/* Copyright (c) 2016, Steven Siloti All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "test.hpp" #include "libtorrent/aux_/session_impl.hpp" #include "libtorrent/string_util.hpp" using namespace lt; namespace { using tp = aux::transport; void test_equal(aux::listen_socket_t const& s, address addr, int port , std::string dev, tp ssl) { TEST_CHECK(s.ssl == ssl); TEST_EQUAL(s.local_endpoint.address(), addr); TEST_EQUAL(s.original_port, port); TEST_EQUAL(s.device, dev); } void test_equal(aux::listen_endpoint_t const& e1, address addr, int port , std::string dev, tp ssl) { TEST_CHECK(e1.ssl == ssl); TEST_EQUAL(e1.port, port); TEST_EQUAL(e1.addr, addr); TEST_EQUAL(e1.device, dev); } ip_interface ifc(char const* ip, char const* device, char const* netmask = nullptr) { ip_interface ipi; ipi.interface_address = address::from_string(ip); if (netmask) ipi.netmask = address::from_string(netmask); strncpy(ipi.name, device, sizeof(ipi.name)); return ipi; } ip_route rt(char const* ip, char const* device, char const* gateway) { ip_route ret; ret.destination = address::from_string(ip); ret.gateway = address::from_string(gateway); std::strncpy(ret.name, device, sizeof(ret.name)); ret.name[sizeof(ret.name) - 1] = '\0'; return ret; } aux::listen_endpoint_t ep(char const* ip, int port , tp ssl, aux::listen_socket_flags_t const flags) { return aux::listen_endpoint_t(address::from_string(ip), port, std::string{} , ssl, flags); } aux::listen_endpoint_t ep(char const* ip, int port , tp ssl = tp::plaintext , std::string device = {}) { return aux::listen_endpoint_t(address::from_string(ip), port, device, ssl , aux::listen_socket_t::accept_incoming); } aux::listen_endpoint_t ep(char const* ip, int port , std::string device , tp ssl = tp::plaintext) { return aux::listen_endpoint_t(address::from_string(ip), port, device, ssl , aux::listen_socket_t::accept_incoming); } aux::listen_endpoint_t ep(char const* ip, int port , std::string device , aux::listen_socket_flags_t const flags) { return aux::listen_endpoint_t(address::from_string(ip), port, device , tp::plaintext, flags); } aux::listen_endpoint_t ep(char const* ip, int port , aux::listen_socket_flags_t const flags) { return aux::listen_endpoint_t(address::from_string(ip), port, std::string{} , tp::plaintext, flags); } std::shared_ptr sock(char const* ip, int const port , int const original_port, char const* device = "") { auto s = std::make_shared(); s->local_endpoint = tcp::endpoint(address::from_string(ip) , aux::numeric_cast(port)); s->original_port = original_port; s->device = device; return s; } std::shared_ptr sock(char const* ip, int const port, char const* dev) { return sock(ip, port, port, dev); } std::shared_ptr sock(char const* ip, int const port) { return sock(ip, port, port); } } // anonymous namespace TORRENT_TEST(partition_listen_sockets_wildcard2specific) { std::vector> sockets = { sock("0.0.0.0", 6881), sock("4.4.4.4", 6881) }; // remove the wildcard socket and replace it with a specific IP std::vector eps = { ep("4.4.4.4", 6881), ep("4.4.4.5", 6881) }; auto remove_iter = aux::partition_listen_sockets(eps, sockets); TEST_EQUAL(eps.size(), 1); TEST_EQUAL(std::distance(sockets.begin(), remove_iter), 1); TEST_EQUAL(std::distance(remove_iter, sockets.end()), 1); test_equal(*sockets.front(), address_v4::from_string("4.4.4.4"), 6881, "", tp::plaintext); test_equal(*sockets.back(), address_v4(), 6881, "", tp::plaintext); test_equal(eps.front(), address_v4::from_string("4.4.4.5"), 6881, "", tp::plaintext); } TORRENT_TEST(partition_listen_sockets_port_change) { std::vector> sockets = { sock("4.4.4.4", 6881), sock("4.4.4.5", 6881) }; // change the ports std::vector eps = { ep("4.4.4.4", 6882), ep("4.4.4.5", 6882) }; auto remove_iter = aux::partition_listen_sockets(eps, sockets); TEST_CHECK(sockets.begin() == remove_iter); TEST_EQUAL(eps.size(), 2); } TORRENT_TEST(partition_listen_sockets_device_bound) { std::vector> sockets = { sock("4.4.4.5", 6881), sock("0.0.0.0", 6881) }; // replace the wildcard socket with a pair of device bound sockets std::vector eps = { ep("4.4.4.5", 6881) , ep("4.4.4.6", 6881, "eth1") , ep("4.4.4.7", 6881, "eth1") }; auto remove_iter = aux::partition_listen_sockets(eps, sockets); TEST_EQUAL(std::distance(sockets.begin(), remove_iter), 1); TEST_EQUAL(std::distance(remove_iter, sockets.end()), 1); test_equal(*sockets.front(), address_v4::from_string("4.4.4.5"), 6881, "", tp::plaintext); test_equal(*sockets.back(), address_v4(), 6881, "", tp::plaintext); TEST_EQUAL(eps.size(), 2); } TORRENT_TEST(partition_listen_sockets_device_ip_change) { std::vector> sockets = { sock("10.10.10.10", 6881, "enp3s0") , sock("4.4.4.4", 6881, "enp3s0") }; // change the IP of a device bound socket std::vector eps = { ep("10.10.10.10", 6881, "enp3s0") , ep("4.4.4.5", 6881, "enp3s0") }; auto remove_iter = aux::partition_listen_sockets(eps, sockets); TEST_EQUAL(std::distance(sockets.begin(), remove_iter), 1); TEST_EQUAL(std::distance(remove_iter, sockets.end()), 1); test_equal(*sockets.front(), address_v4::from_string("10.10.10.10"), 6881, "enp3s0", tp::plaintext); test_equal(*sockets.back(), address_v4::from_string("4.4.4.4"), 6881, "enp3s0", tp::plaintext); TEST_EQUAL(eps.size(), 1); test_equal(eps.front(), address_v4::from_string("4.4.4.5"), 6881, "enp3s0", tp::plaintext); } TORRENT_TEST(partition_listen_sockets_original_port) { std::vector> sockets = { sock("10.10.10.10", 6883, 6881), sock("4.4.4.4", 6883, 6881) }; // make sure all sockets are kept when the actual port is different from the original std::vector eps = { ep("10.10.10.10", 6881) , ep("4.4.4.4", 6881) }; auto remove_iter = aux::partition_listen_sockets(eps, sockets); TEST_CHECK(remove_iter == sockets.end()); TEST_CHECK(eps.empty()); } TORRENT_TEST(partition_listen_sockets_ssl) { std::vector> sockets = { sock("10.10.10.10", 6881), sock("4.4.4.4", 6881) }; // add ssl sockets std::vector eps = { ep("10.10.10.10", 6881) , ep("4.4.4.4", 6881) , ep("10.10.10.10", 6881, tp::ssl) , ep("4.4.4.4", 6881, tp::ssl) }; auto remove_iter = aux::partition_listen_sockets(eps, sockets); TEST_CHECK(remove_iter == sockets.end()); TEST_EQUAL(eps.size(), 2); } TORRENT_TEST(partition_listen_sockets_op_ports) { std::vector> sockets = { sock("10.10.10.10", 6881, 0), sock("4.4.4.4", 6881) }; // replace OS assigned ports with explicit ports std::vector eps ={ ep("10.10.10.10", 6882), ep("4.4.4.4", 6882), }; auto remove_iter = aux::partition_listen_sockets(eps, sockets); TEST_CHECK(remove_iter == sockets.begin()); TEST_EQUAL(eps.size(), 2); } TORRENT_TEST(expand_devices) { std::vector const ifs = { ifc("127.0.0.1", "lo", "255.0.0.0") , ifc("192.168.1.2", "eth0", "255.255.255.0") , ifc("24.172.48.90", "eth1", "255.255.255.0") , ifc("::1", "lo", "ffff:ffff:ffff:ffff::") , ifc("fe80::d250:99ff:fe0c:9b74", "eth0", "ffff:ffff:ffff:ffff::") , ifc("2601:646:c600:a3:d250:99ff:fe0c:9b74", "eth0", "ffff:ffff:ffff:ffff::") }; std::vector eps = { { address::from_string("127.0.0.1"), 6881, // port "", // device aux::transport::plaintext, aux::listen_socket_flags_t{} }, { address::from_string("192.168.1.2"), 6881, // port "", // device aux::transport::plaintext, aux::listen_socket_flags_t{} } }; expand_devices(ifs, eps); TEST_CHECK((eps == std::vector{ { address::from_string("127.0.0.1"), 6881, // port "lo", // device aux::transport::plaintext, aux::listen_socket_flags_t{}, address::from_string("255.0.0.0") }, { address::from_string("192.168.1.2"), 6881, // port "eth0", // device aux::transport::plaintext, aux::listen_socket_flags_t{}, address::from_string("255.255.255.0") }, })); } TORRENT_TEST(expand_unspecified) { // this causes us to only expand IPv6 addresses on eth0 std::vector const routes = { rt("0.0.0.0", "eth0", "1.2.3.4"), rt("::", "eth0", "1234:5678::1"), }; std::vector const ifs = { ifc("127.0.0.1", "lo") , ifc("192.168.1.2", "eth0") , ifc("24.172.48.90", "eth1") , ifc("::1", "lo") , ifc("fe80::d250:99ff:fe0c:9b74", "eth0") , ifc("2601:646:c600:a3:d250:99ff:fe0c:9b74", "eth0") }; aux::listen_socket_flags_t const global = aux::listen_socket_t::accept_incoming | aux::listen_socket_t::was_expanded; aux::listen_socket_flags_t const local = aux::listen_socket_t::accept_incoming | aux::listen_socket_t::was_expanded | aux::listen_socket_t::local_network; auto v4_nossl = ep("0.0.0.0", 6881); auto v4_ssl = ep("0.0.0.0", 6882, tp::ssl); auto v4_loopb_nossl= ep("127.0.0.1", 6881, local); auto v4_loopb_ssl = ep("127.0.0.1", 6882, tp::ssl, local); auto v4_g1_nossl = ep("192.168.1.2", 6881, global); auto v4_g1_ssl = ep("192.168.1.2", 6882, tp::ssl, global); auto v4_g2_nossl = ep("24.172.48.90", 6881, global); auto v4_g2_ssl = ep("24.172.48.90", 6882, tp::ssl, global); auto v6_unsp_nossl = ep("::", 6883, global); auto v6_unsp_ssl = ep("::", 6884, tp::ssl, global); auto v6_ll_nossl = ep("fe80::d250:99ff:fe0c:9b74", 6883, local); auto v6_ll_ssl = ep("fe80::d250:99ff:fe0c:9b74", 6884, tp::ssl, local); auto v6_g_nossl = ep("2601:646:c600:a3:d250:99ff:fe0c:9b74", 6883, global); auto v6_g_ssl = ep("2601:646:c600:a3:d250:99ff:fe0c:9b74", 6884, tp::ssl, global); auto v6_loopb_ssl = ep("::1", 6884, tp::ssl, local); auto v6_loopb_nossl= ep("::1", 6883, local); std::vector eps = { v4_nossl, v4_ssl, v6_unsp_nossl, v6_unsp_ssl }; aux::expand_unspecified_address(ifs, routes, eps); TEST_EQUAL(eps.size(), 