/* Copyright (c) 2006, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/pch.hpp" #include #include #include #include #include #include "libtorrent/io.hpp" #include "libtorrent/hasher.hpp" #include "libtorrent/random_sample.hpp" #include "libtorrent/kademlia/node_id.hpp" #include "libtorrent/kademlia/rpc_manager.hpp" #include "libtorrent/kademlia/packet_iterator.hpp" #include "libtorrent/kademlia/routing_table.hpp" #include "libtorrent/kademlia/node.hpp" #include "libtorrent/kademlia/refresh.hpp" #include "libtorrent/kademlia/closest_nodes.hpp" #include "libtorrent/kademlia/find_data.hpp" using boost::bind; namespace libtorrent { namespace dht { #ifdef _MSC_VER namespace { char rand() { return (char)std::rand(); } } #endif // TODO: configurable? enum { announce_interval = 30 }; using asio::ip::udp; #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_DEFINE_LOG(node) #endif node_id generate_id() { char random[20]; std::srand(std::time(0)); #ifdef _MSC_VER std::generate(random, random + 20, &rand); #else std::generate(random, random + 20, &std::rand); #endif hasher h; h.update(random, 20); return h.final(); } // remove peers that have timed out void purge_peers(std::set& peers) { for (std::set::iterator i = peers.begin() , end(peers.end()); i != end;) { // the peer has timed out if (i->added + minutes(int(announce_interval * 1.5f)) < time_now()) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "peer timed out at: " << i->addr.address(); #endif peers.erase(i++); } else ++i; } } void nop() {} node_impl::node_impl(boost::function const& f , dht_settings const& settings, boost::optional node_id) : m_settings(settings) , m_id(node_id ? *node_id : generate_id()) , m_table(m_id, 8, settings) , m_rpc(bind(&node_impl::incoming_request, this, _1) , m_id, m_table, f) , m_last_tracker_tick(time_now()) { m_secret[0] = std::rand(); m_secret[1] = std::rand(); } bool node_impl::verify_token(msg const& m) { if (m.write_token.type() != entry::string_t) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "token of incorrect type " << m.write_token.type(); #endif return false; } std::string const& token = m.write_token.string(); if (token.length() != 4) { #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "token of incorrect length: " << token.length(); #endif return false; } hasher h1; std::string address = m.addr.address().to_string(); h1.update(&address[0], address.length()); h1.update((char*)&m_secret[0], sizeof(m_secret[0])); h1.update((char*)&m.info_hash[0], sha1_hash::size); sha1_hash h = h1.final(); if (std::equal(token.begin(), token.end(), (signed char*)&h[0])) return true; hasher h2; h2.update(&address[0], address.length()); h2.update((char*)&m_secret[1], sizeof(m_secret[1])); h2.update((char*)&m.info_hash[0], sha1_hash::size); h = h2.final(); if (std::equal(token.begin(), token.end(), (signed char*)&h[0])) return true; return false; } entry node_impl::generate_token(msg const& m) { std::string token; token.resize(4); hasher h; std::string address = m.addr.address().to_string(); h.update(&address[0], address.length()); h.update((char*)&m_secret[0], sizeof(m_secret[0])); h.update((char*)&m.info_hash[0], sha1_hash::size); sha1_hash hash = h.final(); std::copy(hash.begin(), hash.begin() + 4, (signed char*)&token[0]); return entry(token); } void node_impl::refresh(node_id const& id , boost::function0 f) { // use the 'bucket size' closest nodes // to start the refresh with std::vector start; start.reserve(m_table.bucket_size()); m_table.find_node(id, start, false); refresh::initiate(id, m_settings.search_branching, 10, m_table.bucket_size() , m_table, start.begin(), start.end(), m_rpc, f); } void node_impl::bootstrap(std::vector const& nodes , boost::function0 f) { std::vector start; start.reserve(nodes.size()); std::copy(nodes.begin(), nodes.end(), std::back_inserter(start)); refresh::initiate(m_id, m_settings.search_branching, 10, m_table.bucket_size() , m_table, start.begin(), start.end(), m_rpc, f); } void node_impl::refresh() { std::vector start; start.reserve(m_table.size().get<0>()); std::copy(m_table.begin(), m_table.end(), std::back_inserter(start)); refresh::initiate(m_id, m_settings.search_branching, 10, m_table.bucket_size() , m_table, start.begin(), start.end(), m_rpc, bind(&nop)); } int node_impl::bucket_size(int bucket) { return m_table.bucket_size(bucket); } void node_impl::new_write_key() { m_secret[1] = m_secret[0]; m_secret[0] = std::rand(); } void node_impl::refresh_bucket(int bucket) try { assert(bucket >= 0 && bucket < 160); // generate a random node_id within the given bucket node_id target = generate_id(); int num_bits = 160 - bucket; node_id mask(0); for (int i = 0; i < num_bits; ++i) { int byte = i / 8; mask[byte] |= 0x80 >> (i % 8); } node_id root = m_id; root &= mask; target &= ~mask; target |= root; // make sure this is in another subtree than m_id // clear the (num_bits - 1) bit and then set it to the // inverse of m_id's corresponding bit. target[(num_bits - 1) / 8] &= ~(0x80 >> ((num_bits - 1) % 8)); target[(num_bits - 1) / 8] |= (~(m_id[(num_bits - 1) / 8])) & (0x80 >> ((num_bits - 1) % 8)); assert(distance_exp(m_id, target) == bucket); std::vector start; start.reserve(m_table.bucket_size()); m_table.find_node(target, start, false, m_table.bucket_size()); refresh::initiate(target, m_settings.search_branching, 