/* Copyright (c) 2003, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TORRENT_PEER_CONNECTION_HPP_INCLUDED #define TORRENT_PEER_CONNECTION_HPP_INCLUDED #include #include #include #include #if defined TORRENT_VERBOSE_LOGGING || defined TORRENT_ERROR_LOGGING #include "libtorrent/debug.hpp" #endif #ifdef _MSC_VER #pragma warning(push, 1) #endif #include #include #include #include #include #include #include #include #include #ifdef _MSC_VER #pragma warning(pop) #endif #include "libtorrent/buffer.hpp" #include "libtorrent/peer_id.hpp" #include "libtorrent/stat.hpp" #include "libtorrent/alert.hpp" #include "libtorrent/peer_request.hpp" #include "libtorrent/piece_block_progress.hpp" #include "libtorrent/config.hpp" #include "libtorrent/bandwidth_limit.hpp" #include "libtorrent/policy.hpp" #include "libtorrent/socket_type_fwd.hpp" #include "libtorrent/intrusive_ptr_base.hpp" #include "libtorrent/assert.hpp" #include "libtorrent/chained_buffer.hpp" #include "libtorrent/disk_buffer_holder.hpp" #include "libtorrent/bitfield.hpp" #include "libtorrent/bandwidth_socket.hpp" #include "libtorrent/socket_type_fwd.hpp" #include "libtorrent/error_code.hpp" #include "libtorrent/sliding_average.hpp" #ifdef TORRENT_STATS #include "libtorrent/aux_/session_impl.hpp" #endif namespace libtorrent { class torrent; struct peer_info; struct disk_io_job; #ifndef TORRENT_DISABLE_EXTENSIONS struct peer_plugin; #endif namespace detail { struct session_impl; } struct pending_block { pending_block(piece_block const& b) : block(b), skipped(0), not_wanted(false) , timed_out(false), busy(false) {} piece_block block; // the number of times the request // has been skipped by out of order blocks boost::uint16_t skipped:13; // if any of these are set to true, this block // is not allocated // in the piece picker anymore, and open for // other peers to pick. This may be caused by // it either timing out or being received // unexpectedly from the peer bool not_wanted:1; bool timed_out:1; // the busy flag is set if the block was // requested from another peer when this // request was queued. We only allow a single // busy request at a time in each peer's queue bool busy:1; bool operator==(pending_block const& b) { return b.skipped == skipped && b.block == block && b.not_wanted == not_wanted && b.timed_out == timed_out; } }; struct has_block { has_block(piece_block const& b): block(b) {} piece_block const& block; bool operator()(pending_block const& pb) const { return pb.block == block; } }; class TORRENT_EXPORT peer_connection : public bandwidth_socket , public boost::noncopyable { friend class invariant_access; public: enum connection_type { bittorrent_connection = 0, url_seed_connection = 1, http_seed_connection = 2 }; virtual int type() const = 0; enum channels { upload_channel, download_channel, num_channels }; // this is the constructor where the we are the active part. // The peer_conenction should handshake and verify that the // other end has the correct id peer_connection( aux::session_impl& ses , boost::weak_ptr t , boost::shared_ptr s , tcp::endpoint const& remote , policy::peer* peerinfo , bool outgoing = true); // with this constructor we have been contacted and we still don't // know which torrent the connection belongs to peer_connection( aux::session_impl& ses , boost::shared_ptr s , tcp::endpoint const& remote , policy::peer* peerinfo , bool outgoing = false); // this function is called after it has been constructed and properly // reference counted. It is safe to call self() in this function // and schedule events with references to itself (that is not safe to // do in the constructor). virtual void start(); virtual ~peer_connection(); void set_peer_info(policy::peer* pi) { TORRENT_ASSERT(m_peer_info == 0 || pi == 0 ); m_peer_info = pi; } policy::peer* peer_info_struct() const { return m_peer_info; } enum peer_speed_t { slow = 1, medium, fast }; peer_speed_t peer_speed(); void send_allowed_set(); #ifndef TORRENT_DISABLE_EXTENSIONS void add_extension(boost::shared_ptr); peer_plugin const* find_plugin(char const* type); #endif // this function is called once the torrent associated // with this peer connection has retrieved the meta- // data. If the torrent was spawned with metadata // this is called from the constructor. void init(); // this is called when the metadata is retrieved // and the files has been checked virtual void on_metadata() {}; void on_metadata_impl(); int get_upload_limit() const; int get_download_limit() const; void set_upload_limit(int limit); void set_download_limit(int limit); int upload_limit() const { return m_upload_limit; } int download_limit() const { return m_download_limit; } int prefer_whole_pieces() const { if (on_parole()) return 1; return m_prefer_whole_pieces; } bool on_parole() const { return peer_info_struct() && peer_info_struct()->on_parole; } int picker_options() const; void prefer_whole_pieces(int num) { m_prefer_whole_pieces = num; } bool request_large_blocks() const { return m_request_large_blocks; } void request_large_blocks(bool b) { m_request_large_blocks = b; } void set_endgame(bool b) { m_endgame_mode = b; } bool endgame() const { return m_endgame_mode; } bool no_download() const { return m_no_download; } void no_download(bool b) { m_no_download = b; } bool ignore_stats() const { return m_ignore_stats; } void ignore_stats(bool b) { m_ignore_stats = b; } void set_priority(int p) { TORRENT_ASSERT(p > 0); TORRENT_ASSERT(m_priority <= 255); if (p > 255) p = 255; m_priority = p; } void fast_reconnect(bool r); bool fast_reconnect() const { return m_fast_reconnect; } // this adds an announcement in the announcement queue // it will let the peer know that we have the given piece void announce_piece(int index); // this will tell the peer to announce the given piece // and only allow it to request that piece void superseed_piece(int index); int superseed_piece() const { return m_superseed_piece; } // tells if this connection has data it want to send // and has enough upload bandwidth quota left to send it. bool can_write() const; bool can_read(char* state = 0) const; bool is_seed() const; int num_have_pieces() const { return m_num_pieces; } void set_share_mode(bool m); bool share_mode() const { return m_share_mode; } void set_upload_only(bool u); bool upload_only() const { return m_upload_only; } void set_holepunch_mode() { m_holepunch_mode = true; #ifdef TORRENT_VERBOSE_LOGGING peer_log("*** HOLEPUNCH MODE ***"); #endif } // will send a keep-alive message to the peer void keep_alive(); peer_id const& pid() const { return m_peer_id; } void set_pid(const peer_id& peer_id) { m_peer_id = peer_id; } bool has_piece(int i) const; std::vector const& download_queue() const; std::vector const& request_queue() const; std::vector const& upload_queue() const; void clear_request_queue(); // estimate of how long it will take until we have // received all piece requests that we have sent // if extra_bytes is specified, it will include those // bytes as if they've been requested time_duration download_queue_time(int extra_bytes = 0) const; bool is_interesting() const { return m_interesting; } bool is_choked() const { return m_choked; } bool is_peer_interested() const { return m_peer_interested; } bool has_peer_choked() const { return m_peer_choked; } void update_interest(); virtual void get_peer_info(peer_info& p) const; // returns the torrent this connection is a part of // may be zero if the connection is an incoming connection // and it hasn't received enough information to determine // which torrent it should be associated with boost::weak_ptr associated_torrent() const { return m_torrent; } const stat& statistics() const { return m_statistics; } void add_stat(size_type downloaded, size_type uploaded); // is called once every second by the main loop void second_tick(int tick_interval_ms); void timeout_requests(); boost::shared_ptr get_socket() const { return m_socket; } tcp::endpoint const& remote() const { return m_remote; } bitfield const& get_bitfield() const; std::vector const& allowed_fast(); std::vector const& suggested_pieces() const { return m_suggested_pieces; } ptime connected_time() const { return m_connect; } ptime last_received() const { return m_last_receive; } void on_timeout(); // this will cause this peer_connection to be disconnected. virtual void disconnect(error_code const& ec, int error = 0); // called when a connect attempt fails (not when an // established connection fails) void