.piece); int blocks_in_piece = (piece_size + m_block_size - 1) / m_block_size; int end_block = block; while (end_block < blocks_in_piece && p->blocks[end_block] == 0) ++end_block; if (!make_room(end_block - block, p, l)) return -2; ret = read_into_piece(*p, block, l); hit = false; if (ret < 0) return ret; TORRENT_ASSERT(p->blocks[block]); } p->last_use = time_now(); while (size > 0) { TORRENT_ASSERT(p->blocks[block]); int to_copy = (std::min)(m_block_size - block_offset, size); std::memcpy(j.buffer + buffer_offset , p->blocks[block] + block_offset , to_copy); size -= to_copy; block_offset = 0; buffer_offset += to_copy; } ret = j.buffer_size; ++m_cache_stats.blocks_read; if (hit) ++m_cache_stats.blocks_read_hit; } return ret; } void disk_io_thread::add_job(disk_io_job const& j , boost::function const& f) { TORRENT_ASSERT(!j.callback); TORRENT_ASSERT(j.storage); TORRENT_ASSERT(j.buffer_size <= m_block_size); mutex_t::scoped_lock l(m_mutex); #ifndef NDEBUG if (j.action == disk_io_job::write) { cache_t::iterator p = find_cached_piece(m_pieces, j, l); if (p != m_pieces.end()) { int block = j.offset / m_block_size; char const* buffer = p->blocks[block]; TORRENT_ASSERT(buffer == 0); } } #endif std::list::reverse_iterator i = m_jobs.rbegin(); if (j.action == disk_io_job::read) { // when we're reading, we may not skip // ahead of any write operation that overlaps // the region we're reading for (; i != m_jobs.rend(); i++) { // if *i should come before j, stop // and insert j before i if (*i < j) break; // if we come across a write operation that // overlaps the region we're reading, we need // to stop if (i->action == disk_io_job::write && i->storage == j.storage && i->piece == j.piece && range_overlap(i->offset, i->buffer_size , j.offset, j.buffer_size)) break; } } else if (j.action == disk_io_job::write) { for (; i != m_jobs.rend(); ++i) { if (*i < j) { if (i != m_jobs.rbegin() && i.base()->storage.get() != j.storage.get()) i = m_jobs.rbegin(); break; } } } // if we are placed in front of all other jobs, put it on the back of // the queue, to sweep the disk in the same direction, and to avoid // starvation. The exception is if the priority is higher than the // job at the front of the queue if (i == m_jobs.rend() && (m_jobs.empty() || j.priority <= m_jobs.back().priority)) i = m_jobs.rbegin(); std::list::iterator k = m_jobs.insert(i.base(), j); k->callback.swap(const_cast&>(f)); if (j.action == disk_io_job::write) m_queue_buffer_size += j.buffer_size; TORRENT_ASSERT(j.storage.get()); m_signal.notify_all(); } #ifndef NDEBUG bool disk_io_thread::is_disk_buffer(char* buffer) const { #ifdef TORRENT_DISABLE_POOL_ALLOCATOR return true; #else mutex_t::scoped_lock l(m_mutex); return m_pool.is_from(buffer); #endif } #endif char* disk_io_thread::allocate_buffer() { mutex_t::scoped_lock l(m_mutex); return allocate_buffer(l); } void disk_io_thread::free_buffer(char* buf) { mutex_t::scoped_lock l(m_mutex); free_buffer(buf, l); } char* disk_io_thread::allocate_buffer(mutex_t::scoped_lock& l) { #ifdef TORRENT_STATS ++m_allocations; #endif #ifdef TORRENT_DISABLE_POOL_ALLOCATOR return (char*)malloc(m_block_size); #else return (char*)m_pool.ordered_malloc(); #endif } void disk_io_thread::free_buffer(char* buf, mutex_t::scoped_lock& l) { #ifdef TORRENT_STATS --m_allocations; #endif #ifdef TORRENT_DISABLE_POOL_ALLOCATOR free(buf); #else m_pool.ordered_free(buf); #endif } void disk_io_thread::operator()() { for (;;) { #ifdef TORRENT_DISK_STATS m_log << log_time() << " idle" << std::endl; #endif mutex_t::scoped_lock l(m_mutex); while (m_jobs.empty() && !m_abort) m_signal.wait(l); if (m_abort && m_jobs.empty()) return; // if there's a buffer in this job, it will be freed // when this holder is destructed, unless