12); TEST_CHECK(std::count(eps.begin(), eps.end(), v4_g1_nossl) == 1); TEST_CHECK(std::count(eps.begin(), eps.end(), v4_g1_ssl) == 1); TEST_CHECK(std::count(eps.begin(), eps.end(), v4_g2_nossl) == 1); TEST_CHECK(std::count(eps.begin(), eps.end(), v4_g2_ssl) == 1); TEST_CHECK(std::count(eps.begin(), eps.end(), v6_ll_nossl) == 1); TEST_CHECK(std::count(eps.begin(), eps.end(), v6_ll_ssl) == 1); TEST_CHECK(std::count(eps.begin(), eps.end(), v6_g_nossl) == 1); TEST_CHECK(std::count(eps.begin(), eps.end(), v6_g_ssl) == 1); TEST_CHECK(std::count(eps.begin(), eps.end(), v6_loopb_ssl) == 1); TEST_CHECK(std::count(eps.begin(), eps.end(), v6_loopb_nossl) == 1); TEST_CHECK(std::count(eps.begin(), eps.end(), v4_loopb_ssl) == 1); TEST_CHECK(std::count(eps.begin(), eps.end(), v4_loopb_nossl) == 1); TEST_CHECK(std::count(eps.begin(), eps.end(), v6_unsp_nossl) == 0); TEST_CHECK(std::count(eps.begin(), eps.end(), v6_unsp_ssl) == 0); TEST_CHECK(std::count(eps.begin(), eps.end(), v4_nossl) == 0); TEST_CHECK(std::count(eps.begin(), eps.end(), v4_ssl) == 0); // test that a user configured endpoint is not duplicated auto v6_g_nossl_dev = ep("2601:646:c600:a3:d250:99ff:fe0c:9b74", 6883, "eth0"); eps.clear(); eps.push_back(v6_unsp_nossl); eps.push_back(v6_g_nossl_dev); aux::expand_unspecified_address(ifs, routes, eps); TEST_EQUAL(eps.size(), 3); TEST_CHECK(std::count(eps.begin(), eps.end(), v6_ll_nossl) == 1); TEST_CHECK(std::count(eps.begin(), eps.end(), v6_g_nossl) == 0); TEST_CHECK(std::count(eps.begin(), eps.end(), v6_loopb_nossl) == 1); TEST_CHECK(std::count(eps.begin(), eps.end(), v6_g_nossl_dev) == 1); } namespace { std::vector to_endpoint(listen_interface_t const& iface , span const ifs) { std::vector ret; interface_to_endpoints(iface, aux::listen_socket_t::accept_incoming, ifs, ret); return ret; } using eps = std::vector; listen_interface_t ift(char const* dev, int const port, bool const ssl = false , bool const local = false) { return {std::string(dev), port, ssl, local}; } } using ls = aux::listen_socket_t; TORRENT_TEST(interface_to_endpoint) { TEST_CHECK(to_endpoint(ift("10.0.1.1", 6881), {}) == eps{ep("10.0.1.1", 6881)}); std::vector const ifs = { // this is a global IPv4 address, not a private network ifc("185.0.1.2", "eth0") , ifc("192.168.2.2", "eth1") , ifc("fe80::d250:99ff:fe0c:9b74", "eth0") // this is a global IPv6 address, not a private network , ifc("2601:646:c600:a3:d250:99ff:fe0c:9b74", "eth1") }; TEST_CHECK((to_endpoint(ift("eth0", 1234), ifs) == eps{ep("185.0.1.2", 1234, "eth0", ls::was_expanded | ls::accept_incoming) , ep("fe80::d250:99ff:fe0c:9b74", 1234, "eth0", ls::was_expanded | ls::accept_incoming | ls::local_network)})); TEST_CHECK((to_endpoint(ift("eth1", 1234), ifs) == eps{ep("192.168.2.2", 1234, "eth1", ls::was_expanded | ls::accept_incoming) , ep("2601:646:c600:a3:d250:99ff:fe0c:9b74", 1234, "eth1", ls::was_expanded | ls::accept_incoming)})); std::vector const ifs2 = { ifc("10.0.1.1", "eth0") }; TEST_CHECK((to_endpoint(ift("eth0", 1234), ifs2) == eps{ep("10.0.1.1", 1234, "eth0", ls::was_expanded | ls::accept_incoming)})); }