connect_failed(error_code const& e); bool is_disconnecting() const { return m_disconnecting; } // this is called when the connection attempt has succeeded // and the peer_connection is supposed to set m_connecting // to false, and stop monitor writability void on_connection_complete(error_code const& e); // returns true if this connection is still waiting to // finish the connection attempt bool is_connecting() const { return m_connecting; } // returns true if the socket of this peer hasn't been // attempted to connect yet (i.e. it's queued for // connection attempt). bool is_queued() const { return m_queued; } // called when it's time for this peer_conncetion to actually // initiate the tcp connection. This may be postponed until // the library isn't using up the limitation of half-open // tcp connections. void on_connect(int ticket); // This is called for every peer right after the upload // bandwidth has been distributed among them // It will reset the used bandwidth to 0. void reset_upload_quota(); // free upload. size_type total_free_upload() const; void add_free_upload(size_type free_upload); // trust management. void received_valid_data(int index); void received_invalid_data(int index); size_type share_diff() const; // a connection is local if it was initiated by us. // if it was an incoming connection, it is remote bool is_local() const { return m_active; } bool on_local_network() const; bool ignore_bandwidth_limits() const { return m_ignore_bandwidth_limits; } void ignore_bandwidth_limits(bool i) { m_ignore_bandwidth_limits = i; } bool ignore_unchoke_slots() const; void ignore_unchoke_slots(bool i) { m_ignore_unchoke_slots = i; } bool failed() const { return m_failed; } int desired_queue_size() const { // this peer is in end-game mode we only want // one outstanding request return m_endgame_mode ? 1: m_desired_queue_size; } bool bittyrant_unchoke_compare( boost::intrusive_ptr const& p) const; // compares this connection against the given connection // for which one is more eligible for an unchoke. // returns true if this is more eligible bool unchoke_compare(boost::intrusive_ptr const& p) const; bool upload_rate_compare(peer_connection const* p) const; // resets the byte counters that are used to measure // the number of bytes transferred within unchoke cycles void reset_choke_counters(); // if this peer connection is useless (neither party is // interested in the other), disconnect it void disconnect_if_redundant(); void increase_est_reciprocation_rate(); void decrease_est_reciprocation_rate(); int est_reciprocation_rate() const { return m_est_reciprocation_rate; } #if defined TORRENT_VERBOSE_LOGGING || defined TORRENT_ERROR_LOGGING void peer_log(char const* fmt, ...) const; boost::shared_ptr m_logger; #endif // the message handlers are called // each time a recv() returns some new // data, the last time it will be called // is when the entire packet has been // received, then it will no longer // be called. i.e. most handlers need // to check how much of the packet they // have received before any processing void incoming_keepalive(); void incoming_choke(); void incoming_unchoke(); void incoming_interested(); void incoming_not_interested(); void incoming_have(int piece_index); void incoming_dont_have(int piece_index); void incoming_bitfield(bitfield const& bits); void incoming_request(peer_request const& r); void incoming_piece(peer_request const& p, disk_buffer_holder& data); void incoming_piece(peer_request const& p, char const* data); void incoming_piece_fragment(int bytes); void start_receive_piece(peer_request const& r); void incoming_cancel(peer_request const& r); void incoming_dht_port(int listen_port); void incoming_reject_request(peer_request const& r); void incoming_have_all(); void incoming_have_none(); void incoming_allowed_fast(int index); void incoming_suggest(int index); // the following functions appends messages // to the send buffer bool send_choke(); bool send_unchoke(); void send_interested(); void send_not_interested(); void send_suggest(int piece); void snub_peer(); bool can_request_time_critical() const; void make_time_critical(piece_block const& block); // adds a block to the request queue // returns true if successful, false