it has been // released. disk_buffer_holder holder(*this , m_jobs.front().action != disk_io_job::check_fastresume ? m_jobs.front().buffer : 0); boost::function handler; handler.swap(m_jobs.front().callback); disk_io_job j = m_jobs.front(); m_jobs.pop_front(); m_queue_buffer_size -= j.buffer_size; flush_expired_pieces(l); l.unlock(); int ret = 0; TORRENT_ASSERT(j.storage); #ifdef TORRENT_DISK_STATS ptime start = time_now(); #endif #ifndef BOOST_NO_EXCEPTIONS try { #endif switch (j.action) { case disk_io_job::read: { std::string const& error_string = j.storage->error(); if (!error_string.empty()) { #ifndef NDEBUG std::cout << "ERROR: '" << error_string << "' " << j.error_file << std::endl; #endif j.str = error_string; j.error_file = j.storage->error_file(); j.storage->clear_error(); ret = -1; break; } #ifdef TORRENT_DISK_STATS m_log << log_time() << " read " << j.buffer_size << std::endl; #endif mutex_t::scoped_lock l(m_mutex); INVARIANT_CHECK; TORRENT_ASSERT(j.buffer == 0); j.buffer = allocate_buffer(); TORRENT_ASSERT(j.buffer_size <= m_block_size); if (j.buffer == 0) { ret = -1; j.str = "out of memory"; break; } disk_buffer_holder read_holder(*this, j.buffer); ret = try_read_from_cache(j, l); // -2 means there's no space in the read cache // or that the read cache is disabled if (ret == -1) { j.buffer = 0; j.str = j.storage->error(); j.error_file = j.storage->error_file(); j.storage->clear_error(); break; } else if (ret == -2) { l.unlock(); ret = j.storage->read_impl(j.buffer, j.piece, j.offset , j.buffer_size); if (ret < 0) { j.str = j.storage->error(); j.error_file = j.storage->error_file(); j.storage->clear_error(); break; } l.lock(); ++m_cache_stats.blocks_read; } read_holder.release(); break; } case disk_io_job::write: { std::string const& error_string = j.storage->error(); if (!error_string.empty()) { #ifndef NDEBUG std::cout << "ERROR: '" << error_string << "' " << j.error_file << std::endl; #endif j.str = error_string; j.error_file = j.storage->error_file(); j.storage->clear_error(); ret = -1; break; } #ifdef TORRENT_DISK_STATS m_log << log_time() << " write " << j.buffer_size << std::endl; #endif mutex_t::scoped_lock l(m_mutex); INVARIANT_CHECK; cache_t::iterator p = find_cached_piece(m_pieces, j, l); int block = j.offset / m_block_size; TORRENT_ASSERT(j.buffer); TORRENT_ASSERT(j.buffer_size <= m_block_size); if (p != m_pieces.end()) { TORRENT_ASSERT(p->blocks[block] == 0); if (p->blocks[block]) { free_buffer(p->blocks[block]); --p->num_blocks; } p->blocks[block] = j.buffer; ++m_cache_stats.cache_size; ++p->num_blocks; p->last_use = time_now(); } else { cache_block(j, l); } // we've now inserted the buffer // in the cache, we should not // free it at the end holder.release(); if (m_cache_stats.cache_size >= m_cache_size) flush_oldest_piece(l); break; } case disk_io_job::hash: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " hash" << std::endl; #endif mutex_t::scoped_lock l(m_mutex); INVARIANT_CHECK; cache_t::iterator i = find_cached_piece(m_pieces, j, l); if (i != m_pieces.end()) { flush_and_remove(i, l); std::string const& e = j.storage->error(); if (!e.empty()) { j.str = e; j.error_file = j.storage->error_file(); ret = -1; j.storage->clear_error(); j.storage->mark_failed(j.piece); break; } } l.unlock(); sha1_hash h = j.storage->hash_for_piece_impl(j.piece); std::string const& e = j.storage->error(); if (!e.empty()) { j.str = e; j.error_file = j.storage->error_file(); ret = -1; j.storage->clear_error(); j.storage->mark_failed(j.piece); break; } ret = (j.storage->info()->hash_for_piece(j.piece) == h)?0:-2; if (ret == -2) j.storage->mark_failed(j.piece); break; } case disk_io_job::move_storage: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " move" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); ret = j.storage->move_storage_impl(j.str) ? 