10, m_table.bucket_size() , m_table, start.begin(), start.end(), m_rpc, bind(&nop)); m_table.touch_bucket(bucket); } catch (std::exception&) {} void node_impl::incoming(msg const& m) { if (m_rpc.incoming(m)) { refresh(); } } namespace { void announce_fun(std::vector const& v, rpc_manager& rpc , int listen_port, sha1_hash const& ih , boost::function const&, sha1_hash const&)> f) { bool nodes = false; // only store on the first k nodes for (std::vector::const_iterator i = v.begin() , end(v.end()); i != end; ++i) { rpc.invoke(messages::get_peers, i->addr, observer_ptr( new (rpc.allocator().malloc()) get_peers_observer(ih, listen_port, rpc, f))); nodes = true; } } } void node_impl::add_router_node(udp::endpoint router) { m_table.add_router_node(router); } void node_impl::add_node(udp::endpoint node) { // ping the node, and if we get a reply, it // will be added to the routing table observer_ptr o(new (m_rpc.allocator().malloc()) null_observer(m_rpc.allocator())); m_rpc.invoke(messages::ping, node, o); } void node_impl::announce(sha1_hash const& info_hash, int listen_port , boost::function const&, sha1_hash const&)> f) { // search for nodes with ids close to id, and then invoke the // get_peers and then announce_peer rpc on them. closest_nodes::initiate(info_hash, m_settings.search_branching , m_table.bucket_size(), m_table, m_rpc , boost::bind(&announce_fun, _1, boost::ref(m_rpc), listen_port , info_hash, f)); } time_duration node_impl::refresh_timeout() { int refresh = -1; ptime now = time_now(); ptime next = now + minutes(15); try { for (int i = 0; i < 160; ++i) { ptime r = m_table.next_refresh(i); if (r <= next) { refresh = i; next = r; } } if (next < now) { assert(refresh > -1); #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "refreshing bucket: " << refresh; #endif refresh_bucket(refresh); } } catch (std::exception&) {} time_duration next_refresh = next - now; time_duration min_next_refresh = minutes(15) / (m_table.num_active_buckets()); if (min_next_refresh > seconds(40)) min_next_refresh = seconds(40); if (next_refresh < min_next_refresh) next_refresh = min_next_refresh; #ifdef TORRENT_DHT_VERBOSE_LOGGING TORRENT_LOG(node) << "next refresh: " << total_seconds(next_refresh) << " seconds"; #endif return next_refresh; } time_duration node_impl::connection_timeout() { time_duration d = m_rpc.tick(); try { ptime now(time_now()); if (now - m_last_tracker_tick < minutes(10)) return d; m_last_tracker_tick = now; // look through all peers and see if any have timed out for (data_iterator i = begin_data(), end(end_data()); i != end;) { torrent_entry& t = i->second; node_id const& key = i->first; ++i; purge_peers(t.peers); // if there are no more peers, remove the entry altogether if (t.peers.empty()) { table_t::iterator i = m_map.find(key); if (i != m_map.end()) m_map.erase(i); } } } catch (std::exception&) {} return d; } void node_impl::on_announce(msg const& m, msg& reply) { if (!verify_token(m)) { reply.message_id = messages::error; reply.error_code = 203; reply.error_msg = "Incorrect token in announce_peer"; return; } // the token was correct. That means this // node is not spoofing its address. So, let // the table get a chance to add it. m_table.node_seen(m.id, m.addr); torrent_entry& v = m_map[m.info_hash]; peer_entry e; e.addr = tcp::endpoint(m.addr.address(), m.addr.port()); e.added = time_now(); std::set::iterator i = v.peers.find(e); if (i != v.peers.end()) v.peers.erase(i++); v.peers.insert(i, e); } namespace { tcp::endpoint get_endpoint(peer_entry const& p) { return p.addr; } } bool node_impl::on_find(msg const& m, std::vector& peers) const { table_t::const_iterator i = m_map.find(m.info_hash); if (i == m_map.end()) return false; torrent_entry const& v = i->second; int num = (std::min)((int)v.peers.size(), m_settings.max_peers_reply); peers.clear(); peers.reserve(num); random_sample_n(boost::make_transform_iterator(v.peers.begin(), &get_endpoint) , boost::make_transform_iterator(v.peers.end(), &get_endpoint) , std::back_inserter(peers), num); #ifdef TORRENT_DHT_VERBOSE_LOGGING for (std::vector::iterator i = peers.begin() , end(peers.end()); i != end; ++i) { TORRENT_LOG(node) << " " << *i; } #endif return true; } void node_impl::incoming_request(msg const& m) { msg reply; reply.message_id = m.message_id; reply.addr = m.addr; reply.reply = true; reply.transaction_id = m.transaction_id; switch (m.message_id) { case messages::ping: break; case messages::get_peers: { reply.info_hash = m.info_hash; reply.write_token = generate_token(m); if (!on_find(m, reply.peers)) { // we don't have any peers for this info_hash, // return nodes instead m_table.find_node(m.info_hash, reply.nodes, false); #ifdef TORRENT_DHT_VERBOSE_LOGGING for (std::vector::iterator i = reply.nodes.begin() , end(reply.nodes.end()); i != end; ++i) { TORRENT_LOG(node) << " " << i->id << " " << i->addr; } #endif } } break; case messages::find_node: { reply.info_hash = m.info_hash; m_table.find_node(m.info_hash, reply.nodes, false); #ifdef TORRENT_DHT_VERBOSE_LOGGING for (std::vector::iterator i = reply.nodes.begin() , end(reply.nodes.end()); i != end; ++i) { TORRENT_LOG(node) << " " << i->id << " " << i->addr; } #endif } break; case messages::announce_peer: on_announce(m, reply); break; default: assert(false); }; if (m_table.need_node(m.id)) m_rpc.reply_with_ping(reply); else m_rpc.reply(reply); } } } // namespace libtorrent::dht