otherwise enum flags_t { req_time_critical = 1, req_busy = 2 }; bool add_request(piece_block const& b, int flags = 0); // clears the request queue and sends cancels for all messages // in the download queue void cancel_all_requests(); // removes a block from the request queue or download queue // sends a cancel message if appropriate // refills the request queue, and possibly ignoring pieces requested // by peers in the ignore list (to avoid recursion) void cancel_request(piece_block const& b); void send_block_requests(); int bandwidth_throttle(int channel) const { return m_bandwidth_channel[channel].throttle(); } void assign_bandwidth(int channel, int amount); #ifdef TORRENT_DEBUG void check_invariant() const; ptime m_last_choke; #endif // is true until we can be sure that the other end // speaks our protocol (be it bittorrent or http). virtual bool in_handshake() const = 0; // returns the block currently being // downloaded. And the progress of that // block. If the peer isn't downloading // a piece for the moment, the boost::optional // will be invalid. virtual boost::optional downloading_piece_progress() const { #ifdef TORRENT_VERBOSE_LOGGING peer_log("*** downloading_piece_progress() dispatched to the base class!"); #endif return boost::optional(); } // these functions are virtual to let bt_peer_connection hook into them // and encrypt the content enum message_type_flags { message_type_request = 1 }; virtual void send_buffer(char const* begin, int size, int flags = 0 , void (*fun)(char*, int, void*) = 0, void* userdata = 0); virtual void setup_send(); void cork_socket() { TORRENT_ASSERT(!m_corked); m_corked = true; } void uncork_socket(); #ifdef TORRENT_DISK_STATS void log_buffer_usage(char* buffer, int size, char const* label); #endif template void append_send_buffer(char* buffer, int size, Destructor const& destructor , bool encrypted = false) { #if defined TORRENT_DISK_STATS log_buffer_usage(buffer, size, "queued send buffer"); #endif // bittorrent connections should never use this function, since // they might be encrypted and this would circumvent the actual // encryption. bt_peer_connection overrides this function with // its own version. TORRENT_ASSERT(encrypted || type() != bittorrent_connection); m_send_buffer.append_buffer(buffer, size, size, destructor); } virtual void append_const_send_buffer(char const* buffer, int size); #ifndef TORRENT_DISABLE_RESOLVE_COUNTRIES void set_country(char const* c) { TORRENT_ASSERT(strlen(c) == 2); m_country[0] = c[0]; m_country[1] = c[1]; } bool has_country() const { return m_country[0] != 0; } #endif int outstanding_bytes() const { return m_outstanding_bytes; } int send_buffer_size() const { return m_send_buffer.size(); } int send_buffer_capacity() const { return m_send_buffer.capacity(); } int packet_size() const { return m_packet_size; } bool packet_finished() const { return m_packet_size <= m_recv_pos; } int receive_pos() const { return m_recv_pos; } #ifdef TORRENT_DEBUG bool piece_failed; #endif time_t last_seen_complete() const { return m_last_seen_complete; } void set_last_seen_complete(int ago) { m_last_seen_complete = time(0) - ago; } // upload and download channel state // enum from peer_info::bw_state char m_channel_state[2]; size_type uploaded_since_unchoke() const { return m_statistics.total_payload_upload() - m_uploaded_at_last_unchoke; } size_type downloaded_since_unchoke() const { return m_statistics.total_payload_download() - m_downloaded_at_last_unchoke; } // called when the disk write buffer is drained again, and we can // start downloading payload again void on_disk(); int num_reading_bytes() const { return m_reading_bytes; } enum sync_t { read_async, read_sync }; void setup_receive(sync_t sync = read_sync); protected: size_t try_read(sync_t s, error_code& ec); virtual void get_specific_peer_info(peer_info& p) const = 0; virtual void write_choke() = 0; virtual void write_unchoke() = 0; virtual void write_interested() = 0; virtual void write_not_interested() = 0; virtual void write_request(peer_request const& r) = 0; virtual void write_cancel(peer_request const& r) = 0; virtual void write_have(int index) = 0; virtual void write_keepalive() = 0; virtual void write_piece(peer_request