1 : 0; if (ret != 0) { j.str = j.storage->error(); j.error_file = j.storage->error_file(); j.storage->clear_error(); break; } j.str = j.storage->save_path().string(); break; } case disk_io_job::release_files: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " release" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); mutex_t::scoped_lock l(m_mutex); INVARIANT_CHECK; for (cache_t::iterator i = m_pieces.begin(); i != m_pieces.end();) { if (i->storage == j.storage) { flush(i, l); i = m_pieces.erase(i); } else { ++i; } } #ifndef TORRENT_DISABLE_POOL_ALLOCATOR m_pool.release_memory(); #endif l.unlock(); ret = j.storage->release_files_impl(); if (ret != 0) { j.str = j.storage->error(); j.error_file = j.storage->error_file(); j.storage->clear_error(); } break; } case disk_io_job::delete_files: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " delete" << std::endl; #endif TORRENT_ASSERT(j.buffer == 0); mutex_t::scoped_lock l(m_mutex); INVARIANT_CHECK; cache_t::iterator i = std::remove_if( m_pieces.begin(), m_pieces.end(), bind(&cached_piece_entry::storage, _1) == j.storage); for (cache_t::iterator k = i; k != m_pieces.end(); ++k) { torrent_info const& ti = *k->storage->info(); int blocks_in_piece = (ti.piece_size(k->piece) + m_block_size - 1) / m_block_size; for (int j = 0; j < blocks_in_piece; ++j) { if (k->blocks[j] == 0) continue; free_buffer(k->blocks[j], l); k->blocks[j] = 0; } } m_pieces.erase(i, m_pieces.end()); #ifndef TORRENT_DISABLE_POOL_ALLOCATOR m_pool.release_memory(); #endif l.unlock(); ret = j.storage->delete_files_impl(); if (ret != 0) { j.str = j.storage->error(); j.error_file = j.storage->error_file(); j.storage->clear_error(); } break; } case disk_io_job::check_fastresume: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " check fastresume" << std::endl; #endif entry const* rd = (entry const*)j.buffer; TORRENT_ASSERT(rd != 0); ret = j.storage->check_fastresume(*rd, j.str); break; } case disk_io_job::check_files: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " check files" << std::endl; #endif int piece_size = j.storage->info()->piece_length(); for (int processed = 0; processed < 4 * 1024 * 1024; processed += piece_size) { ret = j.storage->check_files(j.piece, j.offset, j.str); #ifndef BOOST_NO_EXCEPTIONS try { #endif TORRENT_ASSERT(handler); if (handler && ret == piece_manager::need_full_check) m_ios.post(bind(handler, ret, j)); #ifndef BOOST_NO_EXCEPTIONS } catch (std::exception&) {} #endif if (ret != piece_manager::need_full_check) break; } // if the check is not done, add it at the end of the job queue if (ret == piece_manager::need_full_check) { mutex_t::scoped_lock l(m_mutex); m_jobs.push_back(j); m_jobs.back().callback.swap(handler); continue; } break; } case disk_io_job::save_resume_data: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " save resume data" << std::endl; #endif j.resume_data.reset(new entry(entry::dictionary_t)); j.storage->write_resume_data(*j.resume_data); ret = 0; break; } case disk_io_job::rename_file: { #ifdef TORRENT_DISK_STATS m_log << log_time() << " rename file" << std::endl; #endif ret = j.storage->rename_file_impl(j.piece, j.str); } } #ifndef BOOST_NO_EXCEPTIONS } catch (std::exception& e) { ret = -1; try { j.str = e.what(); } catch (std::exception&) {} } #endif // if (!handler) std::cerr << "DISK THREAD: no callback specified" << std::endl; // else std::cerr << "DISK THREAD: invoking callback" << std::endl; #ifndef BOOST_NO_EXCEPTIONS try { #endif if (handler) m_ios.post(bind(handler, ret, j)); #ifndef BOOST_NO_EXCEPTIONS } catch (std::exception&) { TORRENT_ASSERT(false); } #endif } TORRENT_ASSERT(false); } }