const& r, disk_buffer_holder& buffer) = 0; virtual void write_suggest(int piece) = 0; virtual void write_reject_request(peer_request const& r) = 0; virtual void write_allow_fast(int piece) = 0; virtual void on_connected() = 0; virtual void on_tick() {} virtual void on_receive(error_code const& error , std::size_t bytes_transferred) = 0; virtual void on_sent(error_code const& error , std::size_t bytes_transferred) = 0; #ifndef TORRENT_DISABLE_ENCRYPTION buffer::interval wr_recv_buffer() { if (m_recv_buffer.empty()) { TORRENT_ASSERT(m_recv_pos == 0); return buffer::interval(0,0); } TORRENT_ASSERT(!m_disk_recv_buffer); TORRENT_ASSERT(m_disk_recv_buffer_size == 0); int rcv_pos = (std::min)(m_recv_pos, int(m_recv_buffer.size())); return buffer::interval(&m_recv_buffer[0] , &m_recv_buffer[0] + rcv_pos); } std::pair wr_recv_buffers(int bytes); #endif buffer::const_interval receive_buffer() const { if (m_recv_buffer.empty()) { TORRENT_ASSERT(m_recv_pos == 0); return buffer::interval(0,0); } int rcv_pos = (std::min)(m_recv_pos, int(m_recv_buffer.size())); return buffer::const_interval(&m_recv_buffer[0] , &m_recv_buffer[0] + rcv_pos); } bool allocate_disk_receive_buffer(int disk_buffer_size); char* release_disk_receive_buffer(); bool has_disk_receive_buffer() const { return m_disk_recv_buffer; } void cut_receive_buffer(int size, int packet_size, int offset = 0); void reset_recv_buffer(int packet_size); void set_soft_packet_size(int size) { m_soft_packet_size = size; } // if allow_encrypted is false, and the torrent 'ih' turns out // to be an encrypted torrent (AES-256 encrypted) the peer will // be disconnected. This is to prevent non-encrypted peers to // attach to an encrypted torrent void attach_to_torrent(sha1_hash const& ih, bool allow_encrypted); bool verify_piece(peer_request const& p) const; void update_desired_queue_size(); // the bandwidth channels, upload and download // keeps track of the current quotas bandwidth_channel m_bandwidth_channel[num_channels]; // number of bytes this peer can send and receive int m_quota[2]; // statistics about upload and download speeds // and total amount of uploads and downloads for // this peer stat m_statistics; // a back reference to the session // the peer belongs to. aux::session_impl& m_ses; // called from the main loop when this connection has any // work to do. void on_send_data(error_code const& error , std::size_t bytes_transferred); void on_receive_data(error_code const& error , std::size_t bytes_transferred); // this is the limit on the number of outstanding requests // we have to this peer. This is initialized to the settings // in the session_settings structure. But it may be lowered // if the peer is known to require a smaller limit (like BitComet). // or if the extended handshake sets a limit. // web seeds also has a limit on the queue size. int m_max_out_request_queue; // the average rate of receiving complete piece messages sliding_average<20> m_piece_rate; sliding_average<20> m_send_rate; void set_timeout(int s) { m_timeout = s; } #ifndef TORRENT_DISABLE_EXTENSIONS typedef std::list > extension_list_t; extension_list_t m_extensions; #endif #ifndef TORRENT_DISABLE_RESOLVE_COUNTRIES // in case the session settings is set // to resolve countries, this is set to // the two character country code this // peer resides in. char m_country[2]; #endif boost::intrusive_ptr self() { TORRENT_ASSERT(!m_in_constructor); return boost::intrusive_ptr(this); } private: std::pair preferred_caching() const; void fill_send_buffer(); void on_disk_read_complete(int ret, disk_io_job const& j, peer_request r); void on_disk_write_complete(int ret, disk_io_job const& j , peer_request r, boost::shared_ptr t); int request_upload_bandwidth( bandwidth_channel* bwc1 , bandwidth_channel* bwc2 = 0 , bandwidth_channel* bwc3 = 0 , bandwidth_channel* bwc4 = 0); int request_download_bandwidth( bandwidth_channel* bwc1 , bandwidth_channel* bwc2 = 0 , bandwidth_channel* bwc3 = 0 , bandwidth_channel* bwc4 = 0); // keep the io_service running as long as we // have peer connections io_service::work m_work; // the time when we last got a part of a // piece packet from this peer ptime m_last_piece; // the time we sent a request to // this peer the last time ptime m_last_request; // the time we received the last // piece request from the peer ptime m_last_incoming_request; // the time when we unchoked this peer ptime m_last_unchoke; // if we're unchoked by this peer, this // was the time ptime m_last_unchoked; // timeouts ptime m_last_receive; ptime m_last_sent; // the time when the first entry in the // request queue was requested, increased // for each entry that is popped from the // download queue. Used for request timeout ptime m_requested; // a timestamp when the remote download rate // was last updated ptime m_remote_dl_update; // the time when async_connect was called // or when the incoming connection was established ptime m_connect; // the time when this peer sent us a not_interested message // the last time. ptime m_became_uninterested; // the time when we sent a not_interested message to // this peer the last time. ptime m_became_uninteresting; // the amount of data this peer has been given // as free upload. This is distributed from // peers from which we get free download // this will be negative on a peer from which // we get free download, and positive on peers // that we give the free upload, to keep the balance. size_type m_free_upload; // the total payload download bytes // at the last unchoke cycle. This is used to // measure the number of bytes transferred during // an unchoke cycle, to unchoke peers the more bytes // they sent us size_type m_downloaded_at_last_unchoke; size_type m_uploaded_at_last_unchoke; #ifndef TORRENT_DISABLE_GEO_IP std::string m_inet_as_name; #endif buffer m_recv_buffer; // if this peer is receiving a piece, this // points to a disk buffer that the data is // read into. This eliminates a memcopy from // the receive buffer into the disk buffer disk_buffer_holder m_disk_recv_buffer; chained_buffer m_send_buffer; boost::shared_ptr m_socket; // this is the peer we're actually talking to // it may not necessarily be the peer we're // connected to, in case we use a proxy tcp::endpoint m_remote; // this is the torrent this connection is // associated with. If the connection is an // incoming connection, this is set to zero // until the info_hash is received. Then it's // set to the torrent it belongs to. boost::weak_ptr m_torrent; // remote peer's id peer_id m_peer_id; // the pieces the other end have bitfield m_have_piece; // the queue of requests we have got // from this peer std::vector m_requests; // the blocks we have reserved in the piece // picker and will request from this peer. std::vector m_request_queue; // the queue of blocks we have requested // from this peer std::vector m_download_queue; // the pieces we will send to the peer // if requested (regardless of choke state) std::vector m_accept_fast; // the pieces the peer will send us if // requested (regardless of choke state) std::vector m_allowed_fast; // pieces that has been suggested to be // downloaded from this peer std::vector m_suggested_pieces; // a list of byte offsets inside the send buffer // the piece requests std::vector m_requests_in_buffer; // the block we're currently receiving. Or // (-1, -1) if we're not receiving one piece_block m_receiving_block; // the time when this peer last saw a complete copy // of this torrent time_t m_last_seen_complete; // if the timeout is extended for the outstanding // requests, this is the number of seconds it was // extended. int m_timeout_extend; // the number of bytes that the other // end has to send us in order to respond // to all outstanding piece requests we // have sent to it int m_outstanding_bytes; // the number of outstanding bytes expected // to be received by extensions int m_extension_outstanding_bytes; // the number of time critical requests // queued up in the m_request_queue that // soon will be committed to the download // queue. This is included in download_queue_time() // so that it can be used while adding more // requests and take the previous requests // into account without submitting it all // immediately int m_queued_time_critical; // the number of pieces this peer // has. Must be the same as // std::count(m_have_piece.begin(), // m_have_piece.end(), true) int m_num_pieces; // the timeout in seconds int m_timeout; // the size (in bytes) of the bittorrent message // we're currently receiving int m_packet_size; // some messages needs to be read from the socket // buffer in multiple stages. This soft packet // size limits the read size between message handler // dispatch. Ignored when set to 0 int m_soft_packet_size; // the number of bytes of the bittorrent payload // we've received so far int m_recv_pos; int m_disk_recv_buffer_size; // the number of bytes we are currently reading // from disk, that will be added to the send // buffer as soon as they complete int m_reading_bytes; // the number of invalid piece-requests // we have got from this peer. If the request // queue gets empty, and there have been // invalid requests, we can assume the // peer is waiting for those pieces. // we can then clear its download queue // by sending choke, unchoke. int m_num_invalid_requests; // this is the priority with which this peer gets // download bandwidth quota assigned to it. int m_priority; int m_upload_limit; int m_download_limit; // this peer's peer info struct. This may // be 0, in case the connection is incoming // and hasn't been added to a torrent yet. policy::peer* m_peer_info; // this is a measurement of how fast the peer // it allows some variance without changing // back and forth between states peer_speed_t m_speed; // the ticket id from the connection queue. // This is used to identify the connection // so that it can be removed from the queue // once the connection completes int m_connection_ticket; // if this is -1, superseeding is not active. If it is >= 0 // this is the piece that is available to this peer. Only // this piece can be downloaded from us by this peer. // This will remain the current piece for this peer until // another peer sends us a have message for this piece int m_superseed_piece; // bytes downloaded since last second // timer timeout; used for determining // approx download rate int m_remote_bytes_dled; // approximate peer download rate int m_remote_dl_rate; // the number of bytes send to the disk-io // thread that hasn't yet been completely written. int m_outstanding_writing_bytes; // max transfer rates seen on this peer int m_download_rate_peak; int m_upload_rate_peak; // when using the BitTyrant choker, this is our // estimated reciprocation rate. i.e. the rate // we need to send to this peer for it to unchoke // us int m_est_reciprocation_rate; // estimated round trip time to this peer // based on the time from when async_connect // was called to when on_connection_complete // was called. The rtt is specified in milliseconds boost::uint16_t m_rtt; // if set to non-zero, this peer will always prefer // to request entire n pieces, rather than blocks. // where n is the value of this variable. // if it is 0, the download rate limit setting // will be used to determine if whole pieces // are preferred. boost::uint8_t m_prefer_whole_pieces; // the number of request we should queue up // at the remote end. boost::uint8_t m_desired_queue_size; // the number of piece requests we have rejected // in a row because the peer is choked. This is // used to re-send the choked message in case the // other end keeps requesting pieces while being // choked, and eventuelly disconnect if it keeps // requesting too many pieces while being choked boost::uint8_t m_choke_rejects; // if this is true, the disconnection // timestamp is not updated when the connection // is closed. This means the time until we can // reconnect to this peer is shorter, and likely // immediate. bool m_fast_reconnect:1; // is true if it was we that connected to the peer // and false if we got an incoming connection // could be considered: true = local, false = remote bool m_active:1; // other side says that it's interested in downloading // from us. bool m_peer_interested:1; // the other side has told us that it won't send anymore // data to us for a while bool m_peer_choked:1; // the peer has pieces we are interested in bool m_interesting:1; // we have choked the upload to the peer bool m_choked:1; // this is set to true if the connection timed // out or closed the connection. In that // case we will not try to reconnect to // this peer bool m_failed:1; // if this is set to true, the peer will not // request bandwidth from the limiter, but instead // just send and receive as much as possible. bool m_ignore_bandwidth_limits:1; // set to true if this peer controls its unchoke // state individually, regardless of the global // unchoker bool m_ignore_unchoke_slots:1; // this is set to true when a have_all // message is received. This information // is used to fill the bitmask in init() bool m_have_all:1; // this is true if this connection has been added // to the list of connections that will be closed. bool m_disconnecting:1; // this is true until this socket has become // writable for the first time (i.e. the // connection completed). While connecting // the timeout will not be triggered. This is // because windows XP SP2 may delay connection // attempts, which means that the connection // may not even have been attempted when the // time out is reached. bool m_connecting:1; // This is true until connect is called on the // peer_connection's socket. It is false on incoming // connections. bool m_queued:1; // if this is true, the blocks picked by the piece // picker will be merged before passed to the // request function. i.e. subsequent blocks are // merged into larger blocks. This is used by // the http-downloader, to request whole pieces // at a time. bool m_request_large_blocks:1; // set to true if this peer is in share mode bool m_share_mode:1; // set to true when this peer is only uploading bool m_upload_only:1; // set to true when a piece request times out. The // result is that the desired pending queue size // is set to 1 bool m_snubbed:1; // this is set to true once the bitfield is received bool m_bitfield_received:1; // if this is set to true, the client will not // pick any pieces from this peer bool m_no_download:1; // this is set to true if the last time we tried to // pick a piece to download, we could only find // blocks that were already requested from other // peers. In this case, we should not try to pick // another piece until the last one we requested is done bool m_endgame_mode:1; // set to true when we've sent the first round of suggests bool m_sent_suggests:1; // set to true while we're trying to holepunch bool m_holepunch_mode:1; // when this is set, the transfer stats for this connection // is not included in the torrent or session stats bool m_ignore_stats:1; // when this is set, the peer_connection socket is // corked, similar to the linux TCP feature TCP_CORK. // we won't send anything to the actual socket, just // buffer messages up in the application layer send // buffer, and send it once we're uncorked. bool m_corked:1; template struct handler_storage { #ifdef TORRENT_DEBUG handler_storage() : used(false) {} bool used; #endif boost::aligned_storage bytes; }; handler_storage m_read_handler_storage; handler_storage m_write_handler_storage; template struct allocating_handler { allocating_handler( Handler const& h, handler_storage& s ) : handler(h) , storage(s) {} template void operator()(A0 const& a0) const { handler(a0); } template void operator()(A0 const& a0, A1 const& a1) const { handler(a0, a1); } template void operator()(A0 const& a0, A1 const& a1, A2 const& a2) const { handler(a0, a1, a2); } friend void* asio_handler_allocate( std::size_t size, allocating_handler* ctx) { TORRENT_ASSERT(size <= Size); #ifdef TORRENT_DEBUG TORRENT_ASSERT(!ctx->storage.used); ctx->storage.used = true; #endif return &ctx->storage.bytes; } friend void asio_handler_deallocate( void*, std::size_t, allocating_handler* ctx) { #ifdef TORRENT_DEBUG ctx->storage.used = false; #endif } Handler handler; handler_storage& storage; }; template allocating_handler make_read_handler(Handler const& handler) { return allocating_handler( handler, m_read_handler_storage ); } template allocating_handler make_write_handler(Handler const& handler) { return allocating_handler( handler, m_write_handler_storage ); } #if defined TORRENT_DEBUG || TORRENT_RELEASE_ASSERTS public: bool m_in_constructor:1; bool m_disconnect_started:1; bool m_initialized:1; int m_received_in_piece; #endif }; struct cork { cork(peer_connection& p): m_pc(p) { m_pc.cork_socket(); } ~cork() { m_pc.uncork_socket(); } peer_connection& m_pc; }; } #endif // TORRENT_PEER_CONNECTION_HPP